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Modeling and Hedging Rain Risk 

Abstract 

In this article we price a precipitation option based on empirical weather data from Ger-

many using different pricing methods, among them Burn Analysis, Index Value Simula-

tion and Daily Simulation. For that purpose we develop a daily precipitation model. 

Moreover, a de-correlation analysis is proposed to assess the spatial basis risk that is in-

herent to rainfall derivatives. The models are applied to precipitation data in Branden-

burg, Germany. Based on simplifying assumptions of the production function, we quan-

tify and compare the risk exposure of grain producers with and without rainfall insurance. 

It turns out that a considerable risk remains with producers who are remotely located 

from the weather station. Another finding is that significant differences may occur be-

tween the pricing methods. We identify the strengths and weaknesses of the pricing 

methods and give some recommendations for their applications. Our results are relevant 

for producers as well as for potential sellers of weather derivatives. 

Keywords: weather risk, weather derivatives, precipitation model, basis risk 

JEL Classification: C8, Q14, Q54 

 

It is well known that weather is an important production factor in agriculture. Unfortu-

nately, this production factor can hardly be controlled. In fact, weather risks are a major 

source of uncertainty in crop production. Traditionally, producers try to compensate for 

the negative economic consequences of bad weather events by buying insurance. In the 

mid-nineties a new class of instruments has emerged, namely weather derivatives. 

Weather derivatives are financial instruments that allow to trade weather related risks. 

These instruments include futures, options, and swaps. Common underlyings are derived 
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from temperature, rainfall or wind. Weather derivatives have the advantage that they are 

not affected by moral hazard or adverse selection, which may be a serious problem for 

insurance companies. However, a considerable risk may remain with the producer when 

using weather derivatives, because individual yield variations in general are not com-

pletely correlated with the relevant weather variable. Until now it has not been clear if 

weather derivatives would permeate in agriculture. Actually, literature increasingly deals 

with the question if weather derivatives can also play a role as risk management tools in 

the agribusiness. (Richards, Manfredo, and Sanders 2004; Turvey 2001; van Asseldonk 

and Oude Lansink 2003). 

From a statistical viewpoint there are two alternatives with regard to the modeling of 

weather risk. On the one hand, the distribution of the weather event (e.g. a weather index) 

can be estimated directly, either parametrically or non-parametrically. On the other hand, 

a daily model of the underlying weather variable (temperature or rain) can be developed, 

from which the relevant weather index is then derived (Diebold and Campbell 2003). 

This procedure is more complex initially yet potentially favorable for two reasons: 

Firstly, the ways in which daily models can be used are very flexible, because practically 

all yield relevant events like the sums of precipitation or temperature for different accu-

mulation periods, dry spells or extreme precipitation can be determined for any periods of 

time (Srikanthan and McMahon 2001). In contrast, a direct estimate of the distribution of 

the weather index is usually only valid for a particular index. Secondly – and this seems 

even more important than the higher flexibility – the accuracy of daily based models is 

higher due to a considerably larger number of observed values (Brix, Jewson, and Zieh-

mann 2002). For this reason, the pricing and the analysis of the effectiveness of tempera-

ture related derivatives mainly result from daily temperature models. Despite of the po-
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tential advantages of a daily modeling the available studies on rainfall based derivatives 

in the agribusiness resort to a direct estimation of the precipitation distribution (Berg et 

al. 2005; Turvey 1999; Stoppa and Hess 2003; Skees et al. 2001). 

The aim of this article is twofold. The first objective is the development and the esti-

mation of a daily precipitation model which can be used for the assessment of rainfall 

based weather derivatives or insurances. The results are compared with those from other 

pricing models. This comparison shall answer the question whether the superiority of a 

daily model also applies in the context of rainfall modeling. The second objective is to 

analyze the basis risk of weather derivatives. Here we define basis risk as the uninsurable 

risk resulting from the difference of the weather index at the derivative’s reference point 

and the location of agricultural production. While this aspect is less important concerning 

temperature related derivatives, it cannot be neglected when the effectiveness of precipi-

tation derivatives is analyzed because of the high spatial variability of precipitation. To 

our knowledge the basis risk of rainfall related weather derivatives has not yet been quan-

tified. 

