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This document provides additional information to support the analysis in Knapp and Schwabe 

(2007).  This includes material on data and the production functions, additional explanatory 

material for the spatial variability results, water price literature survey, and sensitivity analysis.  

The organization generally follows that in the article. 

 

Data 

Yolo county at the southern end of the Sacramento valley is the location of the field experiment 

site for the production function data.  Production costs are estimated from University of 

California Cooperative Extension budgets for corn in Yolo County. 

 

Discrete Approximation to the Lognormal Distribution 

As noted in the article, we assume that water infiltration coefficients are distributed according to 

a lognormal distribution which is discretized for the dynamic optimization model.  Figure A1 

shows the lognormal density function for the infiltration coefficients b and superimposed on this 

are the 11 discretized values, where the probability mass associated with a particular b value is 

computed from a corresponding interval of the continuous density function.  As shown, the 

discretization represents well the original density function.  Additional evidence is that rerunning 

the optimization model with a finer grid does not significantly alter the results. 

 

Plant-level Production Functions 

Conceptual background and data sources are presented in the section entitled Economic Data 

and Crop-Water-Nitrogen Production Function, and the mathematical model and results 

developed in the Appendix.  While these production functions are not the focus of the article, 
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they may be of independent interest.  Here we provide additional interpretation and analysis of 

the estimated functions. 

 Figure A2 shows 3D and contour plots for the plant-level production function.  The 3D plots 

demonstrate that yield and N-emissions are increasing in water and N applications to some 

maximum, but that yield can decrease at sufficiently high water levels for reasons given in the 

text.  Nitrogen carryover generally is increasing in N and decreasing in water, although water can 

have the opposite effect in some circumstances.  This comes from the denitrification equation 

(A5) where water is either reducing denitrification or enhancing mineralization; regardless, the 

effect is small.  The contour plots demonstrate some water-nitrogen substitution; the substitution 

possibilities, though, can be both limited and occurring only in limited regions of the input space. 

 Figures A3a - A3c plot marginal products (MP) and cross-partials.  It can be seen that N 

applications have the anticipated positive, diminishing MP.  Water is more complicated.  It can 

exhibit negative MP, and does not always satisfy concavity.  The cross-partials have uniform 

sign for the range of conditions reported.  The cross-partials are non-negative for yield and N-

emissions, implying that an increase in water does not decrease –and can increase - N marginal 

yield product, but also enhances the N-emissions effect of N applications.  The negative cross-

partial for carryovers indicates that water applications diminish the positive carryover impact of 

additional N applications. 

 Remarks:  (1) The plots in figures A3a – A3c are for a specific value of initial soil N and are 

hence not completely general.  (2) These are numeric results.  While the production functions are 

composite functions from an equation system, all functions are analytic and analytic expressions 

for the partial and cross-partial derivatives can be derived by hand or by a symbolic algebra 

system such as Mathematica.  The expressions are complicated and we have not attempted to 
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evaluate them theoretically.  (3) The above discussion of production function properties applies 

at the plant-level.  The field-level production function is the integral over the field of the plant-

level production functions.  This could conceivably have a “convexifying” effect.     

 

Corn Prices 

Corn prices have increased in recent years due to energy prices and ethanol demand.  Space does 

not permit a complete analysis of this issue; however, table A1 provides sensitivity analysis.  We 

also note that fertilizer prices have also increased, thereby moderating – at least in part – input 

demand effects of corn price increases.  We also note that corn prices could moderate in response 

to various long-run adjustments. 

 

Spatial Variability and Nonlinearity 

This section provides further discussion and interpretation of the model results regarding 

specification issues and in particular the interrelation between spatial variability and the 

nonlinear plant-level production functions.  

 Nonlinear production functions combined with spatial variability imply that the uniform 

model which ignores spatial variability leads to incorrect results as shown in the paper.  If 

production functions are linear, then one would have the spatial equivalent of certainty 

equivalence and the plant-level production functions evaluated at the field-average water depth 

would yield correct results.  As this does not occur, it demonstrates that the nonlinearity of the 

plant-level production functions – along with spatial variability – is driving the results.  Put 

another way, the model does not exhibit what might be termed spatial certainty equivalence. 
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 Some of the functions estimated here are not only nonlinear, they are also convex-concave.  

