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Tax Increment Financing for Optimal Open Space Preservation: 

An Economic Inquiry 
 

 
 
 
 
 
 
 

Abstract  The public has increasingly demonstrated a strong support for open space 
preservation.  Questions left to local policy-makers are how local governments can 
finance preservation of open space in a politically desirable way, whether there exists an 
optimal level of open space that can maximize the net value of developable land in a 
community and that can also be financed politically desirably, and what is the effect of 
the spatial configuration of preserved open space when local residents perceive open 
space amenities differ spatially.  Our economic model found the condition for the 
existence of an optimal level of open space is not very restrictive, the increased tax 
revenue generated by the capitalization of open space amenity into property value can 
fully cover the cost of preserving this optimal level of open space under a weak 
condition, and being evenly distributed and centrally located is very likely to characterize 
the optimal spatial configuration of preserved open space in terms of net social value and 
the capacity of tax increment financing. 
      
Keywords:  open space preservation, property value, tax increment, spatial configuration   
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I.  Introduction 

 
The public has been concerned with preserving open space from development in their 

neighborhood for decades.  The Trust for Public Land finds that in both robust and 

challenging economic times since 1996, American voters have strongly supported 

conservation finance measures that preserve natural lands, create parks, and protect 

farmland, and more than 77 percent of the conservation finance ballot measures were 

approved, generating a total of $27 billion.  The market, however, often fails to provide 

open space optimally, despite the substantial social value attached to open space, since 

the value of open space as a local public good doesn’t, in most cases, fully accrue to the 

private land owner who provides them.  In response, planners and local land managers 

have adopted many policy instruments to promote open space preservation (Bengston et. 

al. 2004, Porter 1997).  One common approach extensively used across the U.S. is 

purchase of land designated as open space or rights to development (Myers and Puentes 

2001, Porter 1997, Kelly 1993).  An interesting question related to the purchase of open 

space land is how local government can balance their budget to cover the cost of the 

public investment in open space.  If acquisition of open space land requires a tax 

increase, it may not be politically desirable although people strongly support preserving 

open space.  According to a survey conducted by the National Association of Realtors 

(2001), 75% voters would like their local governments to buy land to create new open 

space in their communities, but most oppose increasing their property taxes by more than 

$50 a year to pay the cost of acquiring open space land.     

Some studies have pointed out acquisition of open space land may be financed by 

the increment in tax revenue generated by property value appreciation in response to the 
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preservation of open space.  For example, based on a hedonic study on single-family 

home sales in Portland, Oregon, Netusil et al. (2000) find open space could increase 

property value in high value neighborhoods and they further speculate that funding for 

the development and maintenance of open space may be generated simply by their 

preservation, that is, self-financing.  An earlier illustration of the same proposition 

emerges from the construction of New York’s Central Park.  When the designer, 

Frederick Law Olmsted, was asked how the city could pay for the park, Frederick 

responded that the presence of the park would raise property values and the extra tax 

revenue generated would easily repay the construction costs.  A subsequent empirical 

investigation on the relationship between the park and real estate value verified his point 

and was widely disseminated (see Fox 1990).      

The idea that acquisition of open space may be financed by preservation seems 

promising since a large literature has demonstrated the positive effect of open space on 

local property value (see McConnell and Walls (2005) for a review).  There also have 

been anecdotes showing that markets in certain circumstances can spontaneously provide 

open space from the same motivation.  For example, in a study on market provision of 

open space, Heal (2001) presented two examples.  The developer of Spring Island off the 

coast of South Carolina built only 500 high-value properties instead of constructing the 

5,500 homes permitted, and conserved the balance of the land to raise the value of the 

homes sufficiently maximizing their profit.  Similarly, hunters in Montana, concerned 

with the effect of summer home development, borrowed money to buy the land and 

finance the construction of a small number of luxury homes.  The hunters placed a 

conservation easement on the remainder of the land, reserving the right to hunt on it 



 4

themselves, and sold the houses for more than the total cost of buying the land and 

building the houses.  A recent issue of New York Times reports the St. Joe Company, 

Florida’s largest private landowner holding 800,000 mostly inland acres in the scrubby, 

unremarkable pine forests of the Panhandle, is pushing “new ruralism” by low-density 

development and providing large amounts of open space in neighborhoods to attract city 

and suburban dwellers who are weary of civilization (Goodnough 2005).          

All these examples suggest the possibility that open space can be paid for by its 

preservation.  In fact, the public sectors of local governments have used tax increment 

from assessed property value to finance local economic development, especially in the 

1980s and 1990s, when there were declines in subsidies from federal and state grants 

(Anderson 1990, Chapman 1998, Dye and Merriman 2006).  A natural question is what is 

the condition that open space preservation can be self-financed.  Does there exist a 

socially optimal amount of open space that can maximize the value of developable land 

in a community and that can also be self-financed?  Studies have found the appreciated 

property (land) value induced by open space preservation exhibits a spatial pattern, which 

is related to the spatial characteristics of preserved open space, such as size, shape, and 

spatial location.  How do these spatial factors of open space affect the possibility of using 

property tax increment to finance the acquisition of open space land? What is the optimal 

structure of open space that can be self-financed?  In this study, we focus on economics 

of self-financed preservation of open space.  More specifically, we develop a model to 

formally explore the possibility of using property tax increment to finance public 

investments in open space.  We formulate our model within a context that local residents 

value and are willing to pay for open space in their neighborhood.  Consequently, local 
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land managers may increase the value of community land and thus tax revenue by 

systematically investing in open space, and the fiscal gain by appreciated property value, 

in turn, will be used to cover these public investments.   

This paper is organized as follows.  Section 2 develops a model to help 

understand how open space can potentially raise local property value, which provides a 

theoretical basis for public investment in open space.  More specifically, we identify the 

conditions under which the public investment in open space is socially optimal in terms 

of the maximized net value of developable land in communities.  Section 3 introduces a 

budget constraint that the expenditure in open space preservation is fully covered by 

property tax increment due to amenity-induced property value appreciation, and 

examines the condition under which the socially efficient level of open space can be fully 

covered by increased tax revenue.  Since property value may exhibit a spatial pattern 

depending on the spatial distribution of open space amenities for communities or 

neighborhoods of large scales, we examine the effect of spatial heterogeneity in open 

space amenities on the conditions for tax increment financing in Section 4.  Section 5 

uses simulation to explore the effect of spatial configurations of preserved open space.  