The article is structured as follows: In Section 2 a statistical model for the estimation 

of daily precipitation is presented. Furthermore, the statistical relationship between pre-

cipitation at different places is described with a de-correlation analysis. In Section 3 an 

empirical application of these concepts follows. Using precipitation data of the region of 

Brandenburg/Germany, a put option and a call option on the cumulated rainfall for differ-

ent accumulation periods are priced and the effect on the risk exposure of farms is exam-

ined. Simple pricing procedures like the burn analysis and the index value simulation 

serve as a benchmark. The article ends with conclusions on the proposed pricing method-
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ology and the efficiency of weather derivatives with respect to hedging against precipita-

tion risks. 

A precipitation model 

A precipitation model should be able to capture the following characteristics of daily 

rainfall: 

• The probability of rainfall occurrence obeys a seasonal pattern. Rainfall in Europe 

for example, is more likely in winter than in summer. 

• The sequence of wet and dry days follows an autoregressive process. This means, the 

probability of a rainy day is higher if the previous day was wet. 

• The amount of precipitation on a wet day varies with the season. Rainfall in Europe 

is more intensive in summer than in winter. 

• The volatility of the amount of rainfall also changes seasonally. In Europe it is higher 

in summer than in winter. 

In the following, a daily precipitation model is described which can depict these charac-

teristics. According to Moreno (2002) and Cao, Li, and Wei (2004), the stochastic proc-

ess of daily precipitation can be decomposed into a stochastic process for the binary event 

“rainfall” and “dryness” respectively, and a distribution for the amount of precipitation is 

given such that it describes a rainy day. Consider the random variable : tX

(1)  
⎩
⎨
⎧

=
rainy is day  if ,1
dry is day  if ,0

t
t

X t

It is assumed that  follows a first order Markov chain. The probability , that it will 

rain on day can be calculated as: 

tX tp

t
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tq  describes the transition probability of rain on day t  and dryness on the previous day 

. Analogously,  stands for the transition probability between two successive rainy 

days. Note that the transition probabilities  and  vary with time.  
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The precipitation amount  is modeled as a sequence of continuous random variables 

with independent distributions. In the literature, various distributions with a non-negative 

domain are discussed, among others the exponential distribution and the gamma distribu-

tion (Woolhiser and Roldan 1982). The mixed exponential distribution has proven to be 

especially flexible (Wilks and Wilby 1999). The density function is: 
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The parameters of the mixed exponential distribution ,  and  are also time vary-

ing. Thereby the seasonality of precipitation is taken into account. In this form however, 

the model is not estimable. In order to reduce the number of the parameters to be esti-

mated, each of the time varying parameters is developed by a finite Fourier series: 
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jka  and  denote the Fourier coefficients, and  is the maximum number of harmon-

ics needed to specify the seasonal cycles. The Fourier coefficients for ,  and  as 

well as for  and  are estimated simultaneously by maximizing the following log-

likelihood functions (Woolhiser and Pegram 1979): 
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In (5)  is the observed number of transitions from state  at day ij
tc i 1−t  to state j  at day t . 

 

Spatial Correlation of Rainfall 

A weather derivative always refers to a particular weather station. The fact that the farm 

site is usually not located at this weather station results in a basis risk. One can expect the 

risk to increase with the distance to the weather station. This basis risk can be quantified 

by means of a de-correlation analysis. Rubel (1996) proposes the following nonlinear de-

correlation function for the modeling of the spatial relationship of precipitation in 

Europe: 

(7) ( ) ( )3
21 exp edeed ⋅−⋅=ρ  

Herein ρ  denotes the correlation coefficient between the precipitation at different places 

and the distance between the weather station and the farmer’s production site. , , 

and  are parameters to be estimated. In spite of the de-correlation analysis being a 

popular instrument in meteorology, two points should be considered critically. Firstly, the 

de-correlation function is invariant of the direction. Thus, topographical differences po-

tentially influencing the precipitation are neglected. Secondly, Embrechts, McNeil, and 

Straumann (1999) point out problems of using correlation coefficients when the underly-

ing distributions are not elliptical. In spite of these weaknesses the concept of the de-

correlation analysis is used in this study. 

d 1e 2e

3e
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Valuation of rainfall options for grain producers in north-eastern Germany 

Background, methods and data 

Grain production in north-eastern Germany, Brandenburg in particular, is highly affected 

by rainfall risk. During the relevant months of April and May, Brandenburg has had be-

tween 4.5 mm and 136.3 mm of precipitation (with a mean of 80.2 mm) in the last 20 

years, and the grain yields have fluctuated similarly. The high correlation between rain-

fall and yields results from the sandy soil having little water storing capacity and the lack 

of irrigation. Currently there is no possibility to insure against yield losses caused by low 

rainfall. In view of the extreme crop failures in the years of drought 2000 and 2003, in 

which the government had to provide disaster relief in order to save farmers from becom-

ing insolvent, there is a pronounced interest to introduce some kind of rainfall insurance. 