A related issue to the above is whether this nonconvexity matters or whether one can just focus 

on the concave portions of the function.  As discussed conceptually in the text, if water 

infiltration were uniform, then only the concave portion would be relevant for economic 

analysis, thereby simplifying the modeling.  However, in the spatially-variable case this is not 

possible and one needs the whole function for accuracy.  Figure A4 shows nitrate leaching as a 

function of infiltrated water.  Also plotted on the figure are the 11 grid cell values evaluated at 

optimal steady state levels of initial soil N and applied water and N.  Note that infiltrated water 

depths fall on all 3 regions of the N-leaching function.  This confirms the conceptual hypothesis 

in the paper that it is necessary to include the entire function for accuracy and that one cannot 

just concentrate on the concave portion.   

 To further explore the role of spatial variability, the next graph plots cumulative N-

emissions  as a function of b at the optimal steady-state.  As can be seen, 

substantial emissions occur in the middle ranges of b.  Lower values imply relatively little deep 

percolation hence reduced N transport.  High values imply substantial deep percolation; 

however, in the steady-state the soil N levels are reduced implying less N available to be leached.  

In any case, the figure provides further direct evidence of the simultaneous importance of spatial 

variability, nonlinearity, and threshold effects. 
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California Water Pricing, Transfers, and Markets 

There are a variety of institutional impediments and mechanisms in place that suggest irrigated 

agricultural producers may not face the full opportunity cost of water, thereby implying the 

possibility of higher prices and/or reduced water supplies in the future.  As background for the 
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analysis of water conservation using the dynamic optimization model, we surveyed a variety of 

literature indicating likely water shadow values and transfer quantities from agricultural to urban 

and environmental sectors.  Original estimates in the cited sources and all other estimates have 

been adjusted for inflation. 

(1)  Historically, water has been delivered to growers at less than full cost as part of a strategy to 

develop the west (Wahl 1989).  Weinberg (1997) notes that full cost water prices range from 

three to nine times greater than the contract rates for several CVP districts in California, while 

Howitt (1997) indicates subsidies of 5% to 35% of water costs are typical for California 

agriculture.   

(2)  Groundwater, alternatively, is a major water source but is typically unregulated, leading to 

pumping cost externalities.  As noted in Lund et al. (2003), groundwater is responsible for 30% 

to 60% of all California deliveries.  Marginal user costs vary according to conditions, but 

estimated values for several areas in California range from $2.35/a-f to $30.55/a-f (Noel and 

Howitt 1982; Provencher 1993; Knapp and Olson 1995).   

(3)  Rising urban/residential/industrial water demand combined with transfer restrictions imply 

marginal values significantly above those in agricultural uses.  Consequently, opening up water 

markets implies that agricultural producers would face higher water prices.  Depending on the 

region, model assumptions, and policy scenario, estimated equilibrium water prices facing 

California agriculture with developed water markets range from $51/af to $129/af (Vaux and 

Howitt 1984; Berck, Robinson, and Goldman 1991; Weinberg 1997).  In 2003, San Diego 

County Water Authority began buying water from the Imperial Irrigation District under the 

Quantification Settlement Agreement for $258/af (SDCWA 2003).   
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 On the quantity side, a survey of the literature suggests that market equilibrium in California 

could be achieved with transfers of approximately 5% to 15% over the next several decades.  In 

particular, Vaux and Howitt (1984) found water transfers from agricultural to urban uses ranging 

from 6.3% of total agricultural supplies in 1980 to 11.5% in 2020.  In a more recent analysis of 

Central Valley agriculture, USBR (1998) estimated that the vast majority of all water transfers 

would be from Tulare Basin agriculture (including Kern County) to Southern California urban 

users, and that 4% of the surface water in that region would be transferred, or a total of 1.2 x 106 

ha cm. Weinberg (1997) calculated that water transfers from CVP water users under the CVPIA 

would be 4% of federal water use when voluntary water transfers were the only provision 

considered.  Lund et al. (2003) suggest applied water demands from California agriculture from 

2020-2100 will decrease by roughly 2.7%, whereas urban demands over the same time period 

will increase by nearly 7.2%.  Even so, agriculture will remain the dominant land and water use 

(Lund et al. 2003). 

