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Estimating Liquidity Costs in Agricultural Futures 

Markets using Bayesian Methods 

 

Abstract 

Estimation of liquidity costs in futures markets is challenging because bid-ask spreads are 

usually not observed. Several estimators of liquidity costs exist that use transaction data, 

but there is little agreement on their relative accuracy and usefulness, and their 

performance has been questioned. We use a Bayesian method proposed by Hasbrouck 

which possesses conceptually desirable properties to estimate liquidity costs of six 

agricultural future contracts. The method builds on Roll’s model and uses Markov Chain 

Monte Carlo estimation. Our Bayesian estimates are lower than more traditional 

estimates and as anticipated decrease even more when more realistic assumptions such as 

discreteness are incorporated. The findings demonstrate the need for further research to 

clarify the usefulness and accuracy of the procedure.  

 

Key Words: agricultural futures markets, liquidity, bid-ask spread, Bayesian estimation, 

Markov Chain Monte Carlo estimation, Gibbs sampler 
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Estimating Liquidity Costs in Agricultural Futures 

Markets using Bayesian Methods 

 
The cost of liquidity, often referred to as the bid-ask spread, is the difference between the 

prices for immediate purchase and sale (Bryant and Haigh 2004). This difference is a 

significant source of transaction costs that are usually ignored in economic analysis due 

to a lack of relevant data. The lack of data becomes particularly important in commodity 

futures markets where bids and offers occur in an open outcry pit and are not recorded. 

To circumvent this problem, spread estimators have been proposed that use transaction 

data only. Some examples are serial covariance estimators (Roll 1984; Chu et al. 1996), 

and mean absolute price change estimators (Thompson and Waller 1988; Wang et al. 

1997; Smith and Whaley 1994).  

These spread estimators are simple and straightforward to implement. However, 

they have weaknesses. For example, the covariance between adjacent price changes can 

yield positive values when using the Roll estimator, making it difficult to obtain spread 

estimates. The Thompson-Whaley estimator can fail to distinguish between true price 

change volatility and volatility attributable to the bid-ask price bounce (Smith and 

Whaley 1994). Bryant and Haigh (2004) report a downward bias of the above estimators 

using coffee and cocoa spread data from the London International Financial Futures 

Exchange (LIFFE). Locke and Venkatesh (1997) and Smith and Whaley (1994) suggest 

that Roll’s estimator is inadequate for futures markets and Stoll (1989) report downward 

biases of this estimator for stocks markets. Laux and Senchak (1992) modify the Roll 

estimator to correct observed bias, but their approach does not eliminate the occurrence 

of negative spreads in financial futures. 
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Recently, Hasbrouck (2004) implemented a Bayesian Markov Chain Monte Carlo 

(MCMC) algorithm, the Gibbs sampler, to generate estimates of liquidity costs. Within 

this framework he estimates unobserved spreads and trade direction indicators based on 

Roll’s model. Bayesian techniques are attractive in this context for a number of reasons. 

Estimation is based on parameters’ posteriors which incorporate all the information in the 

observed transaction prices. Despite being based on Roll’s model, Hasbrouck’s procedure 

does not contain the problem of unfeasible values (i.e. positive covariance between 

adjacent price changes) because the parameters are random draws from their conditional 

distributions. Moreover, unobserved latent variables, like the trade direction indicator, are 

estimated conditional on observed transaction prices rather than derived from tick rules. 

Another motivation for this proposed method is the ease of computation. Conventional 

estimation techniques require computing the whole probability space for the trade 

directions (q1, ..., qT), which involves 2T combinations, whereas the Gibbs sampler 

approach needs only T updates for each iteration1. In addition, the proposed Bayesian 

method can accommodate discreteness of futures prices.2 Discreteness needs to be 

accounted for because future prices’ movements are limited by the tick size. Locke and 

Venkatesh (1997) find that the proportion of minimum tick size changes has great impact 

in the performance of spread estimators. 