By purchasing a put option on a rainfall index, a grain producer is (partially) insured 

against revenue losses due to little precipitation in the growing season. Moreover we con-

sider a call option on cumulated rainfall during the harvesting period which compensates 

grain producers for quality losses and timeliness costs. In the following, let us assume 

that both options are available in the OTC market. The reference point is the weather sta-

tion Berlin-Tempelhof which is central for Brandenburg. The contract specifications for 

the derivatives considered here are summarized in Table 1. 

 

Table 1 about here 

 

The estimation of the precipitation model is based on rainfall data measured in Berlin-

Tempelhof from 1 January 1948 to 31 August 2004 (T = 20 683). Records from 23 

weather stations in Brandenburg from 1 January 1983 to 31 December 2003 are available 
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for the calculation of the de-correlation function. The weather stations are evenly distrib-

uted in the Brandenburg region within a radius of 100 km from Berlin. Pricing of the op-

tions is carried out by a burn analysis, an index value simulation and a daily simulation. 

These procedures are briefly described below. A more detailed description and critical 

discussion is found in Zeng (2000) and in Cao and Wei (2000). 

 

Burn Analysis (Historical Simulation).  In a non-parametric burn analysis, an empirical 

distribution of the rainfall index is derived from the historical rainfall data which consist 

of 56 observations here. Based on the empirical distribution, hypothetical payoffs of the 

option are determined for each of the 56 years and discounted with the risk-free interest 

rate r, which is assumed to be 5%. The price of the option is the mean of the discounted 

payoffs. 

Index Value Simulation.  An index value simulation requires determining a parametric 

distribution for the rainfall index. We use the EXCEL add-in BEST-FIT to test for the 

most appropriate distribution. Only distributions with a non-negative domain were con-

sidered. According to the Chi Square test, the Kolmogorov Smirnov test and the Ander-

son Darling test, the Weibull distribution in the case of the accumulation period 

„April/May“, and the Erlang distribution in the case of the accumulation period „1st half 

of July“ show the best fit to the 56 empirical observations. From these distributions, val-

ues for the precipitation index are randomly drawn 50 000 times, and the discounted pay-

out of the option is determined. As before the option price is the average discounted pay-

off. 
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Daily Simulation.  In this approach the daily precipitation is simulated instead of the rain-

fall index using the model described in previous section. The rainfall index is then de-

rived from the simulated sample paths by summing up daily precipitation in the relevant 

accumulation period. The subsequent steps are identical to the index value simulation. 

Note that all three pricing procedures suffer from a theoretical shortcoming in that 

there is no guarantee for the calculated option prices being arbitrage free. A well-known 

problem with pricing weather derivatives is that weather cannot be traded and hence it is 

impossible to construct a risk-free hedge portfolio. However, this is a prerequisite for the 

application of no-arbitrage models like the Black Scholes pricing formula. Different ap-

proaches to treat this problem are proposed in the literature (cf. Cao and Wei 1999; Ala-

ton, Djehiche, and Stillberger 2002; Richards, Manfredo, and Sanders 2004). All methods 

suggested require the market price for weather risk to be quantified. The market price for 

weather risk could be derived implicitly from price quotations, if a market already existed 

for these weather derivatives. As this is not the case in the situation considered, the only 

resort is to parameterize this unknown value. We refrain from doing so here, as such an 

analysis has already been carried out in the papers mentioned above. Moreover, the no-

arbitrage trait of derivative prices is not that relevant in the assumed situation of an OTC 

trade, as trading usually does not occur during the contract term. Still, when interpreting 

the results, one should take into account, that the option prices depicted, i.e. the costs of 

coverage from the farmer’s point of view, constitute lower limits to the actual costs that 

are to be expected, as the sellers (insurance companies, banks) will charge risk premiums. 