(4)  Habitat and biodiversity concerns raise the possibility of agricultural water transfers back to 

environmental uses.  The recent CVPIA legislation implies cutbacks of 20% for CVP users and 

environmental fees of $7.49/af (Loomis 1994; Weinberg 1997).   

(5)  Finally, an additional distortion is average-cost pricing.  This typically follows from zero-

profit restrictions facing water districts and implies delivered water prices less than the marginal 

cost of the most expensive source.  We do not have an estimate of this distortion but do not 

expect that it would exceed the various distortions noted above. 
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Figure A1.  Lognormal density function for the water infiltration coefficients super-
imposed with discrete values used in the dynamic optimization model 
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Figure A2.  Plant-level production function.  Corn yield y (Mg ha-1 yr-1), nitrogen emissions 
net (kg ha-1 yr-1), and nitrogen carryovers nt+1 (kg ha-1) as functions of applied water wt (cm 
yr-1) and applied nitrogen nat (kg ha-1 yr-1) for initial soil nitrogen nt = 200 kg ha-1 in year t.  
 
 

 11



20 40 60 80 100
w HcmL

-1.2
-1

-0.8
-0.6
-0.4
-0.2

0.2
∑nt+1ê∑w

Nt+1 - Water Marginal
Product Hna=40 kgêhaL

20 40 60 80 100
w HcmL

0.5

1

1.5

2
∑neê∑w

Ne - Water Marginal
Product Hna=40 kgêhaL

20 40 60 80 100
w HcmL

0.05
0.1

0.15
0.2

0.25

∑yê∑w

Yield-Water Marginal Product
Hna = 40 kgêhaL

 
 
Figure A3a.  Marginal product of water for the plant-level corn production function.  Corn 
yield  (Mg haty -1 yr-1 ), nitrogen emissions  (kg haetn -1 yr-1), and nitrogen carryovers 1tn +  
(kg ha-1) as functions of applied water  (cm yrtw -1) for initial soil nitrogen  = 200 kg hatn -1 
in year t. 
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Figure A3b.  Marginal product of applied nitrogen for the plant-level corn production 
function.  Corn yield  (Mg haty -1 yr-1 ), nitrogen emissions  (kg haetn -1 yr-1), and nitrogen 
carryovers  (kg ha1tn +

-1) as functions of applied nitrogen  (kg haatn -1 yr-1) for initial soil 
nitrogen  = 200 kg hatn -1 in year t.  
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Figure A3c.  Cross-marginal products for the plant-level production function.  Corn yield 

 (Mg haty -1 yr-1), nitrogen emissions  (kg haetn -1 yr-1), and nitrogen carryovers  (kg ha1tn +
-

1) as functions of applied water  (cm yrtw -1) and applied nitrogen  (kg haatn -1 yr-1) for 
initial soil nitrogen  = 200 kg hatn -1 in year t. 
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Figure A4.  N-emissions as a function of applied water at steady-state levels of initial soil N 
and applied N and also evaluated at plot-level infiltrated water depths.  
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Figure A5.  Cumulative N-emissions as a function of infiltration coefficients. 

 
 
 
 



Table A1.  Corn Price Effects on Optimal Steady-State Values 

 

 
Corn Price 
p ($/Mg) 

Applied 
Water 

ssw (cm) 

Applied 
Nitrogen 

,a ssn (kg/ha) 

Soil 
Nitrogen 

ssn (kg/ha) 

 
Yield 

ssy (tons/ha) 

Nitrogen 
Emissions 

,e ssn (kg/ha) 

Annual 
NB 

($/ha) 

102.02 
(Current/Baseline) 87.9      221.4 158.8 10.07 36 168

112.02 
(10% Increase) 89.5      

      

      

      

      

230.5 164.2 10.13 38.5 269

122.64 
(20% Increase) 91 239.4 169.7 10.18 41 377

132.86 
(30% Increase) 92 251.1 170 10.23 43 480

143.08 
(40% Increase) 120.5 254.9 172.5 10.39 56 588

153.30 
(50% Increase) 122.8 261.5 177 10.42 58 693

Notes: PV-optimization with spatial variability and other parameter values at baseline values as specified in the text. 
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