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Abstract 

The functional specification of mean-standard deviation approach is examined under 

location and scale parameter condition.  Firstly, the full set of restrictions imposed on the 

mean-standard deviation function under the location and scale parameter condition are made 

clear.  Secondly, the examination based on the restrictions mentioned in the previous 

sentence derives the new properties of the mean-standard deviation function on the 

applicability of additive separability and the curvature of expansion path which links the 

points that give the same slope of indifference curve.  It reveals that attention has not been 

sufficiently paid to the restrictions in interpreting the linear mean-standard deviation model 

and the nonlinear mean-standard deviation model that have been used in previous research.  

Thirdly, the interpretation of the nonlinear mean-standard deviation model is reconsidered in 

detail and then an alternative nonlinear mean-standard deviation model is proposed.  The 

implication of the two nonlinear mean-standard deviation models to the empirical approach 

“joint analysis of risk preference structure and technology” is discussed. 
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Many studies have been conducted so far to examine farmer’s production behavior under 

uncertainty and recently the approach called “joint analysis of risk preference structure and 

technology” has been employed to directly estimate structural parameters that indicate agent 

risk preference and production technology (Love and Buccola 1991; Saha, Shumway, and 

Talpaz. 1994; Chavas and Holt 1996; Saha 1997; Abdulkadri, Langemeier and Featherstone 

2003; Nakashima 2006).  In order to develop joint analysis models, the two distinctive 

decision-making criteria, expected utility (EU) theory and mean-standard deviation (MS) 

approach, have been particularly adopted.  Needless to say, EU theory ranks random payoffs 

in accordance with expected value of suitably chosen utility function over payoff and MS 

approach evaluates random payoffs utilizing the objective function defined over the mean 

and standard deviation of payoff.  The popularity of EU theory is in its axiomatic 

fundamentals (von Neumann and Morgenstern 1944) and analytical tools such as measures 

of risk aversion (Arrow 1974; Pratt 1964), while that of MS approach is in its simple and 

intuitively understandable framework (Markowitz 1952; Tobin 1958).  Attention has been 

paid to the MS approach since Sinn (1983) and Meyer (1987) discovered that EU theory 

derives MS approach if random payoffs are restricted to the distribution class satisfying the 

location and scale parameter (LS) condition.  Besides, they successfully translated under the 

LS condition the EU-based-behavioral hypothesis such as von Neumann-Morgenstern 

(vNM) utility function’s curvature and Arrow-Pratt measure of risk aversion into appropriate 

analogues of the MS approach.  They also pointed out that the LS condition is actually 

satisfied in a wide range of EU-based economic models since the random payoffs they 

analyzed is formulated as a linear function of random factor that is uniquely involved in their 

models (Feder, 1977).1  For example, portfolio theory (Fishburn and Porter 1976), saving 

theory (Sandmo 1970), insurance demand theory (Ehrlich and Becker 1972), and production 

theory under uncertainty (Sandmo 1971; Ishii 1977; Feder 1980; Feder, Just, and Schmitz 
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1980) are all prominent models satisfying LS condition.  The implication is that it is possible 

to translate many EU-based models into the MS framework with no loss of accuracy and that 

these transformed MS models can be analyzed on the basis of EU-based behavioral 

hypotheses.  Thus, the MS approach is not only practical but is also flexible enough to 

provide full explanations for the LS class of EU-based economic models.  Attempts have 

been made to take advantage of the practical and flexible framework of MS approach in 

developing joint analysis models from economic theories that satisfy the LS condition (e.g., 

Saha 1997; Abdulkadri, Langemeier and Featherstone 2003; Nakashima 2006).  There is no 

doubt that employing MS approach instead of EU theory simplifies the models.  Besides, 

theoretically, the models are free from ex ante assumptions on vNM utility function and 

distribution of random factor.  For example, Hawawini (1978), Meyer and Robison (1988) 

and Leather and Quiggin (1991) enjoyed in their applied theoretical studies the MS 

framework that is flexible enough as well as tractable.  However, when it comes to empirical 

applications, the theoretical flexibility of the MS-based empirical models is reduced, because 

MS functions have to be specified.  Therefore, examining how the specification of MS 

functions restricts the theoretical flexibility is an important research area to empirically 

exploit the potential of MS approach under the LS condition. 

It is well known that if some restrictions are imposed on vNM utility function and/or 

distribution of random payoff so that EU theory derives MS function, the derived MS 

function also needs to be restricted properly.  For example, if vNM utility function is 

restricted to negative exponential utility function and random payoff is assumed to follow 

normal distribution, then the EU theory yields MS function that is specified as the linear 

mean-variance (LMV) model, supposedly one of the most frequently applied MS functions 

in the field of agricultural economics.2  Likewise, if random payoffs are restricted to the 

distribution class that satisfies LS condition, then the derived MS function has to be properly 
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restricted as well.  Compared with the case mentioned above, solving this specification 

problem is however somewhat complicated, because the LS condition does not specify a 

distribution of random payoffs but forms such a distribution family that nests a number of 

distribution, e.g. normal distribution and uniform distribution.  Picking up a particular 

distribution from the LS distribution family loses generality of the condition.  Therefore, the 

MS function under LS condition needs to be specified directly from MS framework, meeting 

the conditions that are imposed on MS function under the LS condition.  Several attempts 

such as studies by Saha (1997) and Eggert and Tveteras (2004) were made to directly specify 

the MS function under the LS condition.  However, nobody has pointed so far that the 

conditions have not been sufficiently fulfilled and that the conditions themselves have not 

been thoroughly discussed. 

The objective of this study is to examine the functional specification of MS approach 

under the LS condition.  The specification procedure adopted here is the one which directly 

specifies the MS function so that it fully meets the conditions imposed under the LS 

condition.  Although the direct specification procedure relies upon a trial-and-error method 

that is far from mathematical elegance, it is suitable for exploring the possibility of 

specifying the MS function under LS condition.  This study proceeds in the following order.  

Firstly, preliminary discussion is made on the conditions imposed on MS function under the 

LS condition.  The conditions come from three sources, which are (a) cardinal property of 

vNM utility function, (b) behavioral hypotheses that are translated from EU theory into MS 

approach, and (c) relationship between Arrow-Pratt's risk aversion measures.  Then, the 

imposed conditions are categorized by the type of risk aversion measures.  Secondly, the 

direct specifications of MS function are applied to each type of risk aversion.  In particular, it 

is examined whether the two functional properties, additive separablility and homotheticity, 

are applicable to the functional specifications.  Based on the examinations, MS functions 
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representing each type of risk aversion are considered and then some of MS functions that 

have been adopted such as the linear mean-variance (LMV) model and the linear 

mean-standard deviation (LMS) model are discussed in the context of LS condition.  Thirdly, 

an attempt is made to specify MS function so that it nests several types of risk aversion under 

the LS condition.  The flexible MS function proposed in this study provides an alternative 

interpretation of the nonlinear mean-standard deviation (NLMS) model.  Finally, the 

implication to the empirical approach “joint analysis of risk preference structure and 

technology” is discussed. 