The policy-relevant formulation of the spatial aspects examined allows implications on 

the optimal structure of the socially efficient, self-financed level of preserved open space.  

We conclude this economic inquiry in Section 6.     

 

II.  Land Value and Optimal Open Space Preservation: A Theoretical Model 

Consider residential communities or towns in a metropolitian area with varying average 

distance x to the central business district (CBD).  These residential communities are 
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characterized by varying amounts of open space (public goods) a, which mimics the 

prototype of a series of local towns depicted in Tiebout’s theory (1956) on local 

expenditures.  Following the traditional monocentric urban model, each household 

chooses residential location (community) represented by (x, a), house size q in units of 

land area in the selected residential community, and a numeraire good z to maximize their 

utility U = U(z, q, a).  Each household is subject to a budget constraint z + Rq + tx = y, 

where R denotes land rent, t denotes transportation cost per unit distance, and y is 

household income.   

For given land rent R and transportation cost t, the utility-maximizing choice of 

house size q and numeraire good z can be represented as q* = q(y, t, x, R, a) and z* = y – 

tx – Rq(y, t, x, R, a), respectively.  Substitute the optimal consumption bundle (z*, q*) 

into the utility function, U = U[y-Rq(y, t, x, R, a)-tx, q(y, t, x, R, a), a].  For an open city 

model, household utility U at equilibrium is exogenously determined when migration is 

costless, which is equal to the maximum utility attainable elsewhere in the economy.  

Denote the exogenous utility level by V, which is expressed as  

V = U(y-Rq(y, t, x, R, a)-tx, q(y, t, x, R, a), a)                            (1)  

For given income level, transportation cost, and residential community, land rent 

R has to change such that U(y, t, x, a, R) = V.  Solving equation (1) for R, we can derive 

the equilibrium land rent R = R(y, t, x, V, a), which represents the bid rent of each 

household for per unit land in community (x, a) at market equilibrium.  We suppress all 

arguments but open space area a, and express the equilibrium land rent R as a function of 

preserved open space, R = R(a).  Assume the utility function U(⋅) is concave, and it can 

be shown that  
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which indicate that the equilibrium land rent is increasing with the amount of preserved 

open space at a decreasing rate.  

For a community with preserved open space a, the equilibrium price per unit land 

P(a) is the present value of the flow of equilibrium land rent net of property tax in an 

infinite horizon, i.e., P(a) = (R(a)-P(a)τ)/δ, where δ  is the discount rate, and τ is the 

property tax rate.  Further, equilibrium land price P(a) can be solved as P(a) = R(a)/(i+τ).  

That is, equilibrium land price equals equilibrium land rent divided by the sum of the 

discount rate and the property tax rate.  Similarly, the equilibrium land price in the 

community increases with preserved open space at a decreasing rate, P’(a) > 0, P”(a) ≤ 0.  

This linkage between equilibrium land price and preserved open space shows how 

property value would respond to open space preservation in a dynamic setting, which 

constitutes the basis for using property tax increment to finance investment in open space.    

The context for exploring the potential of using property tax increment to finance 

open space preservation is set up by a community with a total land area L and a units of 

preserved open space that may or may not be socially optimal.  Suppose land in this 

community, except those preserved as open space, is privately owned by decentralized 

absentee landowners.  The local land manager is concerned with the negative effect of 

urban sprawl, and decides to preserve more open space to protect against the welfare loss 

of local public.  A practical question confronting him at the very beginning is how much 

more open space land need to be acquired for preservation that is socially optimal.  The 

land manager, informed by policy analysts, knows that economic efficiency requires 

preserving open space up to a level such that the marginal benefit of preserving open 
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space is equal to the marginal cost.  Denote the cost of preserving a units of open space 

by C(a) = P(a0)a, where P(a0) is the equilibrium price for land in this community with a0 

units of preserved open space, and is the price at which more land will be purchased if 

further preservation is needed.  Denote the benefit of preserving a units of open space by 

B(a), its measure, however, is not as explicit as the cost.  Since the utility of local 

residents, under the assumption that local residents can costless migrate between 

communities, is exogenous, an appropriate policy objective for the local land manager is 

to maximize the total value of community developable land in the interest of land owners 

(Brueckner 1982, 1983).  Therefore, the benefit of preserving open space can be 

expressed as B(a) = P(a + a0)(L – a0 – a), where P(a + a0) is the equilibrium land price 

after a units of open space have been preserved, and L – a0 – a  is the area of the 

remaining land after preservation.  Consequently, the marginal benefit equal to the 

marginal cost yields 

P’(a + a0) (L – a0 – a) - P(a + a0) = P(a0)           (2) 

Equation (2) can be used to determine the optimal increment of open space to be 

purchased, which, however, may be equal to zero, i.e., no more preservation is need for 

given people’s preference.  An interesting question is under what conditions preserving 

more open space would be socially efficient, which is directly related to subsequent 

investigation of conditions under which the socially efficient amount of open space can 

be financed by property tax increment.     

Move P(a* + a0) in (2) to the right hand side, and divide both sides by (L – a0 – a*) 

))()((
)(

1
)(' 00*

*0

0* aPaaP
aaL

aaP ++
−−

=+    (3) 
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The right hand side of (3) is the marginal cost per unit remaining land, which is the sum 

of cost spent on purchasing an extra unit of open space and the value lost that would have 

been gained otherwise from this extra unit of land, divided by the amount of the 

remaining land.  The left hand side of (3) represents the marginal benefit per unit 

remaining land at the optimal preservation.  From the perspective of the capitalization of 

open space amenity in property value at market equilibrium, this marginal land price at 

the optimal preservation represents residents’ willingness to pay for per unit preserved 

open space.  Because residents’ willingness to pay may be dependent on the price level 

considered, we divide both sides of (3) by the post-preservation equilibrium land price:        
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We use this equation to identify the condition for preserving more open space to be 

socially efficient, namely the condition under which a* > 0.  The left hand side of 

equation (4) is the marginal change rate in land price with respect to the amount of open 

space, and which can be regarded as the standardized marginal benefit per unit land of 

open space preservation.  Let g(a) = P’(a + a0)/P(a + a0), which describes how local 

residents’ standardized willingness to pay (WTP) changes with preserved open space.  