Estimation of the daily precipitation model 

In order to estimate the parameters of the daily precipitation model (1) to (4), the likeli-

hood functions (5) and (6) are maximized with a genetic algorithm. The parameters  jm
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are determined using the Akaike Information Criterion (AIC). Figure 1 shows the actual 

and the estimated daily rainfall in the course of a year. Figure A1 in the appendix depicts 

the related transition probabilities  and . Obviously the model does not only fit the 

yearly average but also the seasonality of the rainfall amounts well. From Figure A2 it 

can be seen that the standard deviation of the estimated daily precipitation is actually 

higher in summer than in winter. Hence, the model reflects the aforementioned character-

istics of daily rainfall. 

01
tq 11

tq

 

Figure 1 about here 

 

A pitfall of the daily precipitation model is the underestimation of the variance of cumu-

lated rainfall over a period of several weeks. This underestimation of the variance has 

already been observed in a different context and has been termed „low frequency vari-

ability bias“ (Dubrovsky, Buchtele, and Zalud 2004). For example, the sample variance 

of the precipitation for the period of April/May is 1436, whereas the daily precipitation 

model only shows a value of 882. One can expect that the daily simulation will also result 

in biased option prices because options prices are sensitive towards volatility. Hansen and 

Mavromatis (2001) discuss various methods to reduce the low frequency variability bias. 

In this study we take several measures: Firstly, the transition probabilities  and  

are estimated by their empirical sample counterparts, which show a clearly higher vari-

ability than those based on the Fourier series (see Figure A1). Moreover, the parameters 

of the mixed exponential distribution ,  and  are determined in such a way that 

the resulting variances exactly fit the sample variance of the daily rainfall amounts shown 

01
tq 11

tq

tα tβ tγ
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in Figure A2b in the appendix. Secondly, following Dubrovsky, Buchtele, and Zalud 

(2004), a second order Markov process instead of a first order one is estimated. Thus, 

longer sequences of consecutive rainy and dry days respectively may occur, which leads 

to a higher variance of the cumulated precipitation. In what follows the original and the 

modified daily precipitation model are called „daily simulation I“ and „daily simulation 

II“, respectively1. 

The calculation of the spatial basis risk is exemplified for the rainfall sum in April and 

May (Option 1). First, the correlation coefficients of the precipitation index between 

pairwise weather stations are determined. Next, the distances between the stations are 

quantified, which serve as an explanatory variable in the non-linear regression function 

(7). The parameter estimates for the de-correlation function are: = 0.9331, = 0.0009 

and = 1.2183. Figure 2 shows the graph of the de-correlation function which has the 

expected negative slope. While the correlation of the total precipitation is approximately 

0.9 between Berlin-Tempelhof and a station at a distance of 25 km, this value decreases 

to about 0.5 at a distance of 200 km. An R

1e 2e

3e

2 of 0.66 proves that the estimated de-

correlation function can be considered a good approximation to the empirical correla-

tions. Nevertheless, it should be noted that the topographical situation in Brandenburg 

matches the assumption of a direction-independent relationship, and that this assumption 

may apply less, for example, to mountainous regions. Moreover, the scatter plot in Figure 

2 shows heteroscedasticity, i.e. the relationship between distance and correlation becomes 

more imprecise with increasing distance. 

Figure 2 about here 
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Valuation of the rainfall options 

Table 2 presents the option prices obtained by applying the burn analysis, the index value 

simulation and both variants of the daily simulation. The burn analysis and the index 

value simulation lead to similar prices for both options. The similarity of the results im-

plies that the Weibull distribution for the accumulation period „April/May“ and the Er-

lang distribution for the accumulation period „1st half of July“ approximate the respec-

tive empirical distribution of the precipitation index well. In contrast, the prices calcu-

lated with the daily simulation are lower compared to those obtained with the burn analy-

sis. This difference is significant for the put option in the case of the daily simulation I. 

The reason is the aforementioned underestimation of the volatility. This effect can be 

mitigated, yet not eliminated, by the modification of the daily precipitation model de-

scribed above. Furthermore, the differences of the pricing methods depend on the deriva-

tive to be valuated. Thus, all four methods result in similar prices for the call option refer-

ring to a shorter accumulation period. 