Accurate estimates of liquidity costs are of interest to exchanges, market 

participants, and researchers. For exchanges, knowing the cost of providing liquidity in 

their different markets can help develop strategies for the development of new products 

                                                 
1 For T = 103 observations and n = 105 iterations, 2T ~ 10300 and nT=108! 
2 This method can also accommodate clustering, the tendency of futures prices to cluster at natural 
multiples of the tick size, and the influence of the size of transaction. However, here we do not study these 
aspects of the markets.  
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as well as in the regulation of market-making services of existing products. For example, 

liquidity costs might be useful to assess the quality of the hedging service provided by a 

futures contract (Pennings and Meulenberg 1997). For market participants, estimates of 

liquidity costs in different markets and exchanges are useful in making operational 

decisions. Brorsen, Buck, and Koontz (1998) suggest that wheat hedgers would maximize 

their utility by choosing the Chicago Board of Trade (CBOT) if they are slightly risk 

averse and face high liquidity cost differences, but the Kansas City Board of Trade 

(KCBT) is a better (utility maximizing) option if they are faced with low liquidity cost 

differences. For researchers, understanding the structure of liquidity costs in futures 

markets may provide a more comprehensive view of the pricing process. Much research 

has been done in stock markets, however, futures markets have been less explored due to 

the lack of bid-ask quotes.  

The demand for accurate estimates of liquidity in futures markets is clear; 

however the supply of such estimates is scarce. The purpose of the research is to estimate 

liquidity costs in selected agricultural commodities using Hasbrouck’s approach. To our 

knowledge, no recent studies of liquidity costs across agricultural commodities and 

exchanges exist. We use 2005 time-stamped price data from actively traded commodities 

in U.S. major exchanges, i.e. CME (hogs and live cattle), CBOT (corn, soybeans, and 

wheat), and KCBOT (wheat). We chose these markets because the information contained 

in prices of active markets is rich, a desirable property when the only source of 

information to estimate the unobserved variables in the Gibbs sampler are the transaction 

prices. 
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Literature review  

Considerable research has been performed on market microstructure in general, and on 

liquidity in particular for stock and financial futures markets. Studies on commodity 

futures markets, however, are more scarce. Moreover, as argued by Bryant and Haigh 

(2004), findings from financial markets are not always directly applicable to commodity 

markets. Our discussion focuses on research performed in commodity futures markets. 

Thompson and Waller (1987) studied coffee and cocoa contracts in the New York 

Board of Trade (NYBOT) over the three-year period 1981-83. Under the hypothesis of 

negative price correlation, they use the average absolute value of price changes to 

measure execution costs. Negative price correlation emerges because market makers fill 

buy orders at a higher price than sell orders. Their findings show lower execution costs in 

actively traded nearby contracts relative to thinly traded more distant contracts. On 

average, executions costs are 0.15 (0.12) percent of the contract value in distant coffee 

(cocoa) contracts, while they reduce to 0.07 percent in nearby coffee and cocoa contracts. 

Furthermore, they show that negative price correlations cannot be exploited to arbitrage 

the market, but rather represent the cost for immediate liquidity.  

Thompson and Waller (1988) estimated liquidity costs for corn and oats contracts 

traded in the Chicago Board of Trade (CBOT) in 1984 and 1986. However, their results 

are mixed and in some cases not consistent with expectations when the Roll measure is 

used. Thompson, Eales, and Seibold (1993) compared liquidity costs for the same 

commodity traded in different exchanges, i.e. wheat in the CBOT and in the KCBT in 

1985. The data are intra-day prices on a tick basis (i.e. zero price changes are not 

recorded) from January to June. Using the Roll’s measure and the average absolute price 

changes measure, their results suggest that in Kansas City liquidity costs are significantly 
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higher due, in part, to its lower trading volume. However, there are other variables, which 

are not identified, that could also help explain this difference. In both exchanges, liquidity 

costs are higher and more sensitive to trading volume at expiration.  

