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1 Introduction

Stochastic production frontier analysis has been widely used to study technical efficiency

in various settings since its introduction by Aigner et al. (1977), and Meeusen and van den

Broeck (1977). The approach has two components: a stochastic production frontier serving

as a benchmark against which firm efficiency is measured, and a one-sided error term which

has an independent and identical distribution across observations and captures technical

inefficiency across production units. Recent studies have generalized the one-sided error

term to allow its distribution to be heterogeneous by associating various features of the

distribution with firm characteristics (see Battese and Coelli 1995; Caudill et al. 1995;

Wang 2002; Wang 2003).

Allowing inefficiency to depend on firm characteristics enables researchers to examine the

determinants of inefficiency, and to suggest policy interventions to improve efficiency. How-

ever, many policy suggestions in the previous literature have been limited for at least two

reasons. First, little is known about how to choose among competing models of efficiency, or

the implications of model choice on estimation results. Second, past studies on production

efficiency have mostly focused on the directions of the influence of the exogenous factors

on efficiency level while the magnitudes of the partial effects have often been overlooked.

This is surprising given that the magnitudes of the effects of the explanatory variables on

dependent variables are often the focal point in other regression analyses.

In this paper, we make three contributions to the stochastic frontier literature. First, we

show how to estimate the quantitative magnitude of the partial effects of exogenous factors

on output levels and how to put standard errors on these partial effects. We also propose an

R2-type measure to summarize the overall explanatory power of the exogenous factors on

inefficiency. Second, we examine the effects of model selection on the empirical results. We

find that different models can lead to rather different magnitudes of the partial effects of the
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exogenous factors. Others have also found that different models give different parameter

estimates, which is on the face of it an unsurprising finding. Third, we show how a recently

developed model selection procedure (Alvarez, Amsler, Orea and Schmidt, 2006, hereafter

AAOS) can be used to choose among the competing models, and we use bootstrapping

to provide evidence on the power of this procedure. The model selection procedure gives

an unambiguous choice of best model. This is important because, if different models give

different results and we cannot distinguish statistically among the models, we do not know

which set of results to believe; whereas, if we can pick a clearly best model, it does not

matter whether other models give different results.

Our empirical analysis is on maize production in Kenya. The problem of hunger in Kenya

remains widespread. Ranked 159th out of 177 countries in the world in terms of GDP per

capita, about 59 percent of the population in Kenya earned less than 2 dollars per day

in 2002.1 Kenya’s economy heavily depends on agriculture with 75 percent of Kenyans

making their living from farming. Maize is the primary staple food and most farmers are

engaged in maize production in Kenya. In recent years, total maize output has not kept

pace with the growing population and demand, largely due to falling land productivity:

average national maize yields have fallen from over 2 tons per hectare in the early 1980’s

to about 1.6 tons per hectare recently (Nyoro et al. 2004).

In order to alleviate poverty and achieve food security in Kenya and other Sub-Saharan

countries, it is important to identify and quantify the factors that hinder farm efficiency in

maize production. Taking advantage of a detailed household survey in Kenya, we investi-

gate determinants of productivity and inefficiency using stochastic frontier analysis. The

variables used to explain inefficiency in our analysis are related to education background of

the household, rural infrastructure, land tenure, credit constraints faced by the household,

1Human Development Report 2004 by United Nations Develop Programme (UNDP).
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and farm size. These explanatory factors go well beyond those used to study production

inefficiency in other studies of agriculture (see Kumbhahar et al. 1991; Huang and Kalira-

jan 1997; Alvarez and Arias 2004).

In the remainder of the paper, we first review the stochastic frontier production model

commonly used in the literature. In section 3, we describe our data and variables used

in the empirical analysis. Section 4 presents the estimation results from different model

specifications. In section 5, we carry out specification tests to choose our final model. A

novel detail is that we use the bootstrap to examine the reliability of these specification

tests in choosing the correct model. Section 6 is an analysis of technical efficiency in maize

production in Kenya based on the final model. Conclusions then follow.

2 A Stochastic Production Frontier Model

We now present a basic stochastic frontier production function. We examine the partial

effects of exogenous factors and propose a measurement similar to R2 to summarize the

explanatory power of the exogenous factors on inefficiency levels. After that, we review

several existing specifications of the one-sided error term in stochastic frontier analysis.

2.1 Basic Setup

The basic setup and notation follow Wang and Schmidt (2002) and AAOS. Fields are

indexed by i = 1, . . . , N . Let yi be the log output; xi be a vector of inputs; and zi be

a vector of exogenous variables that exert an influence on farm efficiency. Let y∗i be the

unobserved frontier which is denoted as

y∗i = x′
iβ + vi, (1)

where vi is distributed as N(0, σ2
v) and is independent of xi and zi. The actual output

level yi equals y∗i less a one-sided error, ui, whose distribution depends on zi. The model is
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written as

yi = x′
iβ + vi − ui(zi, θ), ui(zi, θ) ≥ 0, (2)

where θ is a vector of parameters. It is assumed that ui and vi are independent of each

other, that conditional on zi, ui is independent of xi, and that vi is independent of xi and

zi. The frontier function itself and the inefficiency part are generally estimated in one step

using maximum likelihood estimation (MLE) to achieve both efficiency and consistency.2

Indexing exogenous factors with k = 1, . . . , K, we take expectations conditional on xi and

zi, and then take partial derivatives with respect to zik on both sides of equation (2), to

get

∂[E(yi|xi, zi)]/∂zik = ∂[E(−ui|xi, zi)]/∂zik. (3)

Here, ∂[E(−ui|xi, zi)]/∂zik can be interpreted as the partial effect of zik on efficiency −ui,

and can also be interpreted as the partial effect on yi. Because yi is the log output,

∂[E(−ui|xi, zi)]/∂zik is the semi-elasticity of output with respect to the exogenous factors,

i.e., the percentage change in expected output change when zik increases by one unit.

Similarly, we have

∂[V (yi|xi, zi)]/∂zik = ∂[V (ui|xi, zi)]/∂zik. (4)

So ∂[V (ui|xi, zi)]/∂zik is the partial effect of zik on the variance of both the inefficiency

term ui and log output. It can be interpreted as an estimator of the partial effect of zik on

production uncertainty.

