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Cooperation and Cheating 

 

Robin M. Cross, Steven T. Buccola, and Enrique A. Thomann 
 
 
 
Abstract: 

In this article, we extend the variable delivery claim framework (Cross, Buccola, and 

Thomann, 2006) to examine the option-to-cheat, that is, the option to shift production 

between contracts ex post.  We use this framework to provide a solution to the age-old 

conflict between enforcement and the cooperative tradition of providing a “home” for 

member produce.  We show that, in contrast to Nourse’s competitive yardstick 

hypothesis, the value of the cooperative-provided option increases as market competition 

intensifies.  When the option-to-cheat is fairly-priced, it is Pareto improving, increasing 

grower returns, lowering cooperative per-unit costs and reducing contract shortfalls for 

investor-owned rivals at no additional per-unit cost.  Our valuation framework is 

consistent with replication-based equilibria and is free from parametric specification of 

individual preference or firm cost structure. 

 

Key words: fraud, path-dependent options, production contracts 
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Cooperation and Cheating 

 

Agricultural cooperatives, under intense competition from investor-owned firms (IOF’s), 

struggle to control over-delivery and under-delivery by growers, that is, cheating.  When 

crop yields are high at harvest time, some members shift excess produce from their IOF 

contracts to their more accommodating cooperative contracts, thereby receiving payment 

for produce that would otherwise be plowed under.  Alternatively, when yields are low, 

some members shift produce away from their cooperative contracts to exploit higher IOF 

prices.  An “extra row” can represent a few percent of contracted acreage and is difficult 

to discern amid harvest activity.  Enforcement by managers can be costly and often 

conflicts with the cooperative philosophy of providing a “home” for member produce. 

Nourse’s (1945) competitive yardstick hypothesis suggests that as market 

competition intensifies the incentive to cooperate wanes.  We introduce a cooperative 

option-to-cheat and prove that its value is, in contrast to Nourse, strictly increasing as 

market competition intensifies.  The cooperative role is transformed from IOF rival to 

beneficial partner. 

Further, when the option-to-cheat is fairly priced it is a Pareto improving market 

mechanism.  Many agricultural markets lack well-regulated, liquidly traded exchanges to 

fulfill contract shortfalls or dispose of excess production.  High storage or transportation 

costs, geographic dispersion, and increasing differentiation all contribute to thin cash 

markets.  Like giving each grower a small personal exchange, the shifting option provides 

cheating growers with a finite crop reserve in case of an IOF contract shortfall, or a 
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destination for a portion of excess production.  Growers who cheat deliver more total 

produce and at better prices, thereby increasing net farm returns.  With fewer contract 

shortfalls, IOF processors face lower delivery volatility with no increase in per-unit costs.  

Higher grower returns allow cooperatives to lower the per-unit forward price paid out to 

members. 

Recent research effort has focused on detecting fraudulent crop insurance claims 

(Atwood, Robinson-Cox, and Shaik, 2006), designing compliance incentives for 

conservation programs (Giannakas and Kaplan, 2005) and pollution permit markets 

(Milak, 2006), and determining optimal tax enforcement for multinational firms (Peralta, 

et al., 2006).  We extend the Variable Delivery Claim (VDC) framework (Cross, Buccola, 

and Thomann, 2006) to value the option-to-cheat and derive balanced forward contract 

prices.  This framework is consistent with replication-based equilibria, thin markets, and 

heterogeneous contract terms, and provides estimates that are independent of parametric 

specification of individual preferences or firm cost structures. 

 

Economic and Contracting Environment 

To begin, we extend the cooperative economy of Cross and Buccola (2004), in which two 

processors, a cooperative and an IOF, purchase raw product from growers.  The IOF 

processor has some monopoly power in its finished good market, whereas the cooperative 

supplies a separate and competitive output market.  As an alternative buyer of raw 

product, the cooperative poses a credible threat to the IOF processor, enabling grower 

members to extract any IOF monopolistic rent. 
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There is no cash market for raw product.  Therefore, growers forward contract 

half their acreage with the cooperative and half with the IOF.  Denote these time t = T 

payoffs 1,TX  2,TX , respectively.  The cooperative contract pays a relatively low, fixed 

forward price 1,1s  for all produce harvested.  In contrast, the IOF pays a relatively high, 

fixed forward price 2,1s  for produce, but only up to a set threshold 1k and nothing 

thereafter 2,2 0s = . 