 

Preliminary discussion 

In this section, the full set of conditions that MS function has to satisfy under LS condition is 

prepared for the upcoming sections.  The important thing that we have to be aware of when 

we consider the specification problem is that the MS framework established by Sinn (1983) 

and Meyer (1987) is by nature an EU theory (more precisely, a special case of EU theory) and 

utterly relies upon the EU-based analytical tools.  For example, the definition of risk aversion 

and the degree of risk aversion are exactly those of EU theory.  In other words, the theoretical 

fundamentals and the analytical tools of EU theory impose restrictions on the MS function.  

The sources of restrictions this study focuses on are categorized into three kinds, which are, 

(a) cardinal property of vNM utility function, (b) behavioral hypotheses that are translated 

from EU theory to MS approach, and (c) relationship between Arrow-Pratt's risk aversion 

measures. 

 Firstly, the existence of vNM utility, the core of EU theory, is guaranteed by von 

Neumann and Morgenstern’s axioms, which implies that the utility is cardinal function that is 

transformable only by a positive linear function.  This cardinal property is transformed into 

the MS approach in a straightforward manner.  Suppose that under some condition on vNM 
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utility function and/or distribution of random payoff, EU theory derives a MS function such 

that ( ) ( ) ( ),u dF Vπ π σ µ
+∞

−∞
=∫ , where π  denotes random payoff, ( )u π  is a vNM utility 

function, ( )F π  is a cumulative distribution function of π , ( ),V σ µ  is the derived MS function 

and µ  and σ  denote the mean and the standard deviation of π , respectively.  A positive 

linear transformation of the vNM utility function derives the relationship, 

( ){ } ( ) ( ),au b dF aV bπ π σ µ
+∞

−∞
+ = +∫  ( )0a > , which indicates the following result. 

 

Proposition 1 (Cardinal property) 

If MS approach is explained within EU theory, then the MS function is also cardinal that is 

transformable only by a positive linear function. 

 

 Secondly, Sinn (1983) and Meyer (1987) translated under LS condition the EU-based 

behavioral hypothesis such as vNM utility’s curvature and Arrow-Pratt’s measures of risk 

aversion into appropriates analogues of MS approach. 

 

Proposition 2 (Behavioral hypothesis) 

Property 1 ( ), 0Vµ σ µ >  if and only if ( ) 0Uπ π > . 

Property 2 ( ), 0Vσ σ µ <  ( 0= ) if and only if ( ) 0Uππ π <  ( 0= ) 

Property 3 The slope of the indifference curve of ( ),V σ µ , denoted 

as ( ) ( ) ( ), , ,S V Vσ µσ µ σ µ σ µ= − , is positive (zero) if the agent is risk-averse (risk-neutral). 

Property 4 ( ),V σ µ  is concave if and only if ( ) 0Uπ π >  and ( ) 0Uππ π ≤ . 

Property 5 ( ), 0Sµ σ µ < ( 0, 0)= >  if and only if absolute risk aversion is decreasing (constant, 

increasing). 

Property 6 ( ), 0tS t tσ µ < ( 0, 0)= >  if and only if relative risk aversion is decreasing (constant, 

increasing). 
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MS function is restricted by Proposition 2.  For example, Properties 1 and 2 make it 

monotonously increasing in µ  and decreasing in σ , respectively.  Property 4 stipulates that 

the relevant Hessian matrix with respect to µ  and σ  is negative semi definitive.  Properties 5 

and 6 restrict the slope of the indifference curve when the individual is risk averter.  Property 

5 makes ( ),S σ µ  to be decreasing (constant, increasing) in µ  when the individual’s absolute 

risk aversion is decreasing (constant, increasing), while Property 6 makes it to be decreasing 

(constant, increasing) along rays through the origin when the individual’s relative risk 

aversion is decreasing (constant, increasing).3  For later convenience, they are summarized as 

follows (This study focuses on risk averter’s case). 

 

(1)     ( ), 0Vµ σ µ > , 

(2)     ( ), 0Vσ σ µ < , 

(3-i)     ( ), 0Vµµ σ µ ≤ , 

(3-ii)     ( ), 0Vσσ σ µ ≤ , 

(3-iii)    ( ) ( ) ( )2, , , 0V V Vµµ σσ µσσ µ σ µ σ µ− ≥ , 

(4-i: DARA)  ( ) ( ) ( ) ( ), , , , 0V V V Vµσ µ µµ σσ µ σ µ σ µ σ µ− + < , 

(4-ii: CARA)  ( ) ( ) ( ) ( ), , , , 0V V V Vµσ µ µµ σσ µ σ µ σ µ σ µ− + = , 

(4-iii: IARA)  ( ) ( ) ( ) ( ), , , , 0V V V Vµσ µ µµ σσ µ σ µ σ µ σ µ− + > , 

(5-i: DRRA) 

( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ){ }, , , , , , , , 0V V V V V V V Vµσ µ µµ σ σσ µ µσ σσ µ σ µ σ µ σ µ µ σ µ σ µ σ µ σ µ σ− + + − + < , 

(5-ii: CRRA) 

( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ){ }, , , , , , , , 0V V V V V V V Vµσ µ µµ σ σσ µ µσ σσ µ σ µ σ µ σ µ µ σ µ σ µ σ µ σ µ σ− + + − + = , 

(5-iii: IRRA) 

( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ){ }, , , , , , , , 0V V V V V V V Vµσ µ µµ σ σσ µ µσ σσ µ σ µ σ µ σ µ µ σ µ σ µ σ µ σ µ σ− + + − + > . 
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Conditions (1), (2), (3-i), (3-ii) and (3-iii) are derived from Properties 1, 2 and 4, respectively, 

and they are imposed at all times when individual is risk averse under LS condition.  

Conditions (4-i), (4-ii) and (4-iii) could be expressed by Property 5 in terms of ( ),V σ µ .  

Similarly, conditions (5-i), (5-ii) and (5-iii) could be expressed by Property 6 in terms of 

( ),V σ µ  when 1t = .  They are depending on types of risk aversion. 