2Some studies use a two-step procedure where the frontier function is estimated first, and then the inef-

ficiency term is regressed on exogenous variables in the second step. This procedure, however, suffers bias

for two reasons. The first and more obvious reason is the possible correlation between the input variables

in the frontier function and the variables in the inefficiency term. The second reason is that the inefficiency

term from the first step is measured with error and the error is correlated with the exogenous factors. See

Wang and Schmidt (2002) for an extensive discussion and evidence from Monte Carlo experiments.
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Wilson et al. (2001) are among the first to search for an estimator of the partial effects of ex-

ogenous factors on technical efficiency. They suggest ∂E[exp(−ui)|zi, εi]/∂zik. However, we

regard E[exp(−ui)|zi, εi] as an estimate of inefficiency, and we are interested instead in the

effect of zi on inefficiency or average inefficiency. That is, we are interested in the effect of zi

on exp[−ui(zi, θ)] or E[exp(−ui(zi, θ))], which motivates the expression given in equation

(3) above. The measures ∂[E(ui|xi, zi)]/∂zik and ∂[V (ui|xi, zi)]/∂zik were first proposed

and used in Wang (2002) and Wang (2003), but for different purposes than they are used

here. Here, we interpret ∂[E(−ui|xi, zi)]/∂zik as the semi-elasticity of output with respect

to exogenous factors so that not only its sign but also its magnitude are of economic in-

terest. We also provide formulas to compute valid standard errors for ∂[E(−ui|xi, zi)]/∂zik

and ∂[V (ui|xi, zi)]/∂zik using the delta method in several model specifications as described

below.

It will often be useful to measure how well the vector of exogenous factors, z, explains

inefficiency, u. Surprisingly, this has not be addressed in the previous literature. We

suggest a statistic R2
z, to summarize the explanatory power of z. The variance of the

inefficiency term u can be decomposed as

V (u) = Vz[E(u|z)] + Ez[V (u|z)]. (5)

The fraction of variation in u that is explained by z is Vz [E(u|z)]
V (u)

. Thus a natural measure

of explanatory power would be

R2
z =

∑n
i=1

[
Ê(ui|zi)− 1

n

∑n
i=1 Ê(ui|zi)

]2
∑n

i=1

[
Ê(ui|zi)− 1

n

∑n
i=1 Ê(ui|zi)

]2
+
∑n

i=1
̂V (ui|zi)

. (6)

Similarly to R2 in an ordinary least squares regression, R2
z can be called the goodness of

fit of the efficiency component, and it can be interpreted as the fraction of the sample

variation in u that is explained by z.
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2.2 Alternative Model Specifications

In the original specification of stochastic frontier functions, Aigner et al. (1977) and

Meeusen and van den Broeck (1977) assumed an identical and independent half-normal

distribution for the one-sided error terms ui. Subsequent studies have generalized the

model to allow for heterogeneity in the distribution of the inefficiency term. We will con-

sider models in which the distribution of ui is truncated normal. Kumbhakar et al. (1991),

Huang and Liu (1994) and Battese and Coelli (1995) allow the mean of the pre-truncation

normal distribution to depend on a set of exogenous factors. Reifschneider and Stevenson

(1991), Caudill and Ford (1993), Caudill et al. (1995) and Hadri (1999) allow exogenous

factors to affect the variance of the pre-truncation normal distribution. Wang (2003) allows

both the mean and the variance to depend on exogenous factors.

Regardless of whether we parameterize the mean or the variance of the pre-truncated nor-

mal, both the mean and the variance of the truncated normal will depend on the exogenous

factors. These are sometimes called models of heteroscedasticity, but the fact that the mean

also changes makes this choice of words potentially misleading. Whereas heteroscedasticity

affects only the efficiency of estimation in the usual linear model, in a stochastic frontier

model with heterogeneity, failure to model the exogenous factors leads to biased estimation

of the production frontier model and the level of technical inefficiency, hence leading to poor

policy conclusions (e.g. Caudill and Ford 1993, Caudill et al. 1995, Hadri 1999, Wang 2003).

With different specifications available to model heterogeneity, it is unclear which should

be chosen in an empirical analysis. The choices made in many past studies seem to be

somewhat arbitrary. However, a carefully specified model might help to increase estima-

tion efficiency and remove sources of bias and inconsistency (Wang 2003). Moreover, there

has been little investigation on the difference in estimation results from various specifica-

tions which allow for heterogeneity. In order to deal with the model specification problem,
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researchers usually do sensitivity analysis using competing models. But if the competing

models give very different results, it is difficult to pick one and discard the others. Wang

(2003) treats this problem by specifying a flexible model. However, a more flexible model

incorporates more parameters, which impose a higher computational burden and reduce

degrees of freedom. Given that large samples are typically difficult to obtain in stochastic

frontier models, some relevant parameters may be estimated imprecisely in flexible model

forms.

AAOS suggests a procedure that helps to specify a proper model for the one-sided error

term. First, assume the general model of inefficiency (Wang 2003) in which ui is distributed

as N(µi, σ
2
i )

+, with µi = µ · exp(z′iδ) and σi = σu · exp(z′iγ). This general model nests

several simpler models, many of which have been used in previous studies. In particular,

the following six models are special cases of the general model.

1. Scaled Stevenson model: Let δ = γ. Then the distribution of ui becomes exp(z′iδ) ·

N(µ, σ2
u)

+, which is used in Wang and Schmidt (2002) and discussed by Simar et al.

(1994).

2. KGMHLBC model: Let γ = 0. Then the distribution of ui becomes N(µ·exp(z′iδ), σ
2
u)

+,

which has been considered in Kumbhakar et al. (1991), Huang and Liu (1994), and

Battese and Coelli (1995).

3. RSCFG-µ model: Let δ = 0. Then the distribution of ui becomes N(µ, σ2
u·exp(2z′iγ))+.

4. RSCFG model: Let µ = 0. Then the distribution of ui becomes exp(z′iγ) ·N(0, σ2
u)

+,

which is considered in Reifschneider and Stevenson (1991), Caudill and Ford (1993),

and Caudill et al. (1995).

5. Stevenson model: Let δ = γ = 0. Then the distribution of ui becomes N(µ, σ2
u)

+,

which is the model of Stevenson (1980).

7



6. ALS model: Let µ = γ = 0. Then the distribution of ui becomes N(0, σ2
u)

+, which is

the model of Aigner et al. (1977).

Among the six models, the scaled Stevenson, KGMHLBC and RSCFG-µ models have the

same number of parameters. The RSCFG model is nested by the scaled Stevenson model

and the RSCFG-µ model. Notice that the Stevenson model and the ALS model do not

contain any variables (zi) that influence the distribution of inefficiency. AAOS show how

to use likelihood ratio (LR) tests, LM tests and Wald tests to test the above restrictions,

and hence to choose a plausible model for inefficiency.