(figure 1 here) 

 Figure 1 above illustrates contract revenue per acre associated with two simplified 

contracts over a range of ex post agricultural yield levels TY , where T is the terminal 

period.  Here, for illustration, the cooperative contract pays 1,1s  = $1 per unit of produce 

harvested.  The IOF contract pays 2,1s  = $2 per unit harvested up to a threshold of 1k  = 5 

units, and nothing thereafter.  

 The grower’s combined revenue from the portfolio of two contracts (and two 

acres) is then simply the sum of the two contract payoffs 
2

,
1

i T
i

X
=
∑ , as illustrated in figure 

2 below. 

(figure 2 here) 

Notice that the cooperative contract 1,TX  is an affine (J = 0) variable delivery 

claim and 2,TX  is a piece-wise linear variable delivery claim with one kink (J = 1).  The 

combined portfolio payoff is also a J = 1 variable delivery claim. 
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Now consider a grower with the willingness and ability to shift some proportion, 

sayδ , of the harvest from one contract to the other ex post.  Denote the portfolio payoff 

( )
2

,
1

i T
i

X δ
=
∑ , at time T.  Let the shift amount δ  be a percentage of total agricultural yield 

TY , and let it take on values in the closed interval [ ],α α− , where α  is some positive 

constant α +∈ℜ .  This interval may represent the limits of the grower’s inscrutability, a 

formal or tacit allowance to by the holder, or perhaps the cheating threshold below which 

the grower believes detection will not occur. The cheating grower then chooses the 

optimal proportion of produce to shift ex post in order to maximize portfolio payoff 

( )
2

2,
1

T
i

X δ
=
∑ .   

(figure 3 here) 

The upper-most dashed-line in Figure 3 illustrates the payoff associated with the 

cheating portfolio.  Notice that the cheating portfolio payoff has three kinks (J = 3), two 

of which are determined directly from the magnitude of the cheating parameterα  and the 

original threshold value 1k .   

Figure 3 also illustrates the revenue realized from each of the individual contracts 

( )1,TX δ  and ( )2,TX δ .  Notice that when terminal yield exactly matches the IOF delivery 

threshold 1TY k= , there is no incentive to cheat.  This is because, a one-unit shift from 

contract one to contract two results in a loss of  $1 in return for $0 gain, since contract 

two pays nothing for excess production.  Alternatively, a one-unit shift from contract two 

to contract one results in a $2 loss in return for a gain of $1, the cooperative’s low price 
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per unit.  Thus, no shifting takes takes place.  When terminal yield coincides with the 

lower kink at 1TY k= /(1 α+ ), the grower will shift enough produce from contract one to 

fulfill contract two, which is the maximum allowable shift (δ  = -α ).  This results in a 

reduced payoff for contract one and an elevated payoff for contract two, as indicated by 

the two dashed lines. 

Finally, the lower most dashed line represents the net additional revenue from 

shifting product, ( )TZ α , which is simply the difference between the portfolio payoff with 

and without cheating:  

(1) ( ) ( )
2 2

, ,
1 1

T i T i T
i i

Z X Xα δ
= =

= −∑ ∑ , 

See the technical appendix for the general specification of ( )TZ α .  Notice that under this 

non-negative payoff the grower “cannot lose” by addition the cheating option.  We will 

formalize this important concept later. 

 Though less central to our problem, both processors ensure that standard 

production practices are followed by specifying a set of fixed and variable inputs to be 

applied throughout production period at a cost of [ ]0, TC .  Because of the variable inputs, 

this value is path dependent. 

 

Valuation 

We will use the valuation method corresponding to the missing asset market of Björk 

(1998), in which the underlying yield process is observable, but not tradable.  Valuation is 

based on the existence of a replicating portfolio, or arbitrage portfolio.  We define an 
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arbitrage opportunity, following Harrison and Pliska (1981), as any self-financing 

investment strategy tφ , with payoff tπ  at time t, fulfilling the weak arbitrage condition 

(2) [ ]0 0, 0, 0T Tπ π π= ≥ >E , 

whereE is the conditional expectation operator.  Initial and terminal periods are denoted 0 

and T, respectively.   

We model the underlying yield process Yt as the usual adapted Geometric 

Brownian Motion (GBM), defined in the probability space ( ), ,ρ Ω FP , where ρP  is the 

probability measure with synthetic drift term ρ , Ω  the sure event, and F  the filtration.  

The equation of motion for yield is then given by 

(3) ( ){ } [ ]2
0

1
2

exp , 0, ,

t t t t

t t

dY Y dt Y dW

Y Y t W t T

ρ σ

ρ σ σ

= +

= − + ∈
 

with drift ρ , volatilityσ , and initial value Y0. 