Thirdly, as discussed by Saha (1997), Arrow-Pratt risk aversion measures impose a 

certain restriction on the relationship between absolute risk aversion and relative risk 

aversion.  Formally, let ( )A π   and  ( ) ( )R Aπ π π=  respectively denote absolute risk aversion 

and relative risk aversion.  Then the differentiation of ( )R π  yields ( ) ( ) ( )R A Aπ ππ π π π= + .  If 

absolute risk aversion is decreasing (DARA), i.e., ( ) 0A π >  and ( ) 0Aπ π < , then the sign of 

( )Rπ π  is not determined.  In other words, DARA does not restrict the type of relative risk 

aversion.  However, when absolute risk aversion measure is constant (CARA) or increasing 

(IARA), i.e., when ( ) 0A π >   and  ( ) 0Aπ π ≥ , the sign of ( )Rπ π  is restricted to be positive, 

that is, increasing relative risk aversion (IRRA) is indicated and decreasing relative risk 

aversion (DRRA) and CRRA are ruled out.  As shown in table 1, the combination of absolute 

and relative risk aversion is uniquely determined, except that relative risk aversion is not 

restricted under DARA and absolute risk aversion is not restricted under IRRA.  Under the 

EU formulation, special attention needs not to be paid to the relationship, since it is 

automatically fulfilled in the specification of vNM utility.  For example, if vNM utility is 

specified as a negative exponential function that indicates CARA, then IRRA automatically 

follows.  However, its fulfillment is not guaranteed in the MS approach.  Therefore, the 

relationship must be explicitly taken into consideration in the specification of the MS 

function in order that the relationship is maintained.  Specifically, as Properties 5 and 6 in 

Proposition 2 implicitly assume the relationship, attention has to be paid to both of them.  

This imposes another restriction on MS function.  For example, if MS function displays 
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CARA under LS condition, then ( ),S σ µ  has to be not only constant in µ  but also increasing 

along rays through the origin.  Thus, condition (5-iii) in addition to condition (4-ii) is 

imposed. 

Combining the three kinds of restrictions discussed above, the complete set of 

conditions that MS function has to fully meet under LS condition is obtained.  For example, 

when an individual is risk averse of CARA, then Proposition 2 and table 1 indicate that the 

MS function has to fully satisfy conditions (1), (2), (3-i), (3-ii), (3-iii), (4-ii) and (5-iii) (Other 

cases are summarized in table 2).  Besides, Proposition 1 indicates that if the MS function is 

transformed, it needs to be linear transformation.  In the following two sections, we consider 

the specification of MS function for each type of risk aversion, taking into full consideration 

the conditions shown in table 2. 

 

Additive separability 

In this section, the specification of MS function is examined for three types of absolute risk 

aversion.  The examination proceeds in order of CARA, IARA, and DARA.  If an individual 

is risk averter of CARA under LS condition, then the MS function must fully meet conditions 

(1), (2), (3-i), (3-ii), (3-iii), (4-ii) and (5-iii) as shown in table 2.  Since condition (4-ii) 

indicates that the first term in left-hand-side of condition (5-iii) is zero, (5-iii) is reduced to: 

 

(5-iii’)   ( ) ( ) ( ) ( ), , , , 0V V V Vσσ µ µσ σσ µ σ µ σ µ σ µ− + > . 

 

Therefore, condition (5-iii) is replaceable to (5-iii’).  The specification of the MS function 

may be carried out using the sign of its differential coefficients that fully satisfy these 

conditions.  Although the procedure relies on a trial-and-error method, it allows the objective 

to be accomplished in the following three steps.  The first step is to draw a rough outline of 
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the MS function using condition (1) and the signs of the derivatives, ( ), 0Vµµ σ µ = , 

( ), 0Vµσ σ µ =  and  ( ), 0Vσσ σ µ < , which satisfy conditions (3-i), (3-ii), (3-iii) (4-ii) and (5-iii’).  

Here, ( ), 0Vµσ σ µ =  indicates that the MS function is additively separable and the 

combination of condition (1) and ( ), 0Vµµ σ µ =  shows that it is linearly increasing inµ .  These 

inferences together imply the form, ( ), ( )V gσ µ αµ σ= + , where α  denotes a positive 

parameter and ( )g σ  denotes some function of  σ  .  The second step of specifying the MS 

function is to restrict the form so that it meets the remaining conditions, (2) and  ( ), 0Vσσ σ µ < .  

This step may be easily carried out by restricting function ( )g σ  in such a way that it is 

monotonously decreasing and strictly concave.  Thus, the additively separable and partial 

linear MS function with the restriction mentioned above, 

 

(6) ( ), ( )V gσ µ αµ σ= +  

( 0α > , ( ) 0gσ σ <  and ( ) 0gσσ σ < ), 

 

fully meets the imposed conditions and therefore is one of functional forms that represents 

CARA under the LS condition.  In order to apply form (6) to empirical work, the following 

third step is necessary that specifies function ( )g σ  under the restrictions, ( ) 0gσ σ <  and 

( ) 0gσσ σ < .  As one of candidates, let us consider specifying ( )g σ to be polynomial function.  

Now, expanding ( )g σ  by the n-th order Taylor series approximation and evaluating σ  at  

0 0σ = , we obtain  
( ) 0

0

1

( )
( ) ( )

!

in
i

i

g
g g

i
σ

σ σ σ
=

≅ +∑ .  Defining 0
0( )g σ β= , ( ) 0( ) ( 1,2, , )i

ig i nσ β= − =  

then yields 

 

(7)    0
1

( )
!

n
ii

i

g
i

β
σ β σ

=

= −∑ , 
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where ( 0,1,2, , )i i nβ =  are parameters.  Because, as has been already mentioned, 

function ( )g σ  in form (6) must meet the restrictions, ( ) 0gσ σ <  and ( ) 0gσσ σ < , the parametric 

restrictions, 0 ( 1,2, 3, , )i i nβ ≥ =  and 0iβ >  for at least one  ( 2,3, 4, , )i i n= , are imposed 

on form (7).  Note also that since the parameter  0β   does not play an important role on the 

curvature of function ( )g σ , 0 0β =  is assumed a priori for the simplification.  Substituting 

form (7) and 0 0β =  for (6) yields the following MS function: 

 

(8)    ( )
1

,
!

n
ii

i

V
i

β
σ µ αµ σ

=

= −∑  

( ( )0, 0 1,2, 3, , , 0i ii nα β β> ≥ = >  for at least one  ( 2,3, 4, , )i i n= ). 