3 Data

In this section, we first discuss our data sources for the analysis of maize production in

Kenya. We then describe the variables used in the frontier production function and the

inefficiency term.

3.1 Data Source

The data are from a rural household survey of about 1100 households that planted maize

in the main season of 2003-2004 in Kenya.3 The survey was designed and implemented

under the Tegemeo Agricultural Monitoring and Policy Analysis Project, a collaboration

among Tegemeo Institute of Egerton University, Michigan State University, and the Kenya

Agricultural Research Institute. Field level data are available and some households planted

maize in more than one field. The survey includes not only detailed field production in-

formation but also rich demographic and infrastructure characteristics of each household.

The production data for each field include size of field, yield, labor input associated with

each type of planting activity, fertilizer application and seed usage. The demographic infor-

3See Suri (2005) for a study of the adoption decisions of hybrid seed by maize producers in Kenya using

the same data set.
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mation for each household includes the age, gender and education level of each household

member; how far a household is from a bus stop, a motorable road, a telephone booth,

mobile phone service, and extension service; whether a household member has non-farming

income; whether a household receives loans; how much land a household owns, and land

tenure. Rainfall and soil quality data are also available at the village level.

3.2 Variables in the Production Frontier

In the production frontier part of the model, the output variable is maize yield per acre, and

the input variables are applied fertilizer nutrients, labor, maize seeds and machine usage.

Since both the output and inputs are in per acre terms, land is not explicitly included as

an input. Most of the maize fields are inter-crop fields where more than one type of crop is

planted in the same season. Because most inputs (land, fertilizer and labor) are at the field

level and cannot be separately allocated to maize production only, we generate an output

index for inter-crop fields using:

Yi =

(∑
j

YijPj

)
/P1, (7)

where Yi is the output index, Pj is the market price of crop j, Yij is the yield of crop j

in field i, and crop 1 is maize. The fields with more than three types of crops are deleted

because we want to focus on the fields where maize is the major crop.4 Only pre-harvest

labor input is included because harvesting and post-harvest activities have little effect, if

any, on yield. The unit of labor is person-hours. One person-hour of labor from children

younger than 16 is transformed to 0.6 person-hours of adult labor. Nitrogen, the most

important nutrient in maize growth, is computed from fertilizer application data according

to the quantity and composition of each type of fertilizer used.5 The maize seeds can be

grouped into hybrid seeds and local seeds. Hybrid seeds are more productive and more

4637 out of the total 1718 fields are dropped.
5More than 20 types of fertilizers were applied.
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expensive than local ones. Ideally we would want to generate a maize seed quantity index

for inter-crop fields as in the case of maize yield, but we do not have good seed price data.

We use a dummy variable MONO as an indicator for mono-crop fields. Tractor usage

in land preparation is the only machine used for pre-harvest activities. This is captured

by a dummy variable TRACTOR with 1 indicating that a tractor was used and 0 otherwise.

Besides inputs, some environmental variables are included on the right hand side of the

frontier production function. Failure to control for environmental variables may cause a

correlation between yield and some inputs (for example, if a farmer makes input decisions

based on some soil properties that also affect maize yield) and therefore may bias estimates

of the production frontier and inefficiency level (Sherlund et al. 2002). In order to con-

trol for environmental conditions, we include eight dummy variables indicating different

zones. Farms in the same zone share similar terrain and climate conditions. We also in-

clude three village level variables: DRAINAGE, DRAINAGE2 and STRESS. DRAINAGE

captures the drainage property of the soil. It is a categorical variable ranging from one to

10 where one indicates the least and 10 the highest drainage. DRAINAGE2 is the square

of DRAINAGE. We include a quadratic term because yield increases in DRAINAGE at

lower drainage levels and decreases at higher drainage levels. Rainfall is a very important

factor in maize production in Kenya, because all of the maize fields are rain-fed fields, and

drought is the usual cause of yield loss. We use a variable STRESS to capture the mois-

ture stress in maize growth. STRESS is computed as the total fraction of 20-day periods

with less than 40 millimeters of rain during the 2003-2004 main season. This is a better

measure for moisture condition than total rainfall in that the total rainfall does not reflect

the distribution of rainfall over time which is very important in maize growth.

Observations with missing values are discarded. Out of concern for large measurement

errors, we also drop any observation that satisfies one of the following conditions: 1) yield
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lower than 65 kg per acre or higher than 4580 kg per acre, 2) seed usage less than two

kg per acre or more than 20 kg per acre, and 3) labor input less than 40 person-hours

per acre or more than 2200 person-hours per acre. After these adjustment, there are 815

fields (observations) remaining.6 The 815 fields were managed by 660 households. Table 1

summarizes the descriptive statistics for the variables included in the frontier production

function (excluding zone dummies).

[INSERT TABLE 1 ABOUT HERE]

3.3 Exogenous Factors Affecting Efficiency

Previous studies have identified numerous factors that limit farm productivity and effi-

ciency. Education is arguably an important factor that affects productivity and efficiency.

Kumbhakar et al. (1989) suggest that education increases the productivity of labor and

land on Utah dairy farms while Kumbharkar et al. (1991) also show that education affects

production efficiency. Huang and Kalirajan (1997) find that average household education

level is positively correlated with technical efficiency levels for both maize and rice produc-

tion in China.

Physical and social infrastructure, such as road conditions, access to telephone and mobile

phone service, access to extension service, etc., have also been mentioned for their role in

rural development and farm productivity. Jacoby (2000) examines the benefits of rural

roads to Nepal farms and suggests that providing road access to markets would confer sub-

stantial benefits through higher farm profits. Karanja et al. (1998) show that distance to

the nearest motorable road and access to extension services have positive effects on maize

productivity in Kenya. More developed infrastructure helps farmers to obtain more infor-

mation and thus may improve technical efficiency.

6That is, 266 fields are dropped due to missing or unreasonable values.
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Land tenure is another element that affects farm performance. Secure tenure may induce

more investment (such as soil conservation) and increase farm productivity in the long run.

Place and Hazell (1993) suggest tenure to be important to investment and productivity in

Rwanda. Puig-Junoy and Argiles (2000) show that farms with a large proportion of rented

land have low efficiency in Spain.