In order to assess the reliability of the four models table 2 also displays the standard 

errors of the estimates2. Actually the daily simulation shows smaller standard errors than 

the burn analysis and the index value simulation (except for daily simulation II in the case 

of the call), but the gain in accuracy is not that pronounced as reported by Brix, Jewson, 

and Ziehmann (2002) for a temperature index. Interestingly the estimates of the burn 

analysis have smaller standard errors than those of the index value simulation while the 

former approach is frequently criticized in the literature for producing unstable results 

(see e.g. Cao and Wei 2000; Zeng 2000).  

Table 2 about here 
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Analysis of the hedging effectiveness 

Finally, we investigate how the availability of a precipitation derivative affects the risk 

exposure of grain producers located at different distances from the weather station by 

using the put option as an example. As we are mainly interested in the geographic basis 

risk here, we will simplify matters by neglecting other production risks. In addition, it is 

assumed that the relation between the cumulated rainfall in April and May and the grain 

yield is linear and that both variables are perfectly correlated. Due to these simplifying 

assumptions, it is possible to interpret the rainfall distributions directly as profit distribu-

tions. The distributions for the rainfall index are generated with the Index Value Simula-

tion using the Weibull distribution and the de-correlation function estimated before. Ta-

ble 3 and Figure 3 show that a producer located in the immediate vicinity of the weather 

station can eliminate the downside risk by acquiring a put option. The variance of the 

returns can be reduced by about 65 percent. The expected value of the profit distributions 

does not change, since the option price is defined as the expected value of the payouts 

according to the actual probabilities (as opposed to the risk-neutral ones). As mentioned 

before, this price constitutes a lower limit; due to risk premiums and transaction costs, the 

actual prices will be higher, which leads to a downward shift of the distributions with an 

option. Furthermore, it becomes clear that the risk reduction potential of the weather de-

rivatives diminishes with increasing distance. When interpreting the results the simplify-

ing assumptions regarding the „production function“ should be kept in mind. In reality, 

yields are not perfectly correlated with the rainfall index resulting in a further reduction 

of the hedging effect (cf. Berg et al. 2005). 

 

Figure 3 and Table 3 about here 
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Conclusions 

An economic analysis of weather derivatives from the viewpoint of a potential buyer re-

quires the solution of three interrelated problem areas: firstly, the statistical modeling of 

the relevant weather variables; secondly, the quantification of the relationship between 

the weather variables and the production; and thirdly, the development of a theoretically 

consistent pricing model. This paper focuses on the first aspect. A daily precipitation 

model is specified, from which indices can be derived that determine the payoff of the 

derivative. Based on this model “fair prices” can be calculated, which constitute a lower 

bound for the value of a derivative. A comparison with other, simpler procedures reveals 

clear differences in the pricing of the weather derivatives. First of all this finding under-

scores the importance of the model choice. However, it is difficult to draw an unequivo-

cal conclusion regarding the superiority of one of the valuation approaches. On the one 

hand, application of the daily simulation has the advantage of yielding smaller confidence 

intervals for the resulting indices and prices compared with the non-parametric burn 

analysis and the index value simulation. On the other hand, the danger of a rather sophis-

ticated daily precipitation model being wrongly specified is relatively high; such a risk is 

precluded when the precipitation index is estimated directly. In the present application it 

turned out that a daily simulation model tends to underestimate the volatility of monthly 

rainfall. This pitfall may be of minor importance in the context of meteorological or hy-

drological applications, but it is severe when the model is used for risk assessment and 

derivative pricing. Some measures to reduce this bias have been discussed and success-

fully implemented in this paper. Nevertheless the problem deserves further attention. An-

other shortcoming of the presented daily rainfall model is the ignorance of long term (in-

terannual) variability of the parameters. That means, trends or an increase of rainfall vola-
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tility due to climatic changes are not captured by this model. In principle, however, it is 

also possible to incorporate interannual variability into daily precipitation models (cf. 

Wilks and Wilby 1999). We conclude that the preferential statistical approach to option 

pricing depends, among other things, on the availability of weather data and on the con-

text of its application. A systematic model validation on the basis of quasi-ex ante fore-

casts is suggested as a subject of further research. 