 The discount process tβ  is the inverse of the risk-free bond tB .  The bond evolves 

deterministically, according to 

(4) 0
rt

tB B e−= , 

where B0 is a constant and r the risk-free rate.  

 Two notions of “value” can be ascribed to the option-to-cheat:  For the cheater, 

the option leads to additional net revenue, given a fixed schedule of forward prices.  For 

the cooperative, a formalized option-to-cheat leads to a lower forward price paid to 

growers, a rebalanced forward contract. 
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The payoff associated with the option-to-cheat ( )TZ α  can be represented by a (J 

= 3) variable delivery claim,  

 (5) ( ) ( )( )
1

, 1 , ,
1

J

T j j T j
j

Z s s Y kα α αα
− +

+
=

= − −∑ , 

where ( ) ( ), ,max , 0T j T jY k Y kα α

+
− = − , and in vector notation  

(6) 

( )
( )
( )
( )

2,1 1,1

1,1 2,1

1,2 2,2

1,2 2,2

0
s s

s ss
s s

s s

α

α

α

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−= ⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦

, 

and 

(7) 

0

1

1

1

1
1

1
1

1
1

k

k
k

k

k

α

α

α

α

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥−⎝ ⎠⎢ ⎥
⎢ ⎥⎛ ⎞
⎢ ⎥⎜ ⎟= +⎝ ⎠⎢ ⎥
⎢ ⎥
⎢ ⎥
⎛ ⎞⎢ ⎥
⎜ ⎟⎢ ⎥−⎝ ⎠⎣ ⎦

. 

Cheating thus provides not a single option, but a sum of European-style “plain vanilla” 

call options with strike thresholds kα , weighted by a schedule of fixed prices sα .  This is 

a special case1 of the general cheating option provided in the appendix.   

Denote the ex ante value function [ ]V i .  The value of ( )TZ α is then 

(8) ( ) ( )T T TZ Zρα β α=⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦V E , 
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where ρE  is the discounted conditional expectation operator with respect to the synthetic 

drift term ρ  and information up to time t = 0.  As seen in figure 3, the payoff ( )TZ α is 

everywhere non-negative, leading to a strictly positive expected value and thus an 

arbitrage opportunity, as in (2).  

It remains to determine by how much the cooperative must reduce forward price 

1,1s  in order to eliminate the arbitrage opportunity embedded within ( )
2

,
1

i T
i

X δ
=
∑ .  By the 

definition of a forward contract 

(9) ( )
2

,
1

0i T
i

Xρ δ
=

⎡ ⎤ =⎢ ⎥⎣ ⎦
∑E . 

Solving equation (1) for ( )
2

,
1

i T
i

X δ
=
∑  and substituting into (9), we obtain  

(10) ( )
2

,
1

0i T T
i

X Zρ α
=

⎡ ⎤+ =⎢ ⎥⎣ ⎦
∑E . 

The general expression for the variable delivery claim ,i TX  is given by 

(11) ( )( ) [ ], , 1 , 0,
0

, 1, 2
J

i T i j i j T j T
j

X s s Y k C i
+

+
=

= − − − =∑ , 

where 0s  is zero, 0k  is the lower limit of TY , and [ ]0,TC  is the path-dependent input cost 

rule.  Holding all other forward prices fixed, we then solve (10) for the arbitrage-free first 

forward price *
1,1s  ,  

(12) [ ]

( ) ( )

*
1,1

1 1
12 2 1

1T T T

NUM

Y k Y Y k

s
ρ

ρ α
α

+
+− −

=
⎡ ⎤⎛ ⎞⎛ ⎞− + +⎢ ⎥⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦

E

E

, 



  11 

 

where 

(13) 

( ) ( )( ) [ ]

( )( )

( ) ( )

1,2 1 1, 1 1, 0,
2

1,2 2,2 1 2,

2,1 1 1
11 .

1

J

T j j T j T
j

T T

T T T

NUM s Y k s s Y k C

s s Y k X

s Y k Y Y kα
α

++
+

=

+

+
+

= − + − − −

+ − − +

⎡ ⎤⎛ ⎞⎛ ⎞+ − − − + −⎢ ⎥⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦

∑

 

 

Statics 

To test Nourse’s (1992) competitive yardstick hypothesis, we want to know how the 

cheating option value changes as market competition intensifies, that is, as the forward 

price offered by the IOF is driven up by either a rival cooperative, collective bargaining, or 

competing IOF’s.  Because cheating exploits price differentials between contracts, forces 

that increase these differentials, such as IOF competition, enhance the value of cheating.  