Financial constraints, such as limited access to credit, might affect farm input decisions and

efficiency. Ali and Flinn (1989) show that credit non-availability is positively and signifi-

cantly related to profit inefficiency for rice producers in Pakistan. Parikh et al. (1995) find

that farmers with larger loans are more cost efficient in Pakistan. The effect of financial

constraints on technical efficiency seems to be unexamined. This effect may exist because,

besides the quantities of input used, the timing of input usage is also important in affect-

ing yields. The farms that face financial constraints may not be able to optimize production.

The inverse relationship between farm productivity and farm size has been a long-standing

empirical puzzle in development economics since Sen (1962) (see Benjamin 1995; Barrett

1996; Lamb 2003). The empirical results have been mixed on the relationship between effi-

ciency and farm size. Kumbahakar et al. (1991) show that large farms are relatively more

efficient both technically and allocatively. Ahmad and Bravo-Ureta (1995) find a negative

correlation between herd size and technical efficiency, while Alvarez and Arias (2004) find

a positive relationship between technical efficiency and size of Spanish Dairy farms. Huang

and Kalirajan (1997) show that the size of household arable land is positively related to

technical efficiency in maize, rice and wheat production in China. Parikh et al. (1995) find

that cost inefficiency increases with farm size. Hazarika and Alwang (2003) show that cost

inefficiency in tobacco production is negatively related to tobacco plot size but unrelated

to total farm size in Malawi.
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The household survey discussed above allows us to investigate all of the above exoge-

nous factors simultaneously. We group the exogenous variables into five categories: 1)

socio-economic variables including the highest education level among the household mem-

bers (EDUHIGH) and gender of household head (FEMHEAD);7 2) infrastructure variables

including how far a house is from the nearest bus stop (DISTBUS), from telephone or

mobile-phone service (DISTPHONE) and from extension service (DISTEXTN);8 3) land

tenure, which is a dummy variable (OWNED) with 1 indicating that the field is owned by

the household and 0 that the field is rented; 4) credit constraints including two variables:

CRDCSTR and RNFINC, where CRDCSTR is a dummy variable with 1 indicating the

household has unsuccessfully pursued credits and 0 otherwise. RNFINC is the proportion

of household members that have non-farming income; and 5) size variables including farm

size (TTACRES) and field size (ACRES). Table 2 summarizes the notation and descriptive

statistics for these exogenous factors.

[INSERT TABLE 2 ABOUT HERE]

4 Estimation Results From Competing Models

In this section, we report the estimation results for various model specifications. We start

with the flexible translog functional form for the frontier production function, and we in-

teract moisture stress and the dummy of hybrid maize seed with inputs out of the concern

that they may affect the output elasticities.

7EDUHIGH can capture the effects of eduction on efficiency for a household better than the average

education level or the education level of the household head, in that the one who receives the highest

education can help the household head and the other household members in making production decisions.
8We use DISTBUS instead of how far a household is from a motorable road, because only a very small

proportion of the households in Kenya own motorable transportation tools (like tractors), and bus and

bicycles are the major transportation tools there.
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There are 29 parameters in the frontier production function. If we use the AAOS general

model, there are 23 parameters in the error term εi. The total dimension of the param-

eter space is 52. Even for the simpler models, such as the scaled Stevenson model, the

KGMHLBC model, and the RSCFG model, the dimension is still large (42 parameters).

To maximize a likelihood with such a high dimension can be computationally difficult given

the complexity and non-regularity of our likelihood function. We do not want to reduce

the dimension of the exogenous factors under investigation, neither do we want to sacrifice

the flexibility of the efficiency model. Instead of taking a less flexible frontier production

function, such as Cobb-Douglas, we follow a three-step procedure to drop some unneces-

sary (statistically insignificant) variables. The details of this procedure are given in the

appendix of Liu (2006). The following analysis is based on a reduced set of explanatory

variables in the frontier production function and a reduced set of exogenous factors.

Table 3 reports the estimation results of the efficiency component for all of the five mod-

els that allow efficiency to depend on farm characteristics. Both the LR test and Wald

test reject the null hypothesis that all the exogenous factors have zero effect at the 1%

significance level in each of the five models.

[INSERT TABLE 3 ABOUT HERE]

All the five models yield similar results for production frontier and efficiency estimates,

consistent with previous studies (e.g. Caudill et al. 1995). Table 4 reports the estimation

results of the production frontiers.9 The parameter estimates are very similar in the differ-

ent models. The Battese and Coelli efficiency estimates are computed for each observation

in all the models. Their correlations among alternative models are reported in table 5. The

lowest correlation is 0.97.

9The production frontiers are estimated together with their efficiency components, though reported

separately.

14



[INSERT TABLE 4 ABOUT HERE]

[INSERT TABLE 5 ABOUT HERE]

The coefficients of the exogenous factors reported in table 3 are not very interesting by

themselves, because they are the parameters of the pre-truncated distribution of the ineffi-

ciency term ui. By themselves, these parameters do not tell us how the exogenous factors

affect the distribution of ui which is truncated. In order to quantify the effects of exogenous

factors, we compute ∂[E(−ui|xi, zi)]/∂zi and ∂[V (ui|xi, zi)]/∂zi for each observation. The

formulas for ∂[E(−ui|xi, zi)]/∂zi and its standard error for the general model are provided

in the appendix; while for ∂[V (ui|xi, zi)]/∂zi, the formulas are provided in the appendix

of Liu (2006). To obtain the formulas for the nested models, we only need to impose the

corresponding restrictions on the parameters.10

The partial effects of the exogenous factors evaluated at the sample mean and their standard

errors are reported in table 6. For each of the exogenous factors, the signs of the partial

effects are the same for all the models. However, different models give quantitatively

different values for the partial effects. For example, the partial effects of TTACRES on the

conditional mean of −u range from 0.0023 to 0.0072, and these differences are large relative

to the standard errors of the estimates.

[INSERT TABLE 6 ABOUT HERE]

Table 7 reports the average partial effects of EDUHIGH on E(−ui|xi, zi) for the observations

within each of the four quartiles of the efficiency levels estimated in the KGMHLBC model.

The KGMHLBC model shows an increasing trend of the partial effect of education on

efficiency levels from low to high quartiles, while the scaled Stevenson model, RSCFG-

µ model and RSCFG model suggest a decreasing trend.11 According to the KGMHLBC

10Wang (2002) gives the expression, for these derivatives but not for the standard errors.
11We observe similar patterns for the other exogenous factors. These results are not reported in order

to save space.
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model, we would conclude that the households with lower efficiency levels would not benefit

as much as the ones with higher efficiency levels from further investment in education.

