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Abstract: 
 

We use a stochastic production frontier model to investigate the presence of heterogeneous 
production and its impact on fleet capacity and capacity utilization in a multi-species fishery.  
Furthermore, we propose a new fleet capacity estimate that incorporates complete information on 
the stochastic differences between each vessel-specific technical efficiency distribution.  Results 
indicate that ignoring heterogeneity in production technologies within a multi-species fishery, as 
well as the complete distribution of a vessel’s technical efficiency score, may yield erroneous 
fleet-wide production profiles and estimates of capacity. 
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Introduction: 

 

Efficient management of natural resources hinges on our ability to monitor and assess the status 

of the resource stocks as well as the actions and economic performance of the agents utilizing 

such resources.  The sustainability and viability (both in physical and economic terms) of our 

resource management plans can in part be assessed by estimating the extractive or productive 

capacity of economic agents relying on a given resource.  However, because of the limitations 

and uncertainty associated with the available data, particularly in the fishing industry, estimating 

the capacity and capacity utilization of the agents using the resource can be a difficult endeavor.  

Compounding the difficulties of estimating capacity is the heterogeneous nature of the agents 

using the resource.  Heterogeneity in the agents implies that multiple production processes may 

exist, which must be accounted for when attempting to measure capacity and capacity utilization. 

Otherwise, capacity estimates based on a homogeneous production model may be erroneous and 

yield inappropriate policy recommendations.   

 

Given the ever-growing concern that excess capacity is prevalent in many natural resource 

environments and the need to assess capacity and its utilization to prioritize the settings in which 

direct problems exist, it is paramount that we develop methods which may be used to investigate 

and control for production heterogeneity in these environments. Furthermore, it is important that 

we utilize statistically reliable measures of fleet capacity.  This research addresses these concerns 

by estimating heterogeneous capacity and capacity utilization in the context of a multi-species 

fishery and by proposing a new measure of fleet capacity which utilizes information on the 

statistical reliability of a vessel’s technical efficiency score.  Our results illustrate the 

complexities that arise in the presence of heterogeneous production technologies – a common 

situation in multi-species, multi-gear fisheries. 

 

Estimates of capacity in fisheries are desirable because overcapacity is often cited as the most 

prevalent impetus for the overexploitation of fisheries across the globe (Food and Agricultural 

Organization 1998).  Common symptoms of excess capacity are dwindling fish stocks, an 

accelerated “race for fish” resulting in a shorter fishing season, and excessive investment or input 

use (“capital stuffing”) to increase one’s odds of catching a larger share of the total catch (further 

exacerbating excess capacity in the fishery).  Increased prevalence of such problems has 

stimulated a need to not only obtain reliable estimates of capacity and capacity utilization, but to 
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develop management instruments to mitigate the rate of expansion in capacity and the effect of 

overcapacity within fisheries. 

 

Input controls are often used to control overcapacity in fisheries, which in turn homogenize the 

effort that may be exerted by members of the fleet, and reduces their ability to fully utilize the 

currently available technology and vessel capital.  However, the success of input control 

regulations is contingent on the vessel’s inability to substitute out of the regulated input into 

another unregulated input (Kompas et al. 2004). Vessel buybacks are often conducted as well in 

an effort to remove vessels from the fleet and increase the rents of the remaining fishermen, 

thereby reducing the fleet’s effective capacity and increasing the utilization of the remaining 

vessels (Guyader et al 2004).  Alternatively, a transition to a well-defined property rights system, 

such as individual transferable fishing quotas, has been argued as a cost-effective solution to 

overcapacity as less efficient vessels are bought out by the more efficient vessels within the fleet 

(Weninger and Waters 2003; Kompas and Che 2005). Following this transition the property rights 

structure will reduce the incentives to “race for fish” and yield investments in capacity only when 

it is economically advantageous.  This said, even with all the efforts to control excess capacity 

and recognition of