Differentiate g(a) with respect to a,  

20
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Because P’(a + a0) > 0 and P”(a + a0) < 0, g’(a) < 0, which means residents’ standardized 

WTP is decreasing with preserved open space.  
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The right hand side of equation (4) is the standardized marginal cost per unit 

remaining land.  Let )
)(
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= , which describes how the 

standardized marginal cost per unit remaining land would change with preserved open 

space.  Take the first derivative of f(a) with respect to a 
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How f(a) changes with respect to a depends on the sign of the nominator of f’(a).  Some 

algebraic manipulations can show that  
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These mathematical properties show that the standardized marginal cost per unit 

remaining land, f(a), may decrease for up to a fixed amount of open space, increases 

when a is large enough, and eventually goes to infinity as a is approaching the total 

amount of the remaining land L – a0.   

Equation (4) requires at the optimal level a* of increment of open space, the 

standardized marginal benefit equals the standardized marginal cost per unit remaining 

land, which means the curve of residents’ standardized WTP g(a) crosses the curve of the 

standardized marginal cost per unit remaining land f(a) at a = a* (See figure 1).  Since 

resident’s standardized WTP g(a) monotonically decreases with open space, and the 
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standardized marginal cost per unit remaining land eventually increases to infinity with 

open space, g(a) will cross f(a) at least once if g(0) > f(0), i.e.,
00

0 2

)(

)('

aLaP

aP

−
> .  

Therefore, if residents’ standardized WTP at the time of the land manager’s preservation 

decision is sufficiently large so as to go beyond 2/(L – a0), preserving more open space 

would improve the welfare of land owners by raising the total value of community land.   

The condition 
00

0 2

)(

)('

aLaP

aP

−
>  indicates preserving open space is more likely to 

be welfare-improving for a community with a large amount of land L that preserved a 

small amount a0 of open space.  This is because on one hand, the standardized marginal 

cost per unit remaining land 2/(L – a0) is very low, on the other hand, local residents 

would pay more money to preserve open space, as revealed by P’(a0)/P(a0).   

We derive the following proposition. 

Proposition 1  If local residents prefer preserving open space, and if the utility 

function of local residents is concave in preserved open space, there is an optimal (or 

incremental) amount of open space that is socially efficient if local residents’ 

(standardized) current willingness to pay for preserved open space is greater than 

0

2

aL −
.        

III.  Tax Increment Financing for Optimal Open Space Preservation 

The second question confronting the land manager is the possibility of using property tax 

increment to finance the socially efficient incremental amount of open space. 

Economically, we are interested in the interaction between economic conditions of social 

efficiency and tax increment financing.         
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We extend the previous land manager’s model by incorporating a budget 

constraint that the investment cost of open space is not greater than the collectable 

portion of the increased tax revenue due to appreciated land value within a planned 

financing period.  Denote the property tax rate by τ.  The tax revenue before preservation 

is the total current property value multiplied by property tax rate, τP(a0)(L-a0); the tax 

revenue after preservation is the total post-preservation property value multiplied by 

property tax rate, τP(a + a0)(L – a0  – a).  Within a finance period T, the present value of 

aggregate increased tax revenue with the discount rate δ is  

∫ −−−−−+
T

ta dteaLaPaaLaaP
0

000 )])(())(([ δττ    (8) 

Suppose the property tax represents the total of property value-based tax revenues that 

are collected by overlapping local jurisdictions such as the school district.  Practically, 

this total increased tax revenue may not be available for preserving open space.  

Depending on the specification of the zone for tax increment financing (TIF), only a 

portion of the aggregate increased tax revenue may be used for preserving open space.  

Therefore, we introduce a factor w to capture the actual amount of tax increment that can 

be used to finance preserving open space: 

∫ −−−−−+
T
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0

0000 )])(())(([ δττ   (9)    

Integrate (9)   
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δ

δ             (10) 

which represents the total budget for preserving an incremental amount a of open space  
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δ  (11) 
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Simplify (11)  
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Inequality (12) identifies the relationship among policy parameters, such as the financing 

period T and property tax rate τ, residents’ bid price for land, and the incremental amount 

a of open space, if preserving open space a is to be financed by property tax increment.  

Note that this inequality is derived based on a balanced budget for an arbitrary amount of 

open space a between 0 and L – a0, the total available land.  For alternative settings of 

policy context, (12) can be relied on to examine policy variables of interest.  For 

example, if local land managers know how land rent changes with preserved open space, 

inequality (12) can be used to determine the amount of open space that can be financed 

by property tax increment for given policy parameters.  On the other hand, (12) can also 

be used to identify the restriction on households’ bid price for land and other policy 

variables if land managers intend to use tax increment to finance open space preservation.     

 To identify a weaker condition for using property tax increment to finance open 

space a, we allow an infinite financing period, T = +∞.  Correspondingly, (12) becomes 
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As before, we examine the property of the self-financed amount of open space by 

comparing the locus of two independent functions of preserved open space involved in 

inequality (13).  Let Ψ(a) = P(a + a0)/P(a0), which represents the ratio of bid price per unit 

land with and without preserved open space as a function of preserved open space, and 
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, which represents the critical value of the bid price 
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ratio under the constraint of tax increment financing, given policy parameters and the 

amount of open space to be preserved.  We can derive the following properties for these 

two functions: 

(i) Ψ(0) = Φ(0) = 1 
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The above properties suggest that both curves Ψ(a) and Φ(a) start from the same point (0, 

1), and increase with the amount of preserved open space a (see figure 2).  However, the 

bid ratio Ψ(a) increases with the amount of preserved open space at a decreasing rate, 

while the critical value Φ(a) increases at an increasing rate which goes to infinity when a 

is approaching the total available land L – a0.  Therefore, if the marginal bid ratio Ψ’(a) is 

larger than the marginal critical value Φ’(a) at a = 0, their loci will cross each other for 

some amount at of open space, where Φ(at) = Ψ(at), because the marginal critical value 

Φ’(a) goes to infinity when a is getting close to L – a0.  Before a is reaching at, 0 < a < at, 

the bid ratio Ψ(a) is greater than the critical value Φ(a), which implies property tax 

increment is sufficient to cover the expenditure in open space, and vice versa.  In this 

case, at represents the maximum amount of open space that can be self-financed without 

imposing a new tax or increasing the current property tax rate.   
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 The above mathematical exposure on the self-financed amount of open space 

reveals an important condition for tax increment financing.  That is, the marginal bid 

price ratio at the starting point Ψ’(0) = P’(a0)/P(a0) must be greater than the marginal 

critical value at the starting point Φ’(0) = )1(
1

0 waL τ
δ

+
−

, otherwise the maximum 

amount at of open space that can be financed by tax increment would be zero.   

So far, we have identified two amounts of open space and two types of conditions:  

• the socially efficient amount of open space a*, under the condition for the 

marginal change rate of households’ bid price with respect to open space at the 

starting point 
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• the maximum self-financed amount of open space at, under the condition for the 

marginal change rate of the bid price ratio with respect to open space at the 

starting point )1(
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The central question is under what conditions the socially efficient amount of open space 

can be fully financed by property tax increment. 

 Answering the above question reduces to comparing those two amounts of open 

space and their corresponding conditions.  The sufficient condition for a non-zero at that 

can be financed by property tax increment, )1(
1
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> , constitutes another 

necessary condition for the socially efficient amount a* of open space to be self-financed.  

If the ratio δ/(τw) is less than 1, those two necessary conditions for the socially efficient 

amount of open space to be self-financed reduce to 
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ratio δ/(τw) is greater than 1, the necessary condition for the socially efficient amount of 

open space to be self-financed may be defined by )1(
1

)(

)('
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τ
δ

+
−

> .   Note that 

these two conditions only guarantee the existence of the socially efficient amount a* and 

the self-financed amount at, but remain neutral on the relative magnitudes of a* and at.  

Therefore, as long as the standardized residents’ current WTP for open space, or the 

marginal change rate of the equilibrium land price with respect to preserved open space, 

is great than the larger of )1(
1

0 waL τ
δ

+
−

 and 
0

2

aL −
, there exists at least a self-financed 

amount at of open space, and may exist a socially efficient amount a* that can also be 

covered by increased tax revenue, depending on the relative magnitudes of at and a*.  

 Unfortunately, the relative magnitude of at and a* is not explicit.  We proceed by 

examining the condition required of residents’ WTP under which the socially efficient 

amount a* of open space can be fully covered by property tax increment, i.e., a* < at.  We 

define the following system for the set Γ such that ∀a*∈Γ is socially efficient and can 

also be fully financed by property tax increment: 1) the socially efficient amount a* of 

open space, )
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Substitute (14) into condition 1), 
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which is a second necessary condition for the socially efficient amount of open space to 

be self-financed.  Recall that the condition for the existence of a non-zero socially 

efficient amount of open space is in favor of a large marginal change rate of equilibrium 

land price at the starting level of preserved open space, because a large marginal change 

rate of equilibrium land price means residents are willing to pay a large amount of money 

for preserving an extra unit amount of open space in the community, relative to the 

marginal cost associated with this preservation.  The condition (15), however, imposes an 

upper bound on the marginal change rate of equilibrium land price if the increased tax 

revenue is the only source of fund for open space preservation.  In condition (15), the 

right hand side can still be thought of as the marginal cost of preservation, but this 

marginal cost is the maximum defined by tax increment financing.  If the post-

preservation marginal benefit, as represented by the left hand side, is greater than the 

financially defined marginal cost, it would be socially efficient to preserve more open 

space which, however, is beyond the capacity of tax increment financing.  As a result, the 

post-preservation marginal benefit less than the financially defined marginal cost is a 

necessary condition for the socially efficient amount of open space to be fully self-

financed.     

We summarize as follows the condition for the existence of a non-zero amount of 

open space that is socially efficient and that can also be fully covered by property tax 

increment:  
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We derive the following proposition.  

Proposition 2  If local residents prefer preserving open space, and if the utility 

function of local residents is concave in preserved open space, there is an optimal (or 

incremental) amount of open space that is socially efficient and can be fully financed by 

property tax increment due to the capitalization of open space amenity, if the pre-

preservation marginal change rate of equilibrium land price with respect to open space, 

or  local residents’ standardized pre-preservation willingness to pay for open space, is 

greater than the larger of 
0

2

aL −
 and )1(

1
0

+
− waL τ

δ
 , and if the post-preservation 

marginal change rate of equilibrium land price with respect to open space, or local 

residents’ standardized post-preservation willingness to pay for open space is less than 

or equal to 
δτ

τ
*0*0 )(

1

awaL

w

aaL +−
+

−−
.         

 

IV.  Effect of Spatially Heterogeneity in Open Space Amenity  

The theoretical model constructed in section 2 implicitly assumes a spatially 

homogeneous open space amenity as if local residents equally receive the same open 

space amenity, as represented by the amount of preserved open space.  Consequently, the 

preserved open space equally raises the equilibrium land price of the remaining land.  In 

some instances such as the considered community is of small spatial scales, or the 

existence value of open space is prominent to local residents, this assumption may be 
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reasonable.  Hedonic valuation studies, however, also found in many cases people value 

their access to preserved open space in addition to the open space amount, which leads to 

spatially varying land value at market equilibrium in response to the amenities that local 

residents perceive they actually receive from preserved open space at their residence 

locations (see Do and Grudnitski 1995, Geoghegan et al. 1997, Lutzenhiser and Netusil 

2001, Mahan et al. 2000, Tyravinen and Miettinen 2000, for example).  When the 

capitalization of open space amenity differs spatially, the previous economic condition 

for self-financed, socially efficient open space preservation may be biased toward the 

optimistic direction in the sense that property value may be overestimated.  In this 

section, we introduce a distance variable in addition to open space area into the open 

space amenity measure, and examine how this spatial heterogeneity in open space 

amenities as perceived by local residents affects the economic condition of tax increment 

financed, socially efficient open space preservation. 

 As before, the residential community in a metropolitan area is represented by their 

location x and preserved open space a.  Each household derives utility U = U(z, q, A(a, 

r)) from their consumption of a numeraire good z, housing q in the units of land area, and 

open space amenity A, while subject to the budget constraint z + Rq + tx = Y.  Note that 

the open space amenity A is a function of the amount of preserved open space a and 

household specific location r relative to the open space in the community, and therefore, 

each household can affect the amenity level of open space at their residence location by 

their choice of residential community (x, a) and specific location r in the selected 

community.  The non-spatial model in section 2, which only considered the amount of 
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preserved open space without referring the relative location r, can be regarded as a 

special case of the spatial model where A = A(a) = a.  