However, an opposite conclusion would follow if we use the scaled Stevenson model, the

RSCFG-µ model or the RSCFG model.

[INSERT TABLE 7 ABOUT HERE]

Table 8 reports the correlations of partial effects of EDUHIGH on E(−ui|xi, zi) among

alternative models. Most correlations are very low and some are even negative.12 This

further confirms our conclusion that different models yield rather different partial effects.

Therefore, if we are only interested in the signs of the yield semi-elasticities with respect

to exogenous factors, model specification is not important. However, if we are interested

in the magnitudes of the yield semi-elasticities, it is important to choose the appropriate

model specification.

[INSERT TABLE 8 ABOUT HERE]

5 Model Selection

In this section, we apply the procedure proposed by AAOS to select an appropriate model

for our empirical application. A bootstrap analysis then follows to evaluate the performance

of the model selection procedure.

5.1 Empirical Model Selection

We start with the general model, and then use LR tests to find simpler models that the

data do not reject. We choose LR tests over Wald and LM tests because the LR statistics

12We observe similar patterns for the other exogenous factors. These results are not reported in order

to save space.
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are more stable numerically than the Wald and LM statistics.

Estimation of the general model yields a log-likelihood value of -616.30. Table 9 reports the

log-likelihood values for the six restricted models nested in the general model. Taking the

general model as the unrestricted model, we then test the restrictions that would reduce the

general model to simpler specifications. Based on LR tests (test statistics with Chi-squared

critical values are listed in table 9), we obtain the following results:

• We can reject the scaled Stevenson model (δ = γ), RSCFG-µ model (δ = 0), and

RSCFG model (µ = 0) at the 5% significance level.

• We fail to reject the KGMHLBC model (γ = 0) at any reasonable significance level.

• We can reject the Stevenson model (δ = γ = 0) and ALS model (µ = γ = 0) at any

reasonable significance level.

Because both the Stevenson model and ALS model are rejected, we conclude that the

exogenous factors do affect efficiency. Among RSCFG, RSCFG-µ, and scaled Stevenson

models, the RSCFG model is preferred because we fail to reject the RSCFG model at any

reasonable significance level using the RSCFG-µ model or the scaled Stevenson model as

the unrestricted model. Moreover, among all the models, the KGMHLBC model is most

preferred because it is the only one that we can accept at any reasonable significance level.

Therefore, we select the KGMHLBC model as our final model.

[INSERT TABLE 9 ABOUT HERE]

5.2 A Bootstrap Evaluation

The model selection procedure proposed by AAOS leads to one clearly preferred model,

the KGMHLBC model, among the set of competing models. It is encouraging to obtain

an unambiguous outcome. However, it is also relevant to ask about the reliability of the
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model selection criterion, which is a question of the size and power properties of the LR

tests. We investigate this question using the bootstrap. That is, we generate data via the

bootstrap assuming that the KGMHLBC model is correct, and then we see how reliably

the model selection procedure picks the KGMHLBC model. So far as we are aware this is a

novel suggestion. It is useful because we are using the bootstrap to evaluate the probability

with which the actual model selection procedure will pick the correct model.

The KGMHLBC model is written as

yi = x′
iβ + vi − ui, where ui ∼ N [µ · exp(z′iδ), σ

2
u]

+ and vi ∼ N(0, σ2
v). (8)

We take the following steps to conduct the parametric bootstrap:

1. Using the actual sample data {(yi, xi, zi)}n
i=1, we estimate the vector of parameters,

θ̂ = {β̂, δ̂, µ̂, σ̂2
u, σ̂

2
v}, in the KGMLBC model using MLE. These results were given

above.

2. Then we generate data sets based on the parameter estimates from step 1. For

i = 1, . . . , n, draw u∗
i from N [µ̂ · exp(z′iδ̂), σ̂

2
u]

+ and draw v∗i from N(0, σ̂2
v), and then

compute y∗ = x′
iβ̂ + v∗i − u∗

i .

3. Based on the pseudo-data {y∗i , xi, zi}n
i=1 generated in step 2, we estimate all of the

seven models using MLE. We obtain the log-likelihood value (ll) and parameter esti-

mates (θ̂) in each of the models, denoted as ζ∗ = {(ll∗j , θ̂∗j )}J
j=1, where j indexes the

different models.

4. Repeat steps 2 and 3 B times to obtain B = {ζ∗b }B
b=1.

13

We use the log-likelihood statistics in B to conduct the specification tests for each pseudo-

data set as in section 5. We take the general model as the unrestricted model and conduct

LR tests at the 5% significance level. The results are:

13We set B = 1000.
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• We reject the true model in 5.7% of the pseudo-data sets, the scaled Stevenson model

in 75% of the pseudo-data sets, the RSCFG-µ in 78% of the pseudo-data sets, and

the RSCFG in 75% of the pseudo-data sets.

• We reject both the Stevenson model and the ALS model in 99.9% of the pseudo-data

sets. That is, in only one of the 1000 data sets, we would wrongly conclude that the

set of exogenous factors do not affect efficiency.

• We accept the true model and reject all of the other models in 66.0% of the pseudo-

data sets. Only in 0.4% of the data sets, we reject the true model and accept an

alternative one at the same time.

• In 28.4% of the pseudo-data sets, we simultaneously accept the true model and at

least one of the alternative models. And we reject all of the models simultaneously

in 5.3% of the data sets.

We view these results as quite favorable. If the KGMHLBC model is correct, the model

selection procedure will reject it with small probability (6%), and will pick it unambigu-

ously with relatively high probability (66%).

The bootstrap results can be used to generate confidence intervals for any of our original

estimates. These confidence intervals may be more accurate in finite samples than those

generated by first order asymptotic approximations such as the delta method. For example,

we can use the parameter estimates of the KGMHLBC model in B to compute the partial

effects for every observation in each pseudo-data set. Confidence intervals then follow

directly from the set of B estimates. For example, with B = 1000, a 90% confidence

interval for a parameter ranges from the 50th to the 950th largest values of the bootstrap

estimates of that parameter. This is called the “percentile bootstrap”. Table 10 reports

90% percentile bootstrap confidence intervals for the partial effects in the KGMHLBC

model, evaluated at the sample mean. For purposes of comparison, it also gives the 90%
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confidence intervals based on the delta method (i.e. using the standard errors as given in

Table 6). The confidence intervals given by bootstrap and the delta method are not very

different. This confirms the reliability of the delta method.