To formalize this, consider the non-trivial case, in which at least some cheating occurs and 

the IOF contract accepts some delivery, 1,kα > 0.  Also, let the expected terminal yield is 

not zero, [ ]TYρE > 0.  Under these conditions, we provide our central claim: 

Claim:  The value of the cheating option increases as market competition 

intensifies: 

(14)  
( )

2,1

0,TZ
s

α∂ ⎡ ⎤⎣ ⎦ >
∂

V
 

where 2,1s  is the IOF forward price, 1,kα > 0, and [ ]TYρE > 0. 
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The proof is provided in the appendix and follows directly from the first order 

condition 

(15) 
( ) ( ) ( )( )( )1 1

2,1

1T
T T T T

Z
Y Y k Y k

s
ρα

β α α
++∂ ⎡ ⎤⎣ ⎦ ⎡ ⎤= + − − + −⎢ ⎥⎣ ⎦∂

V
E . 

We illustrate the values of this condition over a range of cheating and threshold levels in 

the results section. 

 We are also interested in how two other economic forces affect the value of the 

cheating option:  technical innovation and maturing capital markets.  Technological 

innovation, such as GMO crops, improves agricultural productivity, leading to higher 

yields or reduced production volatility or both.  Interestingly, neither the Black-Scholes 

(1973) nor the Björk (1998) valuation models are a function of the “native drift,” that is 

the rate of increase in yield over time.  Both depend on the synthetic drift term to obtain 

arbitrage-free derivative values.  Thus, yield-enhancing innovation does not affect the 

value of the option to cheat, ceteris paribus.  Techological innovation that reduces yield 

volatility, however, have an important impact on the value of yield-based derivative 

options.  In the results section, we will examine derivative of the value of cheating with 

respect to yield volatility, as given by 

(16) 
( )TZ α

σ
∂ ⎡ ⎤⎣ ⎦

∂

V
. 

 Finally, as capital markets mature, interest rates tend to fall and risk premiums 

narrow.  The cooperative is uniquely suited to raise equity in thin capital markets, due to 

its ability to retain equity from member patronage (Cross and Buccola, 2004).  We are 
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therefore interested in cheating option values as interest rates and risk premiums decrease.  

If the value of cheating also wanes as capital markets mature, the following first order 

condition will hold: 

(17) 
( )

0TZ α
ρ

∂ ⎡ ⎤⎣ ⎦ >
∂

V
. 

This condition is also illustrated in the results section. 

 

Estimation Methods 

Because no convenient analytical expression exists for the density of the arithmetic 

average of log-normal random variables (Kemna and Vorst, 1990), we employ standard 

Monte Carlo Integration (Boyle, Brodie, and Glasserman, 1997), which is consistent, 

asymptotically normal, and accurate to an arbitrary level depending on the number of 

draws m (Campbell, 1997). 

 

Data 

To illustrate the value of the cheating option, both from the grower and cooperative 

perspective, we begin with the arbitrage-free market of Cross, Buccola, and Thomann 

(2006).  This market corresponds to the missing asset market, in which cooperative and 

IOF processors each contracted processing tomatoes under one of two standardized 

variable delivery claims.  Tri Valley Growers, the large and now defunct cooperative 

processor, competed with a number of large investor-owned rivals, including Hunts, 

Heinze, Ragu, Campbell’s, and others.  We consider the 20-year period from 1977 to 
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1996 when financial difficulties at Tri Valley became widely known, and utilize both raw 

data and estimated model parameters from this study. 

IOF forward prices are published by the California Tomato Growers Association 

(1977-2001).  These prices, along with Tri Valley Grower’s arbitrage-free forward price 

estimates with and without cheating are illustrated in figure 5 in the results section.  All 

value terms are expressed in constant 2005 dollars adjusted using the Consumer Price 

Index (CPI) as published by the Bureau of Labor Statistics. 

Kern County yield data and delivery threshold estimates are illustrated below in 

figure 4 over the 20-year study period.  Yield volatilityσ  was estimated to be 0.1849, 

resulting in a market price of risk estimate of $0.32 per unit of volatility.  This premium is 

added to the risk free interest rate to obtain synthetic drift parameters.  The 3-month U.S. 

Treasury index is used for the risk-free rate.  It averaged 7% and ranged from a high of 

14% in 1981 to a low of 3% in 1993. 