Regardless of the issue of the appropriate pricing method, the following practical con-

clusions can be drawn: The risk reducing effect of precipitation derivatives is much more 

regionally confined than it is the case with temperature related derivatives. In the exam-

ple of Brandenburg considered here, the correlation between the precipitation index of the 

weather station Berlin-Tempelhof and a remote farm site decreases to a value of 0.75 at a 

distance of 100 km. If one additionally takes into account the stochastic relation between 

precipitation on the one hand and production or returns on the other hand - which has 

been ignored in this study - the use of rainfall derivatives as risk management tools in 

agriculture appears questionable. It follows that potential suppliers of rainfall insurances 

should introduce a dense network of weather stations as reference points for the rainfall 

index in order to increase the attractiveness of this type of insurance, although this may 

lead to a fragmented demand. Moreover, the specification of adequate weather indices 

also requires further studies. The cumulated rainfall, on which we focus here, may not be 

specific enough from the viewpoint of many producers. For example, not only the rainfall 

sum is relevant for the yields but also the rainfall distribution over time. The precipitation 

model presented in this paper can be utilized to explore the effectiveness of any kind of 

rainfall based index. 
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Footnotes 
 
1 Beside these two models other model versions have been specified and estimated. For 

example, the mixed exponential distribution has been replaced by a kernel density estima-

tor. The results, however, didn’t change significantly.  

2 Standard errors are calculated with the bootstrap method with 200 iterations.  
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Table 1: Specification of Rainfall Options 

 Option 1 Option 2 

Type Put Call 

Payoff ( )0,max tIKV −⋅  ( )0,max KIV t −⋅  

Index  tI
∑
=

.05.31

.04.01t
ty  ∑

=

.07.15

.07.01t
ty  

Strike price K   91 mm 30 mm  

Tick size V  1 € per 1 index points 1 € per 1 index points 

Discount rate r  5 % 5 % 

Time to expiration τ  9 months 9 months 
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Table 2: Moments of the Rainfall Index and Option Prices for Different Valuation Models* 

 Burn Analysis Index Value Simulation Daily Simulation I Daily Simulation II 

 Rainfall Index Rainfall Index Rainfall Index Rainfall Index 

 Mean 

Standard 

Deviation 

Option 

Price 
Mean 

Standard 

Deviation

Option 

Price 
Mean 

Standard 

Deviation 

Option 

Price 
Mean 

Standard 

Deviation

Option 

Price 

90.80           37.86 14.28 90.58 38.47 15.17 92.49 29.85 10.58 91.14 31.56 11.91
Put 

( 4.92 ) ( 3.52 ) ( 2.56 ) ( 5.44 ) ( 4.10 ) ( 2.95 ) ( 3.67 ) ( 2.63 ) ( 1.96 ) ( 4.01 ) ( 3.35 ) ( 2.07 ) 

29.49            20.23 7.68 29.88 21.13 8.05 29.76 18.16 7.05 29.47 19.96 7.52
Call 

( 2.40 ) ( 2.16 ) ( 1.66 ) ( 2.76 ) ( 2.88 ) ( 1.99 ) ( 2.28 ) ( 2.01 ) ( 1.50 ) ( 2.62 ) ( 2.78 ) ( 1.88 ) 

* Standard errors in parentheses 
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Table 3: Parameters of the Profit Distributions with and without Hedging at Different Locations 

 without option with option 

Distance  

(Correlation coefficient) 
0 km (1.00) 0 km (1.00) 25 km (0.89) 100 km (0.73) 200 km (0.53) 

Mean      90.53 90.53 90.54 90.53 90.53

Variance      1468.91 555.75 689.36 906.15 1182.39

5 %       31.53 75.26 55.79 44.80 36.95

10 %       

       

       

       

       

41.90 75.26 61.83 54.30 47.01

15 % 49.73 75.26 66.03 60.32 54.60

50 % 88.24 75.26 85.84 87.87 88.89

90 % 141.83 126.09 126.27 130.46 135.83

Quantiles 

95 % 157.36 141.62 141.63 144.08 149.92
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Figure 1: Observed and estimated average daily precipitation  

(weather station Berlin-Tempelhof) 
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Figure 2: De-correlation function for cumulated precipitation in Branden-

burg, Germany 
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Figure 3: Profit distributions with and without hedging 
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Figure A1: Conditional transition probabilities 
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a) Mean  
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b) Standard deviation 

Figure A2: Conditional mean and standard deviation of daily precipitation 
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