[INSERT TABLE 10 ABOUT HERE]

6 Post-Estimation Analysis

This analysis is based on the results of our selected model, the KGMHLBC model. Table

11 reports output elasticity estimates for local seed users and hybrid seed users (with the

standard errors in the parentheses). The estimates are evaluated at the sample means.14

The sum of the output elasticities with respect to nitrogen fertilizer, labor, and seed quan-

tity is less than 1 (0.80 for local seed users and 0.74 for hybrid seed users). This does

not mean the technology is decreasing returns to scale because we are holding land input

constant by using yield per acre. Results show that yield is more responsive to nitrogen

fertilizer application and seed quantity but less responsive to labor for hybrid seed users

than for local seed users.

[INSERT TABLE 11 ABOUT HERE]

Figure 1 plots the density of the Battese and Coelli technical efficiency estimates. The

minimum efficiency level is 18% and the maximum is 98%. The mean of technical efficiency

is 71%, while the mode is around 80%. The distribution is left skewed.

[INSERT FIGURE 1 ABOUT HERE]

Goodness of fit statistic for the efficiency component, R2
z, is 0.1035, indicating that 10.35%

of the sample variation in efficiency can be explained by the exogenous factors. In table

14The means of FERTILIZER, LABOR, and SEED are computed after taking logarithms.
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6, the school years of highest educated household member (EDUHIGH), ratio of house-

hold members who have non-farming income (RNFINC) and total acres of farm land

(TTACRES) all had positive partial effects on the mean and negative effects on the variance

of efficiency. Household head being female (FEMHEAD), distance to the nearest bus-stop

(DISTBUS) and land being owned by the household (OWNED) all have negative effects on

the mean and positive effects on the variance of efficiency. Therefore, an average household

tends to have a higher efficiency level and a lower uncertainty on efficiency if it is character-

ized with a higher education level, more off-farm income, or larger farm size. Alternatively,

it tends to have a lower efficiency level and higher uncertainty of efficiency if it has a female

head, or is far from a bus-stop. These results are consistent with a prior reasoning. The

effects of education, credit constraints, farm size and infrastructure on efficiency have been

discussed extensively in the previous literature. Females are subject to social discrimina-

tion in Kenya. There are usually two situations in which a female can become the head

of the household. One is that she is a single mother, and the other is that her husband

is dead. Households headed by females are less efficient because females do not have the

same inheritance rights as males in rural Kenya. A widow cannot obtain the full property

of the land left by her husband, and has to give away a certain proportion of the harvest

to her husband’s brothers. This reduces the incentive to work hard. A surprising result

is that farmers tend to be more efficient in rented fields than in their own fields. There

are possible two reasons: 1) a fixed rent has to be paid at planting time, which provides

more incentives for farmers who work in a rented field than in their own fields; 2) farmers

rent fields that they know are productive. To the extent the second reason is a factor, the

variable OWNED might capture the unobserved land quality not included as a covariate

in our production frontier.

As explained earlier, not only the directions but the values of the partial effects on E(−ui|xi, zi)

are of economic interest. According to the KGMHLBC model (see table 10), one more
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school year would increase yield per acre by 0.52 percent for an average household, ceteris

paribus. One kilometer closer to publice transportation would increase yield per acre by

3.7 percent. An increase of one acre in farm size would raise yield per acre by 0.23 per-

cent. If the proportion of household members who receive off-farm income increases by

10 percent, yield per acre would increase by 1.3 percent. However, a household with a

female head tends to be 14 percent less efficient than a household with a male head, and

farmers tend to be 17 percent more efficient working in rented fields than in their own fields.

Based on our estimation results for the efficiency component, investments in education and

infrastructure help improve technical efficiency. Extension services can perhaps make up

for reduced efficiency due to insufficient school education received by farmers. However, we

found that the distance to the office of an extension service is insignificant. This suggests

that the government should work on improving the quality of the extension service rather

than setting up more offices. The result that larger farms are more efficient can provide

some guidance for land reallocation. Better access to credit would also improve efficiency.

Households with female head need special help to improve efficiency of production.

7 Conclusion

Poverty reduction in Africa has proved to be an immense challenge. This paper identifies

factors that limit technical efficiency in maize production in Kenya and quantifies partial

effects of these factors on the output level. We simultaneously examine five categories of

exogenous factors: socio-economic variables, farm size, land tenure, credit constraints and

infrastructure.

In our stochastic frontier analysis, we find that different stochastic frontier models predict

similar efficiency levels and the same directions for partial effects of exogenous factors at
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the sample mean. However, the magnitudes of these partial effects for individual farms are

rather different across model specifications. This finding calls for more attention to model

selection in empirical stochastic frontier analysis. To choose among competing models, we

employ the specification tests recently proposed by Alvarez, Amsler, Orea, and Schmidt

(2006). In our application, these tests yield an unambiguous choice of best model, and an

analysis of the model choice procedure using the bootstrap indicates that the model choice

procedure is reasonably reliable.

In the paper we also propose an R2-type measure that indicates the explanatory power of

the exogenous factors that affect inefficiency. In our application we find that our exogenous

factors explain approximately 10% of the variation in efficiency levels.
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Appendix

Partial Effects of Exogenous Factors and Standard Errors

The mean of ui conditional on xi and zi is:

E(−ui|xi, zi) = −σi(R1 + R2) (9)

where

R1 = µi/σi, (10)

R2 = φ (R1) · [Φ(R1)]
−1 . (11)

Assume there are K exogenous factors (K1 continuous variables and K2 = K−K1 dummy

variables). We deal with the continuous variables first. Let zc
i be the K1 dimensional vector

of the continuous variables. We derive the partial effects of zc
i on the mean efficiency as

∂E(−ui|xi, zi)/∂zc
i = γcσi(R1R3 −R2)− δcσiR1(1 + R3) (12)

where δc and γc are the coefficient vectors of zc
i ,

R3 = −R2
2 −R2R1. (13)

Next we derive the variances of the partial effects of zc
i . Let θ′ = (δ′ γ′), and g(θ) =

∂[E(−ui|xi, zi)]/∂zc
i , where g(θ) is K1× 1 dimensional vector. Following the delta method,

√
n[g(θ̂)− g(θ)] −→ N

[
0,

(
∂g(θ)

∂θ′

)
Ω

(
∂g(θ)

∂θ′

)′]
, (14)

We derive ∂g(θ)/∂δ′ and ∂g(θ)/∂γ′ as

∂g(θ)/∂δ′ = −σi(γ
cz′i + D)R1(1 + R3)− σi(δ

c − γc)z′iR4, (15)

∂g(θ)/∂γ′ = σiγ
cz′i(R1R3 −R2 −R4) + σiD(R1R3 −R2) + σiδ

cz′iR4 (16)

where D = [IK1 0K1×K2 ] is a K1 ×K dimensional matrix,

R4 = R1(1 + R3)−R2
1(R2 + R1R3 + 2R2R3) (17)
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∂g(θ)
∂θ′ =

[
g(θ)
δ′

g(θ)
γ′

]
is a K1×2K dimensional matrix, which depend on the model parameters

δ and γ. We can get the estimate of ∂g(θ)
∂θ′ by substituting the estimates of δ and γ into

the above formulas. The variances of the partial effects can be estimated by substituting

the estimate of ∂g(θ)
∂θ′ as well as the estimate of the variance-covariance matrix of θ̂ into the

formula (14).