 

When 1α =  and 0 ( 1, 3, 4, , )i i nβ = = , form (8) nests the linear mean-variance (LMV) 

model, probably one of most frequently applied MS functions in the field of agricultural 

economics.  This is not, however, a surprising consequence in considering the assumptions 

imposed here.  As originally demonstrated by Freund (1956), the LMV model is derived 

through EU theory assuming that vNM utility is a negative exponential function and random 

payoffs follow a normal distribution, and the negative exponential utility represents CARA 

preference and the normal distribution belongs to the LS family.  Therefore, the specification 

procedure, adopted here, of MS function may be an alternative approach that can derive the 

LMV model.  And undoubtedly, it is feasible to employ the LMV model under the 

assumptions of CARA preference and LS condition (an example is the recent study by 

Peterson and Ding 2005).  On the other hand, form (8), because of the imposed parametric 

restrictions, does not nest the linear mean-standard deviation (LMS) model that has been 

recently applied by Eggert and Tveteras (2004) in the context of CARA and LS condition.  
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As is seen in the specification process of form (6), if the MS function is specified as being 

additively separable and linear in µ , then it has to be decreasing and strictly concave in σ .  

While the LMV model fully meets those properties, the LMS model fails to meet the strict 

concavity condition.  Therefore, the LMS model is not a relevant form at least in this context.  

This arises because attention is not paid to the relationship between Arrow-Pratt’s risk 

aversion measures in interpreting the LMS model under LS condition.  As shown in table 1, 

CARA indicates IRRA that imposes condition (5-iii’).  The condition in conjunction with 

condition (1) does not allow MS function to be linear in σ  as long as it is additively 

separable. 

Despite that the LMS model may not display CARA under LS condition, there is no 

doubt that additive separability is, if applicable, a useful property because it considerably 

simplifies the specification of MS function.  The remaining part of this section considers 

whether the property applies to the case that an individual displays non-CARA preference.  If 

an individual is risk averter of IARA under LS condition, then the MS function has to entirely 

fulfill conditions (1), (2), (3-i), (3-ii), (3-iii), (4-iii) and (5-iii).  They also allow the MS 

function to be specified as being additively separable when it is increasing and strictly 

concave in µ  and decreasing and concave in σ .  This is easily shown through the following 

three-step procedure.  Firstly, an outline of MS function is drawn using conditions (1), (2), 

(3-ii) and the signs of the derivatives, ( ), 0Vµµ σ µ < , ( ), 0Vµσ σ µ = , which fulfill conditions 

(3-i), (3-iii), (4-iii) and (5-iii).  Since ( ), 0Vµσ σ µ =  indicates that the MS function is additively 

separable and ( ), 0Vµµ σ µ <  in conjunction with condition (1) indicates that it is increasing 

and strictly concave inµ , these together imply the expression, ( ) ( ) ( ), ,V h kσ µ µ σ= +  where 

( )h µ  denotes a function that is restricted to being ( ) 0hµ µ >  and ( ) 0hµµ µ < .  Secondly, the 

remaining conditions (2) and (3-ii) restricts function ( )k σ  to being ( ) 0kσ σ <  and ( ) 0kσσ σ ≤ .  

Thus, the additive separable MS function with the restrictions discussed here, 
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(9)     ( ) ( ) ( ),V h kσ µ µ σ= +  

( ( ) 0hµ µ > , ( ) 0hµµ µ < , ( ) 0kσ σ <  and ( ) 0kσσ σ ≤ ), 

 

fully meets the imposed conditions, and therefore, represents IARA under LS condition.  The 

third step is the specification of the functions ( )h µ  and ( )k σ .  It is omitted here, since it is 

easily carried out.   

In contrast, MS function may not be specified as being additively separable when an 

individual is risk averter of DARA under LS condition.  This can be demonstrated using 

conditions (1), (2), (3-i), (3-ii), (3-iii) and (4-i), which are imposed on MS function in this 

case.  Suppose that the MS function is additively separable, i.e.,  ( ), 0Vµσ σ µ = .  Then, 

condition (4-i) reduces to ( ) ( ), , 0V Vµµ σσ µ σ µ < .  The condition reduces further to ( ), 0Vµµ σ µ > , 

as a consequence of condition (2).  The inequality however contradicts condition (3-i).  

Therefore, the MS function is non-additively separable.  Besides, it is also derived that the 

MS function is nonlinear in both µ  and σ , as follows.  Suppose that the MS function is linear 

in either µ    or  σ  , i.e., ( ), 0Vµµ σ µ =  or ( ), 0Vσσ σ µ = .  Then condition (3-iii) reduces to  

( )2 , 0Vµσ σ µ ≤ , which implies  ( ), 0Vµσ σ µ = .  Thus, the MS function is additively separable.  

However, this contradicts the result established above.  Therefore, the MS function is 

nonlinear in both µ  and σ .  These properties, non-additive separability and nonlinearity, do 

not facilitate the specification of MS function by means of the procedure used for proposing 

forms (6) and (9).  Because they may not ‘decompose’ conditions (3-iii) and (4-i) into each 

derivation coefficient, ( ),Vµ σ µ , ( ),Vσ σ µ , ( ),Vµµ σ µ , ( ),Vσσ σ µ  and ( ),Vµσ σ µ .  The interaction 

between them may not be ignored here.  Instead of using the specification approach, the next 

section considers specifying the DARA type’s MS function from different viewpoint. 
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In this section, we derived the following properties regarding MS function under LS 

condition. 

 

Proposition 3 (applicability of additive separability) 

(1) If an individual is risk averter of DARA under LS condition, then the MS function is 

non-additively separable and nonlinear in both µ  and σ . 

(2) If an individual is risk averter of CARA under LS condition, then the MS function may be 

additively separable as long as it is linearly increasing in µ  and decreasing and strictly 

concave in σ . 

(3) If an individual is risk averter of IARA under LS condition, then the MS function may be 

additively separable as long as it is increasing and strictly concave in µ  and decreasing and 

concave in σ . 