 Consider a circular residential community with a radius r0, which, as will be seen, 

is not essential to the model. Assume the community has already preserved some land of 

a0 units at the community center as a circular central community park, and is considering 

to expand the range of the park outward further, with its radius changing from ra0 to ra1.  

If the area of the planned open space increment is a, the total value of the remaining land 

after preservation is ∫ +
0

1

2)),(( 0
r

ra

rdrraaAP π , where ra1 is the radius of the post-

preservation area of open space, with 
π

aa
ra

+
=

0

1 .  The expected cost for preserving a 

units of incremental open space would be ∫
1

0

2)),(( 0a

a

r

r
rdrraAP π , which is approximately 

equal to P(A(a0, ra0))a when the involved variation in the radius of preserved open space 

is limited.  Consequently, the land manager’s model of using property tax increment to 

finance socially efficient open space preservation becomes 
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Compared to the non-spatial model, the model accounting for the spatial pattern of 

equilibrium land price is complicated by the integral of land value over the remaining 

land.  This complicating, however, can be simplified using the average value theorem.  

Specifically, the total value of the remaining land after preservation  
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where )(
~ 0 aaP +  is the post-preservation equilibrium land price independent of spatial 

location such that 2020 0
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where )(
~ 0aP  is the pre-preservation average equilibrium land price independent of 

spatial location.  If we still assume the total area of community land is L, the total value 

of the remaining land after preservation becomes ))((
~ 00 aaLaaP −−+ , and the total 

value of the land before preservation is ))((
~ 00 aLaP − .  Therefore, the spatial model of 

tax increment financing of socially efficient open space transforms into 

            
a

Max  araAPaaLaaP )),(())((
~

0

000 −−−+=π    (20) 

 s.t. araAPdtweaLaPaaLaaP
T

t )),(()])((
~

))((
~

[ 0

0

0

0000 ≥−−−−+∫ −δττ  (21) 

which is exactly the same as the non-spatial model except that the equilibrium land price 

is replaced by some spatial average value.  Therefore, the basic conclusion based on the 

non-spatial model would not change except the non-spatial equilibrium land price 

replaced by the spatial average land price.   

Practically, to evaluate the condition for the self-financed, socially efficient 

amount of open space for communities with given parameters requires estimation of the 

marginal change rate of equilibrium land price, or residents’ WTP, at both pre- and post-

preservation levels of preserved open space.  The equilibrium land price may exhibit a 

spatial pattern rather than a spatially homogenous rate of capitalization when 

communities or cities are sufficiently large, but often when tax increment financing is 
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invoked for constructing local infrastructure, the involved area is commonly restricted to 

a smaller in situ area or block, i.e., the financing district, rather than the whole city.  In 

this area, equilibrium land rent can be considered spatially homogeneous.  Specifically, 

estimating the marginal change rate of equilibrium land rent requires defining and 

compiling a data set of land price for districts or small communities across the 

metropolitan area that contain varying amount of preserved open space, such that 

equilibrium land price is homogeneous with respect to open space within the district and 

heterogeneous with respect to open space among districts.  Consequently, a hedonic land 

price function, lnP(a) = f(x1, x2, …, a, a2, a3, …) can be estimated, where xi represents 

land characteristics that affect land value.  Because 2

210
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)('
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βββ ++=
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where βi is the estimated coefficient parameter, the marginal change rate of equilibrium 

land price can be estimated for different amounts of open space.  Even if the involved 

area for tax increment financing is large enough to support spatially varying equilibrium 

land price, the spatial average equilibrium land price can be estimated more easily by the 

normal procedure of hedonic method without dividing the city into small homogeneous 

tracts.  In addition, a contingent survey can also be used to directly solicit local residents’ 

WTP for open space.  Benefit transfer presents another option to derive the information 

that is needed for evaluating the decision of open space preservation.    

In the investigation of the economic condition for a self-financed, socially 

efficient system of open space preservation, we didn’t impose strong restrictions on the 

common utility function such as specifying a specific function form except only requiring 

concavity.  Consequently, the economic condition is derived as general as possible.  For 

example, the marginal change rate of equilibrium land price is a non-linear rather than 
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linear function of preserved open space.  In many empirical studies, the equilibrium land 

price is estimated as a linear function of preserved open space.  In such a context, even 

more simple conditions can be identified.  For example, in the linear case, the economic 

condition for the socially efficient amount of open space to be self-financed would be  
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community or tax increment financing zone.  For a large community where it is 

reasonable to assume a spatially heterogeneous equilibrium land price, the condition is 

modified by replacing the marginal change rate of equilibrium land price with its spatial 

average.  

 

V.  Spatial Configuration of Open Space 

To local land managers, the preservation of open space practically is a matter of how to 

construct such open space to maximize its net social value.  Is one large tract of open 

space better than several small spatially separated ones? Where should the optimal open 

space be located to maximize its amenity effect on local residents? How does the shape 

of open space affect its amenity to local residents through the interaction of area and 

access?  Perhaps, local land managers are also interested in what is the possible spatial 

configuration for the socially efficient, self-financed open space that is socially optimal.  

In this section, we explore the effect of spatial configuration of preserved open 

space on the value of community developable land and the financing capacity of property 

tax increment.  We relate the spatial structure of open space to be considered to the 

practical question of how large, how many, what shape, and where to locate which local 

land managers are most concerned with for preserving open space.  We extend our 
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theoretical model to incorporate these policy-related spatial considerations in a two-

dimensional coordinate system and assume the community has no preserved open space.   

As will be shown below, incorporating the spatial aspects of open space dramatically 

complicates the model such that a closed-form, tractable analytical solution is impossible 

without further assumption.  Consequently, we use a simulation approach to explore these 

spatial effects, and expect the simulation results would reveal implications for the optimal 

structure of open space in the context of tax increment financing.  

Similar to the non-spatial model, the spatially explicit model maximizes the net 

value of community land by investing in open space subject to the capacity of tax 

increment financing.  

syxa
Max

),,( 00
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where P((x,y), a(x0,y0), s) is location-specific equilibrium land price, depending on its 

location (x,y) relative to the location (x0,y0) of the preserved open space with an area a(x0, 

y0) and shape s, and Ω is the set of (x, y) within the community but not belonging to the 

preserved open space a(x0, y0).   

Assume the utility function of local residents is in the form of a Cobb-Douglas 

function, U(z, q, A(x,y)) = zαq1-αA(x,y)β, where A(x,y) is location-specific open space 

amenity at (x,y) determined by the distance to the location (x0,y0) and the configuration of 

open space a(x0,y0), and α and β are preference parameters with 0 < α <1 and β > 0.  