Next we compute partial effects of dummy variables. Let zik be the dummy of concern.

The partial effect of zik on E(−ui|xi, zi) is

d(θ) = E(−ui|xi, zi, zik = 1)− E(−ui|xi, zi, zik = 0)

= [−σi(R1 + R2)]|zik=1 − [−σi(R1 + R2)]|zik=0 (18)

Similarly, following the delta method, we have

√
n[d(θ̂)− d(θ)] −→ N

[
0,

(
∂d(θ)

∂θ′

)
Ω

(
∂d(θ)

∂θ′

)′]
(19)

We then have ∂d(θ)/∂δ′ and ∂d(θ)/∂γ′ as follows

∂d(θ)/∂δ′ = [−σiR1(R1 + R3)z
′
i]|zik=1 − [−σiR1(R1 + R3)z

′
i]|zik=0 (20)

∂d(θ)/∂γ′ = [−σi(R2 −R1R3)z
′
i]|zik=1 − [−σi(R2 −R1R3)z

′
i]|zik=0 (21)

∂d(θ)
∂θ′ =

[
d(θ)
δ′

d(θ)
γ′

]
is a 1 × 2K dimensional matrix. The variances of the partial effects for

zik can be estimated similarly as for the continuous variables described earlier.
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Figure 1: Kernel density of Battese and Coelli technical efficiency estimates

Table 1: Descriptive statistics for the variables in the production frontier

Variable Notation Mean Std. Dev. Min Max

YIELD Maize yield index (kg/acre) 1071 726 69 4410

LABOR Pre-harvest labor input (person-hour/acre) 344 271 40 2160

FERTILIZER Nitrogen fertilizer application (kg/acre) 11 12 0 63

SEED Maize seed quantity (kg/acre) 8.5 3.3 2.5 18.8

TRACTOR If tractor used in land preparation (1=yes, 0=no) 0.28 0.45 0 1

MONO If mono-crop field (1=yes, 0=no) 0.11 0.31 0 1

HYBRID If hybrid seed (1=yes, 0=no) 0.72 0.45 0 1

STRESS Moisture stress (0-1) 0.14 0.21 0 1

DRAINAGE Drainage of soil (categorical 1-10) 7.2 2.1 1 10
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Table 2: Descriptive statistics for the exogenous variables in the efficiency model

Variable Notation Mean Std Dev Min Max

EDUHIGH # school years for the highest educated member 12 5.5 0 24

FEMHEAD If the household head is female (1=yes, 0=no) 0.19 0.39 0 1

DISTBUS Distance to the nearest bus-stop (km) 2.4 2.4 0 20

DISTPHONE Distance to the nearest phone service (km) 0.78 1.6 0 15

DISTEXTN Distance to the nearest extension service (km) 5.2 4.5 0 33

OWNED If the field owned by the household (1=yes, 0=no) 0.86 0.35 0 1

CRDCSTR If pursued credits and was rejected (1=yes, 0=no) 0.08 0.27 0 1

RNFINC Percentage of members that have non-farming income 0.20 0.19 0 1

TTACRES Total acres of land owned by the household 7.46 10.9 0.13 110

ACRES Acres of the field 1.46 2.01 0.03 27
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Table 3: Estimates for the efficiency components in alternative models

LYIELD General Scaled Stevenson KGMHLBC RSCFG-µ RSCFG

Variables in function µi

µ -4.1(6.9) -0.30(0.36) -1.45(0.72) -0.75(0.40) 0

EDUHIGH 0.034(0.049) -0.018(0.0068) 0.053(0.024)

FEMHEAD -5.3(41) 0.22(0.093) -2.3(2.0)

DISTBUS -0.36(0.16) 0.048(0.016) -0.31(0.14)

OWNED -1.4(1.0) 0.35(0.11) -1.3(0.41)

RNFINC 0.82(1.2) -0.36(0.19) 1.4(0.73)

TTACRES 0.0018(0.045) -0.013(0.003) 0.024(0.012)

Variables in function σ2
i

σ2
u 2.7(5.9) 0.42(0.13) 0.59(0.14) 0.54(0.12) 0.34(0.11)

EDUHIGH -0.0063(0.015) -0.018(0.0068) -0.014(0.0048) -0.032(0.014)

FEMHEAD -0.22(0.28) 0.22(0.093) 0.18(0.072) 0.41(0.17)

DISTBUS -0.014(0.044) 0.048(0.016) 0.040(0.012) 0.087(0.030)

OWNED -0.061(0.46) 0.35(0.11) 0.28(.073) 0.63(0.22)

RNFINC -0.14(0.36) -0.36(0.19) -0.29(0.15) -0.63(0.38)

TTACRES -0.012(0.013) -0.013(0.003) -0.011(0.0015) -0.020(0.014)

# observations 815 815 815 815 815

Log-likelihood -616.30 -623.63 -618.71 -623.42 -623.70

LR statistic 56.84 34.54 50.62 38.36 37.98

Wald statistic 26.80 18.28 29.74 77.69 27.17

1% critical value 26.22 16.81 16.81 16.81 16.81
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Table 4: Estimates for the production frontier in alternative models

LYIELD General Scaled Stevenson KGMHLBC RSCFG-µ RSCFG

LFERTILIZER 0.15 (0.020) 0.15 (0.020) 0.15 (0.020) 0.15 (0.020) 0.15 (0.020)

LLABOR 0.33 (0.050) 0.33 (0.052) 0.33 (0.049) 0.33 (0.052) 0.33 (0.052)

LSEED 0.33 (0.048) 0.32 (0.050) 0.33 (0.048) 0.32 (0.050) 0.32 (0.050)