 

Homotheticity 

In this section, the specification of MS function is examined for three types of relative risk 

aversion.  The examination starts from CRRA, a frequently adopted case in empirical study 

as well as CARA.  If an individual is risk averter of CRRA under LS condition, then the MS 

function must fully satisfy conditions (1), (2), (3-i), (3-ii), (3-iii), (4-i) and (5-ii).  In this case, 

the specification procedure used for forms (6) and (9) is no longer useful, because CRRA 

indicates DARA (table 1) and therefore Proposition 3 (1) holds.  Instead, condition (5-ii) can 

play a significant role in specifying the MS function.  The condition, or more apparently its 

alternative expression, ( ) ( ){ }, , 0t V t t V t tσ µσ µ σ µ∂ ∂ − = , indicates that the MS function is 

homothetic and conversely a homothetic MS function satisfies the above condition (This 

directly follows from Lau's lemma (1969) that a function of two or more arguments is 

homothetic if and only if the ratio of the first derivatives of the function is homogeneous of 
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degree zero).  Therefore, candidates of the MS function can be chosen from homothetic 

family that have been developed and exploited in economic analysis, and doing so fulfils 

condition (5-ii).  For example, consider a constant elasticity of substitution (CES) type MS 

function, 

 

(10)    ( ) ( ) ( )
1

, 1;V δ δ δσ µ µ σ δ µ σ= − > > , 

 

where δ  denotes a parameter that is restricted to 1δ > .  Since form (10) is linear 

homogeneous, the homothetic property and therefore condition (5-ii) is met.  Besides, it 

holds Proposition 3 (1), that is, it is non-additively separable and nonlinear in µ  and σ .  The 

remaining conditions (1), (2), (3-i), (3-ii), (3-iii) and (4-i) are also satisfied, as verified below.  

( ) ( )
1

11, 0V δ δ δ δ
µ σ µ µ µ σ

−−= − > , ( ) ( )
1

11, 0V δ δ δ δ
σ σ µ σ µ σ

−−= − − < , 

( ) ( ) ( )
1

22, 1 0V δ δ δ δ δ
µµ σ µ δ µ σ µ σ

−−= − − < , ( ) ( ) ( )
1

22, 1 0V δ δ δ δ δ
σσ σ µ δ µ σ µ σ

−−= − − < , 

( ) ( ) ( )2, , , 0V V Vµµ σσ µσσ µ σ µ σ µ− =  and 

( ) ( ) ( ) ( ) ( ) ( )
2

22 1, , , , 1 0V V V V δ δ δ δ δ
µσ µ µµ σσ µ σ µ σ µ σ µ δ µ σ µ σ

−− −− + = − − < .  Therefore, form (10) 

displays CRRA under LS condition.  Recently, Nelson and Escalante (2004) proposed the 

following form, 

 

(11)   ( ) ( ) ( )12 2 2 2, 0; 0V σ µ µ φσ φ µ φσ
−

= − − > − > , 

 

where φ  denotes a parameter, and showed that form (11) fully meet conditions (1), (2), (3-i), 

(3-ii), (3-iii), (4-i) and (5-ii).  Therefore, it also displays CRRA under LS condition.  Nelson 

and Escalante achieved the specification of form (11) by modifying the LMV model that 

displays CARA under LS condition.  The modification consequently fits the LMV model 
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into Proposition 3 (1) and condition (5-ii).  Thus, it transforms the additively separable, 

partial linear and non-homothetic function to the non-additively separable, nonlinear and 

homothetic function. 

 Although the homothetic property provides a useful clue to the specification of MS 

function that displays CRRA under LS condition, it is not applicable to the case of 

non-CRRA preference.  The reason is evident from the conditions imposed on MS function 

under the preference.  If an individual is risk averter of type DRRA under LS condition, then 

the MS function has to satisfy conditions (1), (2), (3-i), (3-ii), (3-iii), (4-i) and (5-i).  On the 

other hand, if an individual is risk averter of the case of IRRA which indicates DARA under 

LS condition, then the MS function has to satisfy conditions (1), (2), (3-i), (3-ii), (3-iii), (4-i) 

and (5-iii) (Since the cases of IRRA which indicates CARA or IARA have been already 

discussed in the previous section, this section focuses on the combination of IRRA and 

DARA).  Here, conditions (5-i) and (5-iii), or their alternative expressions, 

( ) ( ){ }, , 0t V t t V t tσ µσ µ σ µ∂ ∂ − <  and ( ) ( ){ }, , 0t V t t V t tσ µσ µ σ µ∂ ∂ − >  indicate that the MS 

functions are nonhomothetic (Lau’s lemma).  Yet, Proposition 3 (1) still holds in both cases, 

as they show DARA.  Thus, the MS functions are non-additively separable and nonlinear in 

µ and σ  as well as nonhomothetic.  In specifying the non-CRRA type’s MS functions, an 

MS function displaying CRRA might help, because the conditions imposed on the 

non-CRRA type’s MS functions and those on the CRRA type’s MS function differ only one 

point.  It is that condition (5-ii) is replaced by condition (5-i) or (5-iii).  Therefore, the 

objective here is accomplished by modifying the CRRA type’s MS function to fit condition 

(5-i) or (5-iii) with the remaining factors, conditions (1), (2), (3-i), (3-ii), (3-iii) and (4-i), still 

satisfied.   

In order to do that, the first thing that we have to do is to realize the functional 

properties that reflect the difference between conditions (5-i) and (5-iii).  As mentioned 
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above, conditions (5-i) and (5-iii) indicates that the MS functions are nonhomothetic.  In 

other words, an expansion path, a locus which links the points that give the same slope of 

indifference curve in σ µ−  axis, is nonlinear.  Then, examining the curvature of the 

expansion path reveals the difference between conditions (5-i) and (5-iii).  Formally, 

consider an expansion path, ( ) ( ), ,S V Vσ µσ µ σ µ= − , where S  denotes an arbitral slope of 

indifference curve.  Total differentiation of S  yields 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, , , ,

, , , ,S

V V V Vd
d V V V V

σσ µ σ µσ

µσ µ σ µµ

σ µ σ µ σ µ σ µµ
σ σ µ σ µ σ µ σ µ

− +
= −

− +
, which expresses the slope of the expansion 

path.  In the case of DRRA, this is less than µ
σ

 because of conditions (4-i) and (5-i).  And in 

the case of IRRA and DARA, this is more than µ
σ

 because of conditions (4-i) and (5-iii).  

Then, differentiating these relationships, 
S

d
d
µ µ
σ σ

<  and 
S

d
d
µ µ
σ σ

> , derive, 

2

2

1

SS

d d
d d
µ µ µ
σ σ σ σ

 < −   
 and 

2

2

1

SS

d d
d d
µ µ µ
σ σ σ σ

 > −   
, respectively.  These mean that the expansion 

path is strictly concave in the case of DRRA and strictly convex in the case of IRRA and 

DARA.  Conversely, condition (4-i) and the strict concavity of expansion path derive 

condition (5-i) while condition (4-i) and the strict convexity of expansion path derive 

condition (5-iii).  Therefore, conditions (5-i) and (5-iii) are replaced by each property of 

expansion path.  If it is possible to modify MS function displaying CRRA in such a way that 

each property of the curvature of expansion path is satisfied with the remaining conditions 

(1), (2), (3-i), (3-ii), (3-iii) and (4-i), then the objective here is achieved.  A successful 

example of the modification is obtained in the case of IRRA and DARA.  Form (10) is 

modified by introducing a new parameter as follows. 
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(12)   ( ) ( ) ( )
1