(figure 4 here) 

Arbitrage-free farm production costs parameters are estimated from studies 

published by the University of California Cooperative Extension Service (UCCES) 

(Valencia, et al, 2002a, 2002b).   

For illustration, we use a cheating magnitude of α  = 0.10, except where 

otherwise stated.  Interviews with cooperative managers suggest that actual shifting 

varied widely across members and over time, based on changing market conditions and 

cooperative enforcement policy. 
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Results 

The introduction of the cheating option reduces the aribtrage-free cooperative forward 

price by 6.7% on average or $5.60 per ton, with a high of 8.5% in 1990 and a low of 

3.8% in 1994.  Figure 5 below illustrates cooperative prices with and without cheating 

along with IOF forward prices for comparison. 

(figure 5 here) 

 Average deliveries and delivery volatilities are illustrated for the cheating and 

non-cheating case in figure 6 below.  We note two key implications:  First, average 

deliveries increase under cheating for both the cooperative and IOF contracts.  Deliveries 

to the IOF processor increase because of fewer contract shortfalls.  Cooperative deliveries 

increase because growers shift produce from the IOF contract to the cooperative in years 

of surplus.  Second, cheating increases delivery volatility for the cooperative, shifting 

volatility away from the IOF processor.  A close look at the two contracts with no 

cheating suggests why the additional liquidity provided by a formal shifting mechanism 

may be Pareto improving.  The basic design of the IOF contract, with no cheating, 

already leads to more stable, targeted deliveries at higher per-unit costs (forward prices).  

This is consistent with the expectations of the more stable, higher-value, branded output 

markets served by Hunts, Heinz, Ragu, Campbell’s, and other IOF’s.  By contrast, the 

cooperative contract, with no cheating, leads to higher volatility and lower per-unit costs 

(forward prices), consistent with the needs of the lower-value, commodity-style markets 

served by Tri Valley Growers.  Cheating strengthens the relative differences between the 

two contracts, reducing shortfalls for the IOF processor and providing a home for 
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cooperative member produce.  These improvements cause no additional per-unit costs to 

the IOF and lower per-unit costs to the cooperative. 

(figure 6 here) 

The extent to which competitive pressure enhances the value of cheating is 

expressed by first order condition (14).  The higher this value, the greater the 

enhancement.  This condition is clearly dependent on two parameters of interest: the 

potential degree of cheating α  and the IOF delivery threshold 1k .  As illustrated in figure 

7 below, the first order condition is everywhere positive and increasing in both variables. 

(figure 7 here) 

 This raises the question of why the IOF processor would not enter the 

commodity-style output market, thereby internalizing the shifting mechanism and 

eliminating a competitor.  One factor could be return-on-equity.  Publicly-traded IOF’s 

achieved significantly higher and more stable net returns than did Tri Valley Growers 

during the study period (Cross and Buccola, 2004).  Returns in the commodity-style 

markets may appear unattractive to IOF’s.  Tri Valley Growers attempted at one point to 

enter the higher-value branded market, investing heavily in an unsuccesful branded 

product line (Hariyoga, 2004).  To the extent that crossing competitive lines is either 

unattractive or costly, the shifting mechanism remains a cooperative-provided service to 

the market. 

Our last graph, figure 8, shows that maturing capital markets depress the value of 

cheating.  Moving along the x-axis labeled ρ  in figure 8, as interest rates fall the value of 

cheating decreases for all levels of volatility.  The impact of volatility-reducing 
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technological innovation, however, is interest rate dependent.  For high levels of ρ , 

innovation enhances the value of cheating.  For lower values of ρ , by contrast, cheating 

values decline as volatility ebbs.  This result is reasonable, given the fact that higher 

returns are required when interest rates and risk-premiums are high. 

(figure 8 here) 

 

Conclusion 

This article extends the VDC framework (Cross, Buccola, Thomann, 2006) to the 

problem of crop shifting, an age-old problem, encouraged by cooperative social norms, 

discouraged by fair-minded managers, lenders, and retired members.  We found the 

fairly-priced shifting provision to be Pareto-improving, transforming the cooperative 

from IOF-adversary to beneficial partner.  The cheating-option increases grower net 

returns, lowers cooperative per-unit costs, and avoids IOF production shortfalls at no 

additional per-unit cost to the IOF.  Because equity returns may be lower for member-

owned firms than for investor-owed firms, traditional and new-generation cooperatives 

are equally well-suited to provide this option.  Finally, we showed that as market 

competition proliferates, the value of cheating option increases, as shifters exploit 

widening forward price differentials.   
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Appendix to Cooperation and Cheating 