LFERTILIZER2 0.025 (0.004) 0.026 (0.004) 0.026 (0.004) 0.026 (0.004) 0.026 (0.004)

LFERTILIZER×HYBRID -0.062 (0.016) -0.063 (0.016) -0.063 (0.016) -0.063 (0.016) -0.063 (0.016)

LLABOR×HYBRID -0.16 (0.059) -0.15 (0.061) -0.16 (0.059) -0.16 (0.061) -0.15 (0.060)

LLABOR×STRESS -0.23 (0.14) -0.29 (0.14) -0.26 (0.14) -0.29 (0.14) -0.29 (0.14)

LSEED×STRESS -0.29 (0.17) -0.28 (0.19) -0.29 (0.17) -0.27 (0.20) -0.29 (0.19)

HYBRID 0.19 (0.063) 0.20 (0.059) 0.20 (0.063) 0.20 (0.059) 0.20 (0.059)

STRESS -0.38 (0.18) -0.36 (0.18) -0.39 (0.18) -0.36 (0.18) -0.37 (0.18)

MONO -0.22 (0.059) -0.21 (0.060) -0.23 (0.058) -0.21 (0.060) -0.21 (0.60)

DRAINAGE 0.15 (0.056) 0.13 (0.056) 0.15 (0.055) 0.13 (0.057) 0.13 (0.056)

DRAINAGE2 -0.012 (0.005) -0.001 (0.005) -0.011 (0.005) -0.001 (0.005) -0.001 (0.005)

TRACTOR 0.15 (0.056) 0.15 (0.051) .15 (0.057) 0.14 (0.050) 0.15 (0.051)

Zone Dummies Omitted Omitted Omitted Omitted Omitted

σ2
v 0.16 (0.023) 0.14 (0.023) 0.15 (0.020) 0.15 (0.022) 0.13 (0.021)

Note: LYIELD is log YIELD. LFERTILIZER, LLABOR and LSEED are defined similarly.

Table 5: Correlation of efficiency estimates among alternative models

General Scaled Stevenson KGMHLBC RSCFG-µ RSCFG

General 1

Scaled Stevenson 0.9793 1

KGMHLBC 0.9910 0.9848 1

RSCFG-µ 0.9839 0.9986 0.9843 1

RSCFG 0.9700 0.9970 0.9833 0.9917 1
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Table 6: Partial effects of exogenous factors, evaluated at the sample mean

General Scaled Stevenson KGMHLBC RSCFG-µ RSCFG

Partial effects on E(−ui|xi, zi)

EDUHIGH .0080(.0044) .0079(.0012) .0052(.0044) .0080(.00081) .0081(.0029)

FEMHEAD -.12(.11) -.10(.051) -.14(.058) -.11(.049) -.11(.052)

DISTBUS -.037(.025) -.021(.0038) -.037(.016) -.022(.0028) -.022(.0083)

OWNED -.19(.074) -.14(.047) -.17(.052) -.14(.042) -.14(.058)

RNFINC .19(.12) .16(.039) .13(.11) .17(.028) .16(.090)

TTACRES .0075(.0021) .0058(.00067) .0023(.0015) .0061(.00040) .0049(.0023)

Partial effects on V (ui|xi, zi)

EDUHIGH -.0042(.0020) -.0045(.0015) -.0024(.0020) -.0044(.0012) -.0045(.0016)

FEMHEAD .035(.058) .064(.037) .066(.026) .063(.034) .065(.038)

DISTBUS .016(.013) .012(.0055) .017(.0072) .012(.0049) .012(.0057)

OWNED .083(.040) .070(.029) .078(.021) .068(.026) .071(.035)

RNFINC -.097(.062) -.091(.048) -0.061(.050) -.091(.043) -.088(.051)

TTACRES -.0046(.0016) -.0033(.0011) -.0011(.00070) -.0033(.00083) -.0028(.0014)

Table 7: Average partial effects of EDUHIGH on E(−ui|xi, zi), for the observations within

each of the four quartiles based on efficiency levels predicted in KGMHLBC model

General Scaled Stevenson KGMHLBC RSCFG-µ RSCFG

0-25% percentile 0.0067 0.0092 0.0039 0.0092 0.0092

25-50% percentile 0.0074 0.0085 0.0052 0.0085 0.0085

50-75% percentile 0.0078 0.0080 0.0059 0.0081 0.0081

75-100% percentile 0.0079 0.0069 0.0072 0.0070 0.0071
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Table 8: Correlation of partial effects of EDUHIGH on E(−ui|xi, zi) among alternative

models

General Scaled Stevenson KGMHLBC RSCFG-µ RSCFG

General 1

Scaled Stevenson -0.3910 1

KGMLBC 0.7811 -0.7899 1

RSCFG-µ -0.3716 0.9991 -0.7861 1

RSCFG -0.4140 0.9882 -0.8047 0.9970 1

Table 9: Results of the specification tests for model selection, taking the general model as

the unrestricted model
Scaled Stevenson KGMHLBC RSCFG-µ RSCFG Stevenson ALS

log-likelihood -623.63 -618.71 -623.42 -623.70 -641.44 -642.04

LR statistics 14.66 4.82 14.24 14.80 50.28 51.48

# restrictions 6 6 6 7 12 13

1% critical value 16.81 16.81 16.81 18.48 26.22 27.69

5% critical value 12.59 12.59 12.59 14.07 21.03 22.36

10% critical value 10.64 10.64 10.64 12.02 18.55 19.81
The value of log-likelihood for the general model is -616.30.

Table 10: Partial effect of the exogenous factors on E(−ui|xi, zi) and their 90% confidence

intervals based on bootstrap and the delta method in the KGMHLBC model, evaluated at

the sample mean

EDUHIGH FEMHEAD DISTBUS OWNED RNFINC TTACRES

.0052 -.14 -.037 -.19 .13 .0023

Bootstrap (.00047, .011) (-.22, -.048) (-.058, -.0078) (-.28, -.035) (-.011, .30) (.00011, .0053)

Delta method (-.0020, .012) (-.24, -.045) (-.063, -.011) (-.26, -.084) (-.051, .31) (-.0017, .0048)
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Table 11: Output elasticity with respect to inputs for local seed users and hybrid seed

users, evaluated at the sample means

Inputs Local seed users Hybrid seed users

FERTILIZER 0.209 (.00076) 0.224 (.0011)

LABOR 0.300 (.0027) 0.177 (.0063)

SEED 0.293 (.0032) 0.336 (.0026)
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