, 1 ; 0V δ η δ ηδσ µ µ σ δ η µ σ= − < < − > , 

 

where η  is the newly introduced parameter that is restricted to 1 δ η< < .  Form (12) is a 

nonhomothetic function whose curvature of expansion path is strictly convex, because of 

1 12 1
1

2

1
0

1 1S

d
S

d

δ δ η
δµ δ η δ η

σ
σ η δ δ

− −
−

−
  − − = >   − − 

.  Besides, it keeps satisfying the remaining conditions 

(1), (2), (3-i), (3-ii), (3-iii) and (4-i), as is obvious from the following derivation coefficients, 

( ) ( )
1

11, 0V δ δ η δ
µ σ µ µ µ σ

−−= − > , ( ) ( )
1

11, 0V η δ η δ
σ

η
σ µ σ µ σ

δ
−−= − − < , 

( ) ( ) ( )
1

22, 1 0V δ η δ η δ
µµ σ µ δ µ σ µ σ

−−= − − < , 

( ) ( ) ( ) ( ) ( )
21 1

1 22 2 2
2

, 1 1 0V η δ η η δ ηδ δ
σσ

η η
σ µ η σ µ σ δ σ µ σ

δ δ
− −− −= − − + − − < , 

( ) ( ) ( ) ( )( ) ( )
2

32 2 2 2
2

, , , 1 0V V V δ η δ η δ
µµ µµ µσ

η
σ µ σ µ σ µ δ δ η µ σ µ σ

δ
−− −− = − − − >  and 

( ) ( ) ( ) ( ) ( ) ( )
2

22 1, , , , 1 0V V V V δ η δ η δ
µσ µ µµ σ

η
σ µ σ µ σ µ σ µ δ µ σ µ σ

δ
−− −− + = − − < .  Therefore, form (12) 

displays the case of IRRA and DARA under LS condition.4  Unfortunately however, the 

author could not find an example that successfully modifies the MS function displaying 

CRRA to the one displaying DRRA.  Although the curvature condition is easy to meet, the 

remaining conditions do not seem to be so (For example, the strict concave condition of 

expansion path is satisfied if the restriction 1 η δ< <  instead of 1 δ η< <  is imposed on form 

(12), it does not fulfill condition (3-iii)).  This case remains for further research. 

 

In this section, the function properties we obtained regarding MS function is summarized as 
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follows. 

 

Proposition 4 (homotheticity and nonhomotheticity) 

(1) If an individual is risk averter of DRRA under LS condition, then the MS function is 

non-homothetic function whose expansion path is strictly concave in σ µ−  axis. 

(2) If an individual is risk averter of CRRA under LS condition, then the MS function is 

homothetic. 

(3) If an individual is risk averter that displays the combination of IRRA and DARA under 

LS condition, then the MS function is non-homothetic function whose expansion path is 

strictly convex in σ µ−  axis. 

 

A flexible specification 

The specification of MS approach under LS condition has been considered for each type of 

risk aversion and then several MS functions have been proposed (see forms (6), (9), (10) and 

(12)).  They can be applied to empirical analysis, assuming that the agent displays the 

corresponding type of risk aversion and the random payoffs it faces are restricted to the 

distribution class that satisfies the LS condition.  However, as pointed out by Sinn (1983) and 

Meyer (1987), a wide range of EU-based economic models satisfies the LS condition owing 

to the theoretical structures themselves, and in such models, the EU theory is interchangeable 

with MS approach with no assumption imposed on vNM utility function.  Therefore, a 

particular type of risk aversion needs not to be imposed a priori.  In order to exploit the MS 

approach in empirical studies based on the LS class of economic models, we need to specify 

MS function flexible enough to nest as many types of risk aversion as possible.  As far as the 

author knows, Saha (1997) is the first who tackled this flexible specification problem of the 

MS function.  He proposed a nonlinear mean-standard deviation (NLMS) model, 
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(13)     ( ), ,V θ γσ µ µ σ= −  

 

where θ  and γ  are parameters that are restricted to 0θ >  and 0γ > ,5  and then argued that it 

is capable of displaying any type of risk aversion as shown in table 3.  The argument derives 

from the properties of its slope of indifference curve,  

 

(14)     ( ) 1 1,S θ γγ
σ µ µ σ

θ
− −= . 

 

The Cobb-Douglas type’s slope of indifference curve fully covers Properties 5 and 6 of 

Proposition 2 under the parametric range, 0θ >  and 0γ > .  For example, the slope is 

decreasing (constant, increasing) in µ  if 1θ >  ( 1θ = , 1θ < ), while it is decreasing (constant, 

increasing) along rays through the origin when θ γ>  ( θ γ= ,  θ γ< ).  In other words, it is 

compatible with conditions (4-i), (4-ii), (4-iii), (5-i), (5-ii) and (5-iii).  Besides, it is tractable 

that the type of risk aversion is determined only by the parameters’ value.  That is quite 

attractive in empirical work, because statistical test on the parameters directly indicates the 

agent’s type of risk aversion.  The NLMS model has been applied in the field of production 

economics under uncertainty.  For example, Saha (1997) applied the model to examine the 

Kansas wheat producers’ behavior under price uncertainty during 1979 and 1982.  He 

obtained the empirical results that the parameter  θ  is significantly more than 1 for both 

small and large producers and that the parameters γ  was significantly larger than θ  for 

small producer and that null hypothesis, γ θ= , was not rejected for large producer, 

concluding that both producers exhibit DARA and relative risk aversion can vary by the firm 

size.  On the other hand, Abdulkadri, Langemeier and Featherstone (2003), applying the 

NLMS model, investigated Kansas dryland wheat producers, irrigated corn producers and 
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milk producers under price uncertainty during 1993 and 1997.  They obtained the empirical 

results supporting that dryland wheat and milk producers are risk averter of IARA and IRRA 

while irrigated corn farmers are risk averter of CARA and IRRA.  The interpretation of the 

NLMS model about their empirical results follows table 3. 