Ma, Peterson, and Sears (1992) investigate the intraday behavior of selected 

futures contracts, including corn and soybeans. They argue that commonly used spread 

estimators are usually biased. Specifically, they argue that the Bhattacharya estimator 

(mean value for all cases where sequential price changes reverse signs) might be 

downward biased, the Thompson –Waller estimator (average absolute price changes) 

might be upward biased, and that the Roll estimator might overstate the actual spread 

when transaction prices are recorded on a tick basis. However, these three estimators 

show little variation in reflecting the U-shape price behavior during the day which 

suggests that market-makers require a higher premium in the form of a bid-ask spread to 

protect themselves from informed traders.  

Smith and Whaley (1994) recognize the problems associated with the Roll and 

Thompson-Waller estimators. They point out that the Roll estimator becomes 

troublesome when the covariance between adjacent price changes is positive, and that the 

Thompson-Waller estimate gives an upward bias of the spread because it fails to 

recognize the variance of true price changes contained in the absolute value of price 

changes. To overcome this problem, Smith and Whaley suggest a new spread estimator 

based on the first two moments of absolute price change distribution. Their estimator is 

derived for tick-basis datasets, and is robust to different levels of serial correlation and 

volatility of true price changes when both simulated data and S&P500 futures data for the 

period 1982-1987 are used. 
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Locke and Venkatesh (1997) compute futures transactions costs for several 

commodities to assess the performance of commonly used spread estimators. Transaction 

costs are defined as dollar flows from customers to market-makers, and are estimated as 

the difference between the average purchase price and the average sale price for all 

futures customers, with prices weighted by transaction size. Roll’s estimates for pork 

bellies and live cattle in the Chicago Mercantile Exchange (CME) appear to be 

significantly different to the measured transaction cost. A plausible explanation for such 

discrepancy is related to the minimum tick size. Commodities with the highest proportion 

of minimum price changes show the greatest bias between spread estimators and 

transaction costs. As pointed out by Locke and Venkatesh (1997), the transaction cost per 

contract may be lower than the minimum tick, and may also not equal to an integer 

multiple of the minimum tick. This can happen when trades occur between customers 

with no execution-related transaction costs, or when market-makers adopt pricing and 

inventory control strategies leading to positive revenue on only a fraction of contracts.  

Besides Locke and Venkatesh (1997), only Bryant and Haigh (2004) contrast 

observed and estimated spreads in commodity futures markets. Observed bid and ask 

prices, as well as transaction prices, are taken from the LIFFE for cocoa and coffee. In 

general, absolute price change estimators perform better than serial covariance estimators 

when evaluated using the bias and the mean square error criteria, but the latter have lower 

error variances. These findings imply that spread estimators might not be reliable and 

alternative measures of liquidity costs are needed when observed bid and ask prices are 

not available, as is the case for most major US exchanges.  
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As noted, discreteness of futures prices might be an important issue in spread 

estimation. However, other than Hasbrouck (2004), there are no studies dealing with this 

in commodity markets. Therefore, here we built on the findings for stocks markets. As 

explained by Harris (1991), price discreteness is expected to reduce the costs of 

negotiating in a given market. This is due to the fact that discrete prices represent a 

smaller set of prices that limits the number of bids and offers that can be made, and 

therefore negotiations converge more rapidly. In effect, price discreteness minimizes 

negotiation costs by avoiding extended rounds of bargaining over amounts of diminishing 

importance. Furthermore, Harris (1994) show that significant reductions in bid-ask 

spreads may be obtained if traders could use minimum price variations. Hasbrouck 

(1999) reviews models of stock price discreteness and building on Dravid (1991) 

proposes a model that allows for asymmetric rounding of the bid and ask quotes. Here we 

use the model which is explained in the next section. 

 
 
Methods 

The methods used here build on the Roll model and Bayesian estimation to infer the 

effective bid-ask spread directly from times series of transaction prices. Roll’s method is 

well suited to commodity futures markets not only because the bid-ask spreads are often 

not recorded, but also because they satisfy the assumptions of informational efficiency 

and stationarity of price changes more closely than other markets (Laux and Senchack 

1992). Furthermore, as identified by Laux and Senchack (1992) failure to capture an 

asymmetric information component might not be a problem in futures markets because 

prices are mainly driven by macroeconomic events rather than privately produced firm-

specific information. Bayesian estimation is implemented using the Gibbs sampler which 
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is a Markov chain Monte Carlo estimator. This technique is more attractive than the 

conventional Roll model because i) estimation is based on parameters posteriors which 

incorporate all the information in the observed transaction prices, ii) it can accommodate 

latent (unobserved) data, iii) it does not require negative covariance between adjacent 

price changes, and iv) it allows for a more comprehensive and realistic model that 

incorporates price discreteness. 

In the Roll model, markets are assumed to be efficient. The efficient price is m(t) 

which would hold in the absence of transaction costs and reflects all available public 

information. Over time the efficient price follows a random walk. However, futures 

markets operate through dealers who post bid (b(t)) and ask (a(t)) prices. Buyers buy at 

the price a(t), sellers receive the price b(t), and the cost of a transaction is c. As a result 

the prices that we observe when trading takes place are p(t) and are modeled as, 

(1) m(t)=m(t-1) + u(t)  u(t) ~ N(0, σ2
u) 

 p(t) = m(t) + cq(t)   

where m(t) is the log efficient price, q(t)={-1 for a sell , +1 for a buy} is the trade 

direction, p(t) is the log transaction price, p(t) = b(t) if q(t) = -1, p(t) = a(t) if q(t) = +1, 

and c is the half spread. 

Conventional approach 

Conventionally, the spread model (1) is estimated using moment estimates. Taking price 

differences (i.e. Δp(t) = u(t)+cΔq(t)) and solving for Var (Δp(t)) and Cov (Δp(t), Δp(t-1)) 

yields the following estimators: 

(2)  σ2
u = γ0 + 2 γ1   

(3) c = 1γ−   
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where γ0 = Var (Δp(t)) and γ1 = Cov (Δp(t), Δp(t-1)). 

Bayesian approach 

The Bayesian approach is facilitated by the Gibbs sampler. The Gibbs sampler is an 

algorithm to generate a sequence of samples from the conditional probability 

distributions of random variables. The algorithm is motivated because it is applicable 

when the joint distribution is not known but the conditional distribution of each variable 

is known. As a Markov chain Monte Carlo method, the Gibbs sampler generates sample 

values from the distribution of each variable in turn, conditional on the current values of 

the other variables (i.e., x1 ~f(x1|x2,x3,...), x2 ~f(x2|x1,x3,...), x3 ~f(x3|x1,x2,...)).  

In the Bayesian approach the transaction cost, c, and the variance of the log 

efficient price changes, σ2
u, are the unknown parameters from the regression 

specification 

(4) Δp(t) = cΔq(t) + u(t) 

  q(t)={-1 for a sell , +1 for a buy}     q(t) ~ Bernoulli(1/2)  . 

In the model the joint distribution F(q,c,σ2
u|p) is also unknown and we use the Gibbs 

sampler to obtain sample values (q(i),c(i),σ2
u

(i)) ~ F(q,c,σ2
u|p) based on known conditional 

distributions for a known set p={p1,p2,...,pT}. This method is implemented, for the vector 

variable Θ=(q,c,σ2
u), using a Markov chain to make n random draws which converge in 

distribution to the joint distribution after a sufficiently large number of iterations. That is, 

(q(0),c(0),σ2
u

(0)), (q(1),c(1),σ2
u

(1)),..., (q(n),c(n),σ2
u (n))  Θ (n) ~ F(n)( q,c,σ2

u|p) 

where Θ (n)→ D Θ as n→∞. The liquidity cost c is then computed as the first moment of 

the marginal distribution f(c|p). The efficient price is not included because, in the 

specification m p c q= − • , it is redundant. 
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The conditional prior distribution for c is assumed to be (positive) normal, so the 

posterior is c| p ~ N+(μc
post, Ωc

post), where, N+ is the normal density restricted to [0,+∞), 

μc
post=Dd, Ωc

post=σ2
u(X’X)-1, D-1=X’σ2

u
-1X+(Ωc

prior)-1, d=X’σ2
u

-1p+(Ωc
prior)-1 μc

prior, 

X=[Δq(t)], μc
prior= 0, and Ωc

prior=106. The conditional posterior distribution for σ2
u is σ2

u 

| p ~ IG(αpost, βpost), where αpost= αprior+T/2, and βpost= βprior+Σut
2/2, αprior =βprior =10-12. 

The direction of the incoming order q(t) is assumed to be a random variable distributed as 

Bernoulli (1/2) so that buy and sell orders are equally probable.  

The implementation of the algorithm is as follows. Begin with an initial (arbitrary) 

guess of (q,c,σ2
u)(0) and generate n =10,000 draw sequences (we discard the first 2,000 

considered as a burning time and keep 8,000 for estimation), where each draw 

incorporates the most recent information from previous draws and is conditional on the 

set of observed transaction prices p. Specifically,  

1. Draw c(1) from f(c׀σu
(0), q(0), p) 

2. Draw σu
 (1) from f(σu׀m(0), p) 

3. Draw q (1) from f(q׀c(1), σu
(1), p). 

The proposed method can accommodate discreteness, a salient feature of futures 

prices that arises because bids, asks, and transaction prices are not continuous because 

their movements are limited by the minimum tick size. It is important that spread models 

incorporate such movements because both the spread and the tick size may have similar 

magnitudes. The inclusion of discreteness during estimation helps to draw variables that 

reflect more accurately the price behavior of the markets under study. Discreteness is 

incorporated into the model using floor and ceiling functions that round prices to the 

nearest tick. The model to estimate liquidity costs with discreteness is defined as, 
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(5) m(t)=m(t-1) + u(t)  u(t) ~ N(0, σ2
u)  

 q(t)={-1 for a sell , +1 for a buy}     q(t) ~ Bernoulli(1/2)   

 P(t)={floor(M(t) – C,) for q(t)=-1 , Ceiling(M(t) + C,) for q(t)=+1} 

where P(t) is the observed transaction price in levels, scaled so that the tick size is unity, 

and M(t)=em(t) is the efficient price in levels. 

Here the joint distribution F(m,q,C,σ2
U|P) is unknown and we use the Gibbs 

sampler to obtain sample values (m(i),q(i),C(i),σ2
u

(i)) ~ F(m,q,C,σ2
U|P)  

1. Draw C(1) from f(C׀σU
(0), q(0), P) 

2. Draw σu
 (1) from f(σu׀ m(0), P) 

3. Draw q (1) from f(q׀m(0), C(1), σu
(1), P) 

4. Draw m(1) from f(m׀m(0), σu
(1), q(1), P) 

for σU
(i)=P 2. σu

(i). A more exhaustive description of this procedure can be found in 

Hasbrouck (2004). 

 

Data 

Liquidity costs are estimated for six futures contracts traded in three major U.S. 

exchanges. The contracts are lean hogs (CME), live cattle (CME), corn (CBOT), 

soybeans (CBOT), and wheat (CBOT and KCBT). We use the volume by tick database 

from the CME, the futures tick database from the CBOT, and the wheat futures tick 

database from the KCBT. These datasets provide prices of trades executed during the day 

in the open auction with their corresponding time stamps. Because the recorded data 

includes a considerable number of zero price changes for CME and KCBT, our analysis 

does not have the restrictive assumption of all trades occurring between market-makers 
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and traders. Following Ma, Peterson and Sears (1992) we discard actual bid and ask 

prices in the futures tick database from the CBOT since these observations may be biased 

because not all bid and ask prices are recorded.  

 For each commodity we selected the most actively traded contract during a month 

in 2005 with the highest trading volume for all contracts, so that we do not run into the 

problem of infrequent trading (Wang, Yau, and Baptiste 1997; Ma, Peterson, and Sears 

1992). Preliminary analysis of the data shows that the spread estimators described in the 

previous section are sensitive to the time period used. Therefore, liquidity costs are 

estimated using samples of the above contracts that did not display large jumps in prices. 

Each sample consists of transaction prices showing stationary behavior observed within a 

week of the specified trading month.  

Table 1 summarizes the trading month, contract specifications, and summary 

descriptive statistics of the data for each commodity. Soybeans show the greatest number 

of average daily transactions and lowest average time between trades, thus we anticipate 

this market to have the lowest liquidity costs. On the other hand, wheat traded in the 

KCBT has the lowest number of trades, the highest average time between trades, and a 

higher average price than wheat in the CBOT. Liquidity costs are expected to be higher in 

this market. 

 

Results 

Liquidity cost estimates for the six contracts analyzed are presented in table 2. All 

estimates are computed using scaled transaction prices (i.e. a one-unit change represents 

one tick size). The table shows the log half-spread, c, and the half-spread in levels in 

ticks, C. Care must be taken in interpreting the absolute size of the spreads and in making 
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comparisons of liquidity costs across commodities. While we use prices that are 

stationary, the levels and volatility of the individual series differ as can be seen by their 

coefficients of variation. The coefficients of variation also are quite small relative to 

those often calculated over longer time periods, suggesting that the absolute values of the 

spreads may also be quite small. Comparisons across commodities are further 

complicated by the fact that examination of the data revealed large differences in the 

number of zero price changes reported by exchange and commodity. Prices at the CME 

and KCBT included a high proportion of zero price changes (live cattle—32%; lean 

hogs—30%; wheat—41%), while the commodities traded at the CBOT (corn—0.56%; 

soybeans—0.28%; wheat—0.44%) did not. Clearly, these related factors can be expected 

to influence the absolute and relative transaction costs, and can make it difficult to draw 

conclusions across markets. Nevertheless, examination of the performance of estimation 

techniques for each market is valid. 

For all six contracts, as anticipated the spreads regardless of the procedures used 

are small, reflecting the limited volatility of the data. For example, the moment estimate 

of C based on tick scaled data is 1.34, indicating the half spread is 1.34 times the tick size 

or in cents/bu, 0.335. Further, moment estimates are large relative to those generated with 

the Bayesian method, falling outside of two standard deviations of the Bayesian 

estimates. These findings are similar to those reported by Hasbrouck (2004) for pork 

bellies and other financial futures. As identified by Hasbrouck, these differences can be 

explained by the way each estimator is derived. The moment estimate in (3) is derived 

assuming independent u(t). However, in the Bayesian approach, such independence is 

assumed but not imposed. When E[u(t)u(t-1)] is negative, the moment estimate is inflated 
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because by construction it does not account for this term. In contrast, for the Bayesian 

estimate a negative E[u(t)u(t-1)] can be viewed as a small sample effect which is 

translated into an exact small sample distribution from where the parameters are drawn. 

Table 2 also shows that C estimates are less than one for all six contracts when the 

Bayesian approach is used, indicating that cost estimates are less than one tick size. 

Interestingly, the largest percentage reductions in C from use of the Bayesian approach 

occur in the live cattle and lean hogs markets which had a high proportion of zero price 

changes. This finding is consistent with the notion that the Bayesian approach uses the 

information in the zero price changes to reflect when trades occur between customers 

with no execution-related transaction costs, or when market-makers adopt pricing and 

inventory control strategies leading to positive revenue on only a fraction of contracts. 

The best opportunity of a direct comparison across the markets is between wheat in 

Chicago (C) and Kansas City (K) which has been studied extensively. Here, we find 

lower transaction costs in Kansas City which is at odds with most of the reported 

research, but may reflect the differences in zero price changes reported. 

 The results for the Bayesian model with discreteness as specified in (5) are 

shown in the last two columns of table 2. As it can be seen, liquidity costs reduce 

significantly when discreteness is incorporated for all contracts. These findings also are 

consistent with our expectations of lower negotiation costs associated with price tick 

movements and with the results reported by Hasbrouck (2004).  

 Table 3 reports the dispersion of the residual u(t), which provides a measure of 

volatility generated by the models. Again, moment estimates are lower than two standard 

deviations of the Bayesian estimates. For lean hogs and corn, the moment estimates are 
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further apart from their corresponding Bayesian estimates. The estimates coming from 

the model incorporating price discreteness appear to be significantly lower than those 

coming from the simple Bayesian model.  

Liquidity costs are expected to be higher for more volatile markets due to market-

makers increased risk premium. For lean hogs this relationship appears to hold as we find 

highest dispersion (8.29—Bayes, discreteness in table 3) and highest liquidity costs 

(0.41—Bayes, discreteness in table 2). However, the other markets do not show an exact 

match between the two parameters. This might be due to other factors affecting liquidity 

costs and not reflected in the volatility, like specific characteristics of the contracts, the 

exchanges, or the markets. 

 

Conclusions 

Computing liquidity costs in commodity futures markets is not an easy task. Numerous 

estimators of the bid-ask spread that use transaction prices only have been proposed in 

the literature to overcome the problem of lack of bid-ask quotes in futures markets. 

However, the performance of these estimators has been questioned. Here we use a 

Bayesian estimator with conceptually more desirable properties proposed by Hasbrouck 

(2004) to compute liquidity costs of six agricultural commodity contracts.  

Within each market a consistent pattern emerges in the behavior of the Bayesian 

methods relative to the conventional Roll spread estimator. The estimates of the spread 

when using the Bayesian method are systematically smaller than the moment estimate. 

Incorporation of discreteness lowers the spread estimate even further. This behavior is 

consistent with Hasbrouck’s findings and confirms the notion that the Bayesian method 
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allows for the zero price changes and lower negotiation costs in the presence of discrete 

price units to be interpreted in an apparently meaningful economic context.  

While the Bayesian method performed much as expected, several challenges 

emerged in performing the analysis which may point the direction for further research. 

First, the Bayesian method appears to generate spread estimates that are smaller than the 

moment estimates which previous researchers have found to be downwardly biased. This 

is somewhat disturbing, but may be a reflection of the more conceptually appropriate 

framework and the limited number of studies that have been performed with markets 

where actual bid-ask spreads are available for comparison. Clearly, more work needs to 

be performed similar to Bryant and Haigh (2004) study comparing the performance of 

alternative procedures including the Bayesian method in the presence of known bid and 

ask quotes. Second, the spread estimator computed with the Bayesian method appears to 

be sensitive to the time period used. For example, we found that the spread estimates for 

the Bayesian method differed greatly when using different samples from our monthly 

observations. To some extent, this may be a reflection of the economic conditions and 

trading activity that varies over time, and would not necessarily be a limitation if the 

computational burden of generating the Bayesian estimates can be reduced. One method 

to assess the sensitivity of the procedure would be to simply estimate the Bayesian model 

for pronounced periods of economic and price behavior. Alternatively, following 

Hasbrouck (2004) the analysis can be expanded to permit liquidity costs to vary as a 

function of the volume of the stochastic nature of market transactions. As suggested by 

O’Hara (1995), spreads may vary with the volume traded so that the spread for large 

trades may be significantly larger than the small trade spread. This suggests that traded 
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volume which presumably reflects new information in the market should be incorporated 

into the analysis so that large trade spreads are not confused with large liquidity costs. 

Unfortunately, appropriate trade volume is not available for all markets, but where 

available should be included in the analysis. Finally in a related context, further 

assessment of the Bayesian methods should identify the relationship between stochastic 

volatility and liquidity costs to capture more realistic market conditions and to further 

assess the effects of how new information which can cause prices to cluster influence 

transaction costs.  
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Table 1: Contracts Description and Summary Statistics 
 
Commodity Lean Hogs Live Cattle Corn Soybeans Wheat Wheat 
Exchange CME CME CBOT CBOT CBOT KCBT 
Trading month Jul Jan Jul Jul Aug Aug 
Expiration month Aug Feb Dec Nov Dec Dec 
# trading days in sample 5 4 4 4 3 3 
Total # of trades 2,023 1,807 4,256 4,601 1,814 1,031 
Price units Cents/lb. Cents/lb. Cents/bu Cents/bu Cents/bu Cents/bu 
Avg. price 67.57 88.80 250.02 693.58 328.21 351.61 
Standard deviation 0.36 0.25 2.88 6.50 1.50 2.12 
Coeff. variation (%) 0.53 0.27 1.15 0.93 0.45 0.60 
Min price 66.90 88.15 241.00 681.00 325.25 346.50 
Max price 68.65 89.45 255.00 711.00 332.50 356.00 
Tick 0.025 0.025 0.25 0.25 0.25 0.25 
Size of contract 40,000 lb 40,000 lb 5,000 bu 5,000 bu 5,000 bu 5,000 bu 
Avg. daily trades 405 452 1064 1150 605 344 
Avg. time between trade 34.44 sec 31.48 sec 13.25 sec 12.27 sec 23.24 sec 40.49 sec 
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Table 2: Liquidity Cost Estimates  
 
  Moment Bayes b Bayes, discreteness 
  estimate a Post. mean SD Post. mean SD 
Live cattle c x 104 4.07 0.59  0.32 0.45  0.12 
  C (ticks) 1.45 0.21  0.12 0.16  0.04 
 C (cents/lb) 0.036 0.005 0.003 0.004  0.001 
Lean hogs c x 104 9.16 2.77  0.39 1.51  0.20 
  C (ticks) 2.48 0.75  0.11 0.41  0.05 
 C (cents/lb) 0.062 0.019 0.003 0.010 

 0.001 
Corn c x 104 8.16 5.19  0.13 0.32  0.09 
  C (ticks) 0.82 0.52  0.01 0.03  0.01 
 C (cents/bu) 0.204 0.130 0.003 0.008 

 0.002 
Soybeans c x 104 4.84 3.51  0.08 1.88  0.05 
  C (ticks) 1.34 0.97  0.02 0.52  0.01 
 C (cents/bu) 0.335 0.243 0.006 0.131 

 0.004 
Wheat (C) c x 104 5.21 4.26  0.10 0.39  0.10 
  C (ticks) 0.68 0.56  0.01 0.05  0.01 
 C (cents/bu) 0.171 0.140 0.003 0.013 

 0.003 
Wheat (K) c x 104 4.39 3.03  0.31 0.07  0.06 
  C (ticks) 0.62 0.43  0.04 0.01  0.01 
 C (cents/bu) 0.154 0.106 0.011 0.002  0.002 

a Moment estimates are higher than two standard deviations of the Bayes estimates in all six contracts. 
b The Wilcoxon sign test between the simple Bayes and Bayes with discreteness estimates reveals 
significantly different medians at the 1% level in all six contracts. 

 
 

Table 3: Model Residual Dispersion (σux104)  
 
 Moment Bayes b Bayes, discreteness 
 estimate a Post. mean SD Post. mean SD 
Live cattle 3.73 6.80  0.13 4.40  0.11 
Lean hogs 5.40 13.47  0.25 8.29  0.19 
Corn 4.65 9.71  0.16 7.23  0.13 
Soybeans 4.34 6.22  0.10 5.21  0.08 
Wheat (C) 4.78 5.96  0.13 5.21  0.15 
Wheat (K) 6.21 7.66  0.26 6.66  0.21 

a Moment estimates are higher than two standard deviations of the Bayes estimates in all six contracts. 
b The Wilcoxon sign test between the simple Bayes and Bayes with discreteness estimates reveals 
significantly different medians at the 1% level in all six contracts. 