Following the same steps as with the non-spatial model, we can derive the utility-
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maximizing choice of numeraire good z and house size q at each location (x,y) for given 

land rent R and travel cost t,  

  z = α(m – tD(x,y))                                                                          (24) 

  q = (1- α)(m – tD(x,y))/R                                                   (25) 

Similarly, we can solve for the land rent function,  

  R(x,y) = [αα(1-α)(1-α)A(x,y)β(m-tD(x,y))/V]1/(1-α)                              (26) 

Therefore, the equilibrium land price   

  P(x,y) = [αα(1-α)(1-α)A(x,y)β(m-tD(x,y))/V]1/(1-α)/(δ+τ)                     (27) 

which describes how equilibrium land price varies spatially with respect to open space 

amenity A(x, y), income m, distance to the CBD D(x, y), the exogenous level of utility V, 

and preference parameters, α and β.   

To examine the effect of the size, shape, and location of preserved open space, we 

need to further specify the location-specific open space amenity in relation to the spatial 

structure of open space.  Unfortunately, precisely describing open space amenity is an 

empirical question, and there is no theoretical a priori on their quantitative representation 

except some empirical findings regarding the spatial pattern of land value.   Generally, 

empirical studies have agreed on that 1) the further from preserved open space, the lower 

property or land value; and 2) the larger preserved open space, the higher property or land 

value.  Since land rent (or price) is a monotonic function of open space amenity on that 

land, these empirical findings may help discover an empirically effective measure of 

open space amenities that is consistent with people’s perception.  We adopted with some 

modification a function used by Wu and Plantinga (2003) to describe open space amenity 

that is consistent with those empirical restrictions   
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A(x,y) = 1 + e-γd(x,y|x0,y0,s)a(x0,y0)   (28)  

where d(x,y|x0, y0, s) denotes the distance from any location (x,y) to the open space at 

(x0,y0) with shape s, and γ is the dissipating parameter of open space amenity.   

By this specification, open space amenity decreases with the distance from and 

increases with the size of preserved open space.  The shape s affects amenity level 

through its effect on local accessibility of open space measured by the distance from each 

land parcel to the edge of preserved open space.  Substituting the amenity function into 

equation (27), we derive  

P((x,y)|a(x0,y0),s) = [α
α(1-α)(1-α)(1 + e-γd(x,y|x0,y0,s)a(x0,y0)) 

β(m-tD(x,y))/V]1/(1-α)/(δ+τ) (28) 

Without loss of generality, we suppress the difference in the distance of each land parcel 

within a community to the CBD, and use P(0) to represent equilibrium land price without 

preserved open space.  As a result, the equilibrium land price function can be expressed 

as product of land price without open space P(0) and open space amenity A(x,y),  

          P((x,y), a(x0,y0), s, P(0)) = P(0)(1 + e
-γd(x,y|x0,y0,s)a(x0,y0)) 

β/(1-α)                          (29) 

We use this land price function to simulate the effect of some common spatial 

configurations of open space on the net value of community land and the capacity of tax 

increment financing for a rectangle-shaped (4000m×8000m) community, centered at 

coordinate origin, with x ranging from –2000m to 2000m, and y ranging from –4000m to 

4000m.  This community can also be considered as a district in a city that uses property 

tax increment to finance preserving open space.  Table 1 presents the value of parameters 

we used for simulation.   
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Effect of the Location of Open Space  

 We first focus on one of the most common forms of open space, circular open 

space such as a community park.  The context is set up by two practical questions 

frequently raised: 1) What is the optimal size of community park? and 2) Where should 

the community park be located to have maximal social value?  These two questions, 

although raised separately, are related to each other.  We will simulate 1) how the net 

value of community land varies with the size of open space, 2) how the size of open 

space affects the capacity of property tax increment to finance public investment in this 

open space, and 3) how the location of open space affects the above relationships. 

Figure 3 presents three scenarios with differently located community park for 

simulation.  Panel A describes the idea of providing a central park in the community with 

coordinate origin (0,0) at the park center.  Panel B and C change the location of the 

community park to the right with park center at (1000,0) and to the upper community 

with park center at (0,2000) relative to community center, respectively.  Figure 4 

summarizes how the net value of community land and property tax increment vary with 

respect to the size of open space for different spatial location.  As we can see, in all 

spatial locations, there exists a globally optimal amount of open space that can be 

financed by tax increment within a 5-year period.  Specifically, panel A shows the net 

social value of a center-located circular open space increases until the size of open space 

reaches 500 acres, and decreases when the area of open space is beyond 500 acres.  

Property tax increment also illustrates the same tendency.  Interestingly, the peak-value 

size of open space is not the maximum amount that can be financed solely by increased 

tax revenue, which is around 1250 acres when the increased tax revenue drops to zero 
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within a 5- year horizon of financing.  This means, although the property tax increment 

can finance more investment than desired in open space, that public investment may not 

be socially optimal.   

Panel B and C illustrates the location effect.  Although both the net social value of 

open space and property tax increment demonstrate similar trends with respect to the area 

of open space, the peak-value size of open space is different in three spatial locations.  As 

we can see, the peak-value size is 400 acres for the open space located to the right and 

300 acres for located in the upper community relative to community center, which 

implies the maximum net social value of open space could be different for different 

locations.  In our simulation, the maximum net social value of open space that can be 

reached is the highest with the central location.  Also, tax increment curve is different in 

three locations.  When the community park is located to the right of community center, 

the maximum capacity of tax increment financing is around 1130 acres, while it drops to 

1010 acres when open space is located in the upper community.   

These changes in both the financing capacity of property tax increment and the 

net social value caused by varying locations can be attributed to the effect of community 

shape on the externality of open space.  Preserving open space in a community can be 

considered as producing an amenity field, analog to the physical gravity or magnetic 

field, in which each location is associated with an amenity generated by that open space.  

When open space is located in community center, most, if not all, of its positive 

externality is captured in the value of the land within community boundaries (or more 

community land are covered by open space amenity).  But when open space is not 

centrally located, it is very likely that relatively less positive externality is captured into 
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land value, and more open space amenity would spill over community boundaries.  

Moreover, we can predict that the net social value of open space and the capacity of the 

property tax increment could be even lower when open space is located near to the 

boundary of a local jurisdiction because more of the positive externality would arise 

outside the community’s territory.   

Based on the simulation, we can derive two general results.  If local residents 

desire the public open space like a community park, and do care about the size and 

accessibility of such open space, central location is more likely to generate higher social 

value and improve the capacity of tax increment financing for public investment in open 

space.  Second, exhausting the capacity of tax increment financing to provide the 

maximum possible amount of open space may not be socially desirable and may even 

decrease the net social value of open space although such investment may not impose 

extra fiscal burden on local town government.                  

Effect of the Distribution of Open Space  

 Very often local policy-makers must decide between providing one large tract 

versus several small pieces of open space.  We simulate this distribution effect in this 

subsection.  Theoretically, the spatial distribution of open space can be a continuous 

function of spatial location, but in real world it is more likely to be discrete.  Here we 

only consider several typical discrete cases with circular open space that are of policy 

concern.  We first focus on two circular open space with equal areas and simulate the 

effect of location and the distance between them.  More specifically, we examine how the 

net value of community land and property tax increment change with the interdistance 

between open space for three different locations: diagonal, x axis, and y axis.  To 
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compare with a single large circular open space, we equalize the total area of two circular 

open space to the optimal amount of one circular open space as identified previously.  

Subsequently, we examine four circular open space and alternate the total area.    

 Figure 5 shows distribution of two circular parks of open space in different 

directions.  As demonstrated by figure 6, in all three directions, the net social value of 

open space and property tax increment increase first and then decrease with the distance 

between open space.  However, the turning points at which both net social value and tax 

increment change from increasing to decreasing are different.  When located along the 

community diagonal, both net social value and tax increment reach their peaks when the 

interdistance between open space is 2100m, while the peak-value interdistances are 600m 

and 3000m respectively when located along x axis and y axis from community center.  If 

we compare these peak-value interdistances with the interdistance resulting from 

geometrically even division, we will find the former is no less than the latter.  As shown 

by figure 6, after adjusting for the size of open space, the peak-value distance is 3628m 

for diagonal, 1728m for x direction, and 4128m for y direction, while the interdistance 

based on geometrically even division is 2981m for diagonal, 1333m for x direction, and 

2666m for y direction, shorter than those peak-value interdistances.  A possible 

explanation is, the overlap of amenity on land located between open space tends to 

increase the interdistance of open space to balance with land located outside of the 

overlap of amenity.  As a result, the comparison suggests that optimal location tends to 

evenly distribute open space at least physically.  This property is implicitly consistent 

with the finding in the previous section, that is, a single open space should be located in 

the center of a community, and two open space should be evenly distributed in the chosen 
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direction.  Furthermore, the interdistance between open space should be greater than the 

average distance in the chosen direction as long as the amenity effect of open space can 

reach half of the average distance.  

The comparison of the net social value of open space among these three types of 

locations further confirms the optimal rule of evenly distributing open space amenity.  

With this rule of even distribution, the optimal location of two areas of open space should 

be in favor of locations in the y direction relative to the x direction because the 

community is rectangle-shaped with the y dimension being longer than the x dimension, 

and locating along the long dimension could more evenly distribute open space amenity 

without more amenity falling outside the community.  The comparison of the distribution 

effect is not explicit between the y or x direction and the diagonal direction.  Although the 

diagonal is longer than the length of community, panel A shows the distribution of open 

space amenity is not even, with the land at the end of the diagonal getting more amenity 

than the land at the end of the other diagonal.  Therefore, the comparison between y or x 

direction and diagonal is ambiguous depending on how the amenity effect of open space 

distributes as perceived by local residents.            

 Next, we simulate the size effect for four evenly distributed circular open space 

(see figure 7 panel A).  The open space are spatially located such that the interdistance 

between open space in x and y directions are consistent with the peak-value distance 

identified for two circular open space.   

Panel B summarizes the area effect of the open space on the net value of 

community land and property tax increment.  Note the area of open space on x axis 

indicates the total area of four circular areas of open space.  Interestingly, the peak-value 



 32

size of open space for net social value is 450 acres, smaller than its counterpart for a 

single open space, while the capacity of tax increment financing is 1270 acres, larger than 

that for one single large open space.  We compare the maximum net social values of four 

evenly distributed areas of open space and one central park, and find the four areas with a 

value of $7.6634×107 is larger than the single park with a value of $7.4724×107.  This 

result seems to suggest that splitting one large open space into several small pieces and 

evenly distributing these pieces may improve the net social value of open space and 

create more tax increment and thus financing capacity.  The comparison between two 

areas of open space and one large tract of open space also supports this result.  In other 

words, changing the distribution of open space can be a useful tool for policy-makers 

especially in situations such as insufficient tax increment to finance preserving open 

space.  

Effect of the Shape of Open Space 

 In this subsection, we examine the effect of the shape of open space on the net 

value of community land and property tax increment.  We consider two typical shapes of 

open space: ring (a circular belt), and cross (see figure 8).  For the shape of a cross, we 

focus on the area effect when open space is located across a community center, while for 

a ring-shaped green belt, we not only examine the area effect but also simulate the effect 

of spatial locations.  

 Figure 9 illustrates the shape effect of open space.  Panel A and B compare 

different locations of an open space ring.  Specifically, when open space is located at 

300m from the center of community, the net social value reaches its maximum of 

$7.5407×107 at 432 acres; while when open space is located at 900m from the center of 
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community, the net social value reaches its maximum of $7.8889×107 at 402 acres.  This 

comparison demonstrates the interaction between area and location, and implies that the 

ring-shaped open space could be more efficient in terms of higher net social value and 

lower size of open space when located farther or the radius of the ring is larger within 

certain distance.  This result is consistent with intuition since the larger the radius of ring, 

the larger the perimeter and thus more developable land exposed to open space amenity 

for a given amount of open space.  Because of this value effect, the capacity of tax 

increment financing is larger when the radius is 900m with the size of around 1440 acres 

than when the radius is 300m with the size of around 1275 acres.  Panel C reveals a very 

different peak-value size for the cross-shaped open space, where the peak-value area is 

around 300 acres with a maximum net social value of $7.8435×107.   

Combining these results with the case of circular open space, we do find the shape 

of open space could affect the net social value of open space as well as the capacity of tax 

increment financing.  Which shape of open space is preferred depends on the policy 

objective of local jurisdiction and other constraints.  In our simulation example, the ring 

shape, among other shapes, maximizes, at least for the given preference, the net social 

value of open space without incurring extra cost for financing these investments.  

However, the ring-shaped open space may not be most efficient in terms of the net social 

value per unit investment because the cross-shape can reach a similar net social value 

with a smaller amount of open space preserved.   

Nonetheless, a central large open space like a community park may be relatively 

easy to set aside and socially desirable with less administration and/or transaction cost 

and other political, legal, and fiscal constraints.  For example, although requiring less 
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acquisition of open space land, the cross and the ring shapes may involve a large group of 

private landowners and consequently the administration or transaction costs to acquire 

their land may be prohibitive, while a central park may be administratively more 

desirable involving less private landowners.  However, in case that acquiring open space 

is extremely difficult, the cross-shaped open space might be a most desirable choice for 

local land managers because the cross-shape requires a smaller amount of open space to 

achieve a greater gain in the net social value.   

To summarize, the ring shape with large radius is optimal in terms of the net 

social value achieved but not efficient, while the across shape is most efficient in terms of 

social value achievement for per unit open space preserved but may not be politically 

defendable.  A central circular open space may be a good alternative for both shapes of 

open space by its reasonable efficiency and political desirability.       

 

VI.  Conclusions 

Preserving open space has been an important issue for local governments.  Given the 

strong support of local residents for open space preservation, a practical question left to 

local policy-makers is how they can finance the public investment in open space 

preservation in a politically desirable way.  Do local governments need to impose an 

open space fee or raise the tax rate to finance open space preservation? Our economic 

study shows charging a fee or raising the tax rate may not be necessary.  The reason is 

simple although the underlying mechanism is less explicit.  People value and are willing 

to pay for open space preservation in their neighborhoods.  People pay for open space 

through “vote with your feet” and consequently capitalize their valuation of open space 
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into residence location.  This capitalization raises property value, and further increases 

tax revenue that may be sufficient enough to fully cover the investment in open space.  

Our economic model identified under what condition(s) there exists a non-zero socially 

efficient amount of open space that can be fully financed by property tax increment.  

However, people value open space differently and only pay for the amount of amenity 

they receive at their residence location from preserved open space rather than pay at a 

fixed rate.  Our economic model demonstrates these spatial effects of structured open 

space by simulating different spatial configurations that may be commonly have been 

commonly considered by local land managers in preserving open space.       

Our economic model shows that there exists an optimal amount of open space that 

can maximize the net value of community land, as long as local residents’ (standardized) 

current willingness to pay for open space, as revealed by the marginal change rate of 

equilibrium land price with respect to open space, is more than 2 times the inverse of the 

total area of community developable land, a very weak condition given the typical 

magnitude of relevant parameters for a community.  This condition establishes the 

theoretical foundation for local governments to preserve open space but remain neutral on 

how to finance open space preservation.  If local governments intend to use the property 

tax increment to finance acquiring open space land, there exists at least a second best 

level of open space that can be fully financed by increased tax revenue and that may be 

socially efficient, as long as the maximum possible marginal change rate of the 

equilibrium land price with respect to open space is greater than the larger of 
0
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.  Surprisingly, a strong capitalization of open space amenity into land 
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value may not guarantee the socially efficient level of open space to be self-financed.  For 

the socially efficient level of open space to be self-financed, the marginal change rate of 

post-preservation equilibrium land price with respect to preserved open space must be 

less than or equal to 
δτ

τ
*0*0 )(

1

awaL

w

aaL +−
+

−−
, the financially defined marginal 

cost.  Although derived based on spatially homogeneous open space amenity, these 

conditions can be extended to spatially distributed open space amenity if people’s bid 

price is taken as a spatial average.  

 Our simulation results for the spatially explicit open space model not only show 

the existence of an optimal amount of open space that can be financed by property tax 

increment even for a weak preference for open space preservation (with a utility elasticity 

of 0.04 with respect to open space), but also illustrate the spatial configuration of open 

space does matter in terms of the net value of community developable land and the 

capacity of tax increment financing.  Generally speaking, an evenly distributed, centrally 

located open space can achieve greater net social value and stronger capacity of tax 

increment financing than other spatial configurations of open space.  That is, a central 

location is better than non-central location, several small pieces is better than one large 

piece, a ring shape is better than a circle, and a cross shape may or may not be more 

efficient than a ring shape.  However, a central community park may be politically 

desirable by less administration or transaction cost involved in the acquisition of involved 

open space land if private ownerships of the land involved are relatively concentrated.  

These optimal spatial configurations, we suspect, are very likely to be robust, since they 

tend to maximize the coverage of the positive externality of open space.  Moreover, the 

people’s preference and the description of open space amenity used in our simulation are 
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representative, at least to the extent that they capture the basic characteristics of how 

people value open space as found in many empirical studies.  Another important finding 

we believe valuable to local policy-makers is exhausting the capacity of tax increment 

financing to acquire open space land may not be socially desirable if local governments 

decide to do so.    
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Table 1.  The Value of Parameters Used in Simulation 

Parameter Value Interpretation 

α 

 

0.5 

 

The proportion of disposable income adjusted by travel cost spent 

on housing 

β 0.04 The relative elasticity of utility with respect to open space 

amenity 

γ 0.002 Dissipating parameter of open space amenity 

δ 0.05 Discount rate 

τ 0.15 Property tax rate 

T 5 years Financing period 

R(0) $400 Land rent without open space amenity 
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                                                   I: P’(a+a0)/P(a+a0)       II: (1+P(a0)/P(a+a0))/(L-a0-a) 

                                                                                        

                              2/(L – a0)                       

                                                                                 

                                                                 

                                                   a*                L                   a 

Figure 1.  Demonstration of the Existence of the Optimal Amount of Open Space 
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Figure 2.  Demonstration of Tax Increment Constraint 
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Figure 3.  Demonstration of Community Park and Spatial Location 
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Figure 4.  Value Effect of Spatial Configuration of Circular Open Space 
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Figure 5.  Demonstration of Two Circular Open Spaces and Spatial Locations 
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Figure 6.  Distributional Effect of Circular Open Space 
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Figure 7.  Demonstration of Four Evenly Distributed Circular Open Space 
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Figure 8.  Demonstration of Open Space Shape and Location 
 

 

 
                        A                                           B                                            C 

                                      Net social value                         Tax increment 

Figure 9.  Shape Effect of Open Space 
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