 Although Saha (1997) and Abdulkadri, Langemeier and Featherstone (2003) argue 

from the comparison of table 3 with table 1 that the NLMS model provides a more 

generalized approach than EU theory, there is room for more careful consideration on the 

interpretation of the NLMS model.  As discussed in the beginning of this article, the MS 

approach established by Sinn (1983) and Meyer (1987) is a special case of EU theory and 

therefore has to satisfy the restrictions imposed on EU theory.  This study focused on the 

three restrictions, (a) cardinal property of vNM utility function, (b) behavioral hypotheses 

that are translated under LS condition from EU theory into MS approach, (c) relationship 

between Arrow-Pratt’s risk aversion measures.  Apart from the restriction (a) that will be 

discussed in the next section, it is easy to see that the interpretation of table 3 does not fully 

satisfy the restrictions (b) and (c).  Firstly, as for the restrictions (c), there are certain 

combinations of risk aversion that are not feasible such as CARA & DRRA, CARA & CRRA, 

IARA & DRRA and IARA & CRRA (table 1).  So long as the NLMS model is interpreted by 

the MS approach based on EU theory, it may not display those combinations either.  This 

excludes from table 3 the parameters’ combinations such as 1θ =  & θ γ> , 1θ =  & θ γ= , 

1θ <  & θ γ>  and 1θ <  & θ γ= .  Secondly, the restrictions (b) and (c) derive Propositions 

3 and 4 for the feasible combinations of risk aversion measures.  As the NLMS model is 

additively separable, Proposition 3 (1) indicates that it may not display DARA under LS 

condition.  There should be still some restriction that is overlooked by the interpretation of 

table 3.  If MS function displays all the feasible combinations of the risk aversion measures 

under LS condition, then it must entirely satisfy conditions (1), (2), (3-i), (3-ii) and (3-iii) and 



 

 23

be fully compatible with conditions (4-i), (4-ii), (4-iii), (5-i), (5-ii) and (5-iii) (see table 2).  

The compatibility with conditions (4-i), (4-ii), (4-iii), (5-i), (5-ii) and (5-iii) is maintained 

under the parameter restrictions, 0θ >  and 0γ > , as discussed by Saha (1997).  Besides, the 

conditions (1) and (2) are satisfied since ( ) 1,V θ
µ σ µ θµ −=  and ( ) 1,V γ

σ σ µ γσ −= − .  However, 

conditions (3-i), (3-ii) and (3-iii) are not always fulfilled under the initial parametric range, 

because ( ) ( ) 2, 1V θ
µµ σ µ θ θ µ −= − , ( ) ( ) 2, 1V γ

σσ σ µ γ γ σ −= − − , and 

( ) ( ) ( ) ( ) ( )2 2 2, , , 1 1V V V θ γ
µµ σσ µσσ µ σ µ σ µ θ θ γ γ µ σ− −− = − − − .  In order to satisfy them, a stronger 

parametric restriction, 0 1θ< ≤  and 1γ ≥ , is necessary.  Although conditions (1) and (2) as 

well as conditions (3-i), (3-ii) and (3-iii) are fully met under the new parametric range, the 

full compatibility with conditions (4-i), (4-ii), (4-iii), (5-i), (5-ii) and (5-iii) is lost, as 

conditions (4-i) and (5-i) are not satisfied.  It means that the NLMS model is reduced to a 

model that is capable of displaying the two types of risk aversion, CARA and IARA, under 

LS condition.  Actually, if  1θ =  and 1γ > , then the NLMS model is categorized into form 

(6) that displays CARA under LS condition, and when 0 1θ< <  and 1γ ≥ , it is a member of 

form (9) that displays IARA under LS condition.  The reconsideration of the NLMS model 

alters the interpretation from table 3 to table 4, implying the difficulty in explaining Saha’s 

empirical result that the production agents are risk averter of DARA by means of the NLMS 

model.  To incorporate this type of risk aversion, some modification would be needed. 

In fact, the NLMS model can be easily modified so that it explains Saha’s (1997) 

empirical result.  It is carried out by combining the MS functions proposed in the previous 

sections.  The MS function is derived as follows, 

 

(15)   ( ) ( ) ( )
1

, 1 ; 0 ,V δ η δ ηδσ µ µ σ δ η µ σ= − ≤ ≤ − >  
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where δ  and η  are parameters that are restricted to 1 δ η≤ ≤ .  Apparently, if 1 δ η< < , form 

(15) corresponds to form (12) that displays the combination of DARA and IRRA under LS 

condition, and when 1 δ η< = , it corresponds to form (10) that displays CRRA under LS 

condition.  Furthermore, when 1 δ η= < , it is a member of form (6) that displays CARA 

under LS condition.  These types of risk aversion expressed by form (15) are shown in table 5.  

Here, it is observed that there is a relationship between the NLMS model and form (15).  

Specifically, form (15) is derived from transforming the NLMS model by the concave 

function, ( ){ }
1

,W V θσ µ= , and imposing the restrictions, 1 θ γ≤ ≤  and 0θ γµ σ− > .  In the 

following section, we consider the meaning of this mathematical relationship from economic 

point of view, and then discuss the implications for an empirical approach called “joint 

analysis of risk preference structure and technology” that has been recently employed in the 

field of production economics under uncertainty. 

 

Discussion 

It is well known that a positive monotonous transformation of utility function has no essential 

meaning in the case of consumer choice without uncertainty.  Since the traditional consumer 

theory relies upon ordinal utility theory, the utility function may be transformed by a positive 

monotone function and then the transformed utility function is considered to be essentially 

identical to the original one.  However, the situation is different in the case of 

decision-making problems under uncertainty, especially those based on EU theory such as 

the MS approach established by Sinn (1983) and Meyer (1987).  EU theory belongs to 

cardinal utility theory in which vNM utility function is transformable only by positive linear 

function.  If MS approach is interpreted within EU theory, the transformation of the MS 

function also needs to be linear (Proposition 1).  Nonlinear transformation of the MS function 

contradicts the assumption of interpreting MS approach within EU theory.  Therefore, the 
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NLMS model and form (15), related to each other by a nonlinear transformation, should be 

clearly distinguished. 

Despite this, it is impossible to make a distinction between the two MS functions in 

an empirical approach called “joint analysis of risk preference structure and technology” that 

has been recently employed in the field of production economics under uncertainty (e.g., 

Saha 1997; Abdulkadri, Langemeier and Featherstone 2003; Nakashima 2006).  This is 

discussed below.  Joint analysis utilizes the first-order conditions resulting from the 

optimization of production model to estimate the structural parameters that indicate agent 

risk preference and production technology.  The first-order conditions based on MS approach 

are generally written as 

 

(16)    ( ) ( ), 0 1,2, , ,i
i i

S x n
x x
µ σ

σ µ
∂ ∂

− = =
∂ ∂

 

 

where ( )1,2, ,ix i n=  denote the endogenous variables of the underlying economic model.  

Then, the specifications of ( ),S σ µ , 
ix
µ∂

∂
and 

ix
σ∂

∂
 follow.  The specification of ( ),S σ µ  is, of 

course, determined by the form of MS function that represents agent’s attitude toward 

random payoff, while the specifications of 
ix
µ∂

∂
 and 

ix
σ∂

∂
 depend on the remaining factors of 

the model such as a random factor involved in the model (e.g., price uncertainty or yield 

uncertainty) and a functional form chosen to represent technological constraint (e.g., 

production function or cost function).  In the procedure for developing a joint analysis model, 

special attention needs to be paid to the specification of ( ),S σ µ .  Because MS function is 

represented merely by the slope of indifference curve, the difference of MS functions such as 
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the NLMS model and form (15) that are related to each other by a functional transformation 

is cancelled.  Eventually, the MS functions yield the same joint analysis model.  Therefore, it 

is impossible to distinguish the NLMS model and form (15) in the empirical approach.  This 

also implies that it is possible to provide more than one explanation for a joint analysis model.  

For example, regardless of the two types of MS functions, the NLMS model and form (15), 

the same joint analysis model arises, and therefore, there are at least two ways of explanation 

for Saha (1997) and Abdulkadri, Langemeier and Featherstone (2003)’s models, respectively.  

One is shown in table 4 that is derived form the NLMS model, and the other is table 5 that 

comes from form (15).  The empirical result of Abdulkadri, Langemeier and Featherstone 

(2003) is interpreted by the former, while that of Saha (1997) is explained by the latter.  

Needless to say, more than one interpretation of a joint analysis model can cause confusion.  

These situations take place when the slope of indifference curve, ( ),S σ µ , covers several 

types of risk aversion described by Properties 5 and 6 of Proposition 2 and then is 

rationalized by more than one MS function in such a way that the coverage of the types of 

risk aversion is partial and different.  As pointed out by Saha (1997), Cobb-Douglas type’s 

slope of indifference curve (14) potentially covers the entire pattern of Properties 5 and 6 but 

the NLMS model and form (15) rationalize it only partially and differently (tables 4 and 5).  

That causes a multi-interpreting situation.  In order to avoid this, we need to examine whether 

or not there exists such an MS function that fully rationalizes the types of risk aversion 

explained by the flexible slope of indifference curve.  This remains for further research. 

 

Conclusion 

This study examined the functional specification of MS approach under LS condition.  The 

contribution of this study can be summarized as three parts.  Firstly, the conditions that MS 

function has to fully satisfy under LS condition were thoroughly discussed and then the full 
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set of conditions was made clear (Proposition 1 and table 2).  Secondly, the examination 

based on the full set of conditions derived the properties of MS function on the applicability 

of additive separability (Proposition 3) and the curvature of expansion path which links the 

points that give the same slope of indifference curve in σ -µ  axis (Proposition 4).  It revealed 

that attention has not been sufficiently paid to the full set of conditions in interpreting the 

LMS model and the NLMS model.  Thirdly, the interpretation of the NLMS model was 

reconsidered in detail (table 4) and then an alternative NLMS model (15) which also derives 

Cobb-Douglas type’s slope of indifference curve (14) was proposed (table 5).  The 

comparison of the two NLMS models and their implication to joint analysis approach might 

give us an idea as to the new direction of further research.  If the slope of indifference curve, 

( ),S σ µ , covers several types of risk aversion described by Properties 5 and 6 of Proposition 2, 

it is necessary to examine whether or not there exists such an MS function that rationalizes all 

the types of risk aversion.  In tackling the unsolved problem, Cobb-Douglas type’s slope of 

indifference curve (14), proposed by Saha (1997), seems to provide a good starting point, as 

it takes advantage of not only flexible but also tractable attribute of MS approach under LS 

condition. 
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Footnotes 
1 Because of this linearity of the payoff in random factor, Sinn (1983) referred to a set of 

random variables for which the LS condition holds as a linear distribution class. 
2 It is also known that EU theory derives MS functions under alternative restrictions such as 

quasi utility, normal distribution and the combination of semi-logarithmic utility and 

lognormal distribution.  The derived MS functions have to be properly restricted (see, Tobin 

1958, 1969; Chipman 1973; Feldstein 1969).  Recently, it was established that the rank 

dependent expected utility theory, a generalized EU theory, also derives MS function under 

the monotone mean-preserving spread (Ormiston and Quiggin 1994). 
3 As for the restriction imposed on MS function, Property 3 is not necessary, as it is 

automatically fulfilled when Properties 1 and 2 are satisfied. 

4 Similarly, it is also shown that the MS function, ( ) ( )
1

,V δ η ησ µ µ σ= − ( )1 ; 0δ ηδ η µ σ< < − >  

exhibits the combination of IARA and DARA. 
5 Unlike Saha (1997), this study limits the discussion to the case of 0γ > . 
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Table 1. Relationships among Arrow-Pratt risk aversion measures 

 
 DRRA CRRA IRRA 

DARA Feasible Feasible Feasible 
CARA Not feasible Not feasible Feasible 
IARA Not feasible Not feasible Feasible 

Source: Saha (1997) 

 

 

 

 

Table 2. The conditions imposed on MS function under LS condition 

 
 DRRA CRRA IRRA 

DARA (1)(2)(3-i) (3-ii)(3-iii)
(4-i)(5-i) 

(1)(2)(3-i)(3-ii)(3-iii) 
(4-i)(5-ii) 

(1)(2)(3-i)(3-ii)(3-iii) 
(4-i)(5-iii) 

CARA Not feasible Not feasible (1)(2)(3-i)(3-ii)(3-iii) 
(4-ii)(5-iii) 

IARA Not feasible Not feasible (1)(2)(3-i)(3-ii)(3-iii) 
(4-iii) (5-iii) 
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Table 3.   Saha's argument on the NLMS model 

 
 DRRA CRRA IRRA 

DARA 1,θ θ γ> >  1,θ θ γ> =  1,θ θ γ> <  

CARA 1,θ θ γ= >  1,θ θ γ= =  1,θ θ γ= <  

IARA 1,θ θ γ< >  1,θ θ γ< =  1,θ θ γ< <  

Source: Saha (1997) 

 

 

 

Table 4.   Reconsideration of the NLMS model 

 
 DRRA CRRA IRRA 

DARA Not applicable Not applicable Not applicable 
CARA Not feasible Not feasible 1,θ θ γ= <  

IARA Not feasible Not feasible 1, 1θ γ< ≤  

 

 

 

Table 5.  Form (15) and the corresponding types of risk aversion 

 
 DRRA CRRA IRRA 

DARA Not applicable  1 δ η< =  1 δ η< <  
CARA Not feasible Not feasible 1 δ η= <  
IARA Not feasible Not feasible Not applicable 

 

 