General formula for the option to cheat 

The cheating payoff ( )TZ α  from equation (5) can be expressed as functions of the 

cheating limit α +∈ℜ  and terminal yield TY , as follows:  

(A.1) ( ) ( ) ( ) ( )1 2 3TZ F F Fα α α α= + + , 

where 

(A.2) ( )
,1

1

1 1, 2,
1

1
T j

J

j j T Y D
j

F s s Yα α
+

⎡ ⎤∈⎣ ⎦=

= −∑  

(A.3)  

( )
( )( ) ( )( )

( )( ) ( )( )
,2

1, 2, 1, 1 2,1
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Here, the cheating payoff takes on values over three region-types Dj,1, D j,2, and D j,3,  j = 

1,…,J, corresponding to intervals of the terminal yield domain, as follows:  
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(A.5) 
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Figure 3 illustrates each of the three region types.Regions Dj,1,  j = 1,…,J, 

correspond to terminal yield values that lie between contract thresholds, such that no 

thresholds jk  lie within the interval ( )1 TYδ+  for any possible value of [ ],δ α α∈ − .  

Regions D j,2 correspond to terminal yield values just below the thresholds jk , such that 

( )1 TYα+  reaches or exceeds the threshold.  Finally, regions D j,3 correspond to terminal 

yield values just above the thresholds jk , such that ( )1 TYα−  reaches or exceeds the 

threshold.   

 

Proof of the claim 

From the identity in (15), the claim is true, if the following inequality holds: 

(A.7) ( ) ( )( )( )1 11 0T T T TY Y k Y kρ β α α
++⎡ ⎤+ − − + − >⎢ ⎥⎣ ⎦

E . 

Passing the expectation through, we will show directly that 

(A.8) [ ] ( ) ( )( )1 11 0T T TY Y k Y kρ ρα α
++⎡ ⎤+ − − + − >

⎣ ⎦
E E . 

The relationship is equality if eitherα  or 1k  is zero.  Therefore, let 1,kα > 0.  Expressing 

the conditional expectation operator as an integral, the LHS of (A.8) is 
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(A.9) ( ) ( )( )1 1( ) ( ) ( ) ( ) 1 ( ) ( )T T TY z z dz Y z k z dz Y z k z dzα ϕ ϕ α ϕ
∞ ∞ ∞

++

−∞ −∞ −∞

+ − − + −∫ ∫ ∫ , 

where 0( ) e z
TY z Y ρ σ+= , ( )zϕ is the standard normal density, 0Y  is a positive constant, and 

21
2ρ ρ σ= − .  Changing the limits of integration, we obtain 
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z z
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where 1 0
0

ln( / )k Yz ρ
σ

−
= , and 1 0ln( /(1 ) )k Yzα

α ρ
σ
+ −

= .  Changing the limits of 

integration again and canceling terms, we can rewrite our derivative  

(A.11) ( ) ( )
0

1( ) ( ) ( ) ( )
z z

T T
z

Y z z dz Y z k z dz F
α

α

α ϕ ϕ α
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− − ≡∫ ∫ . 

Note that for 0z z zα ≤ ≤ , 1 0 e zk Y ρ σ+> .  So, ( ) 0F α > , verifying our claim. 
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1 The contracts of interest are defined by convex contract payoffs 1,1 1,2 2,1 2,2,s s s s≤ ≤  and  

the relative price relationships illustrated in figure 1, specifically, 1,1 2,1 1,2 2,2,s s s s≤ ≥  and 

1,1 2,2 1,2 2,1,s s s s≥ ≤ . 
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Figure 1:  Simplified cooperative and IOF contract payoffs over a range of terminal yield values 
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Figure 2:  Payoff from the sum of a cooperative and IOF contract over a range of terminal yield values 
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Figure 3:  Payoffs for the cheating portfolio, the cooperative and IOF contracts, and the option to cheat 
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Figure 4.  Kern County tomato yields and contract thresholds ( 1k ), 1977-1996 
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Figure 5.  Investor-owned forward prices vs. cooperative forward prices – with and without cheating, 1977-1996 
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Figure 6.  Average delivered tons and delivery volatility from 1977 to 1996 by type of forward contract 
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Figure 7:  Condition values over a range of cheating and threshold levels 
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Figure 8:  Cheating option values over a range of volatility and drift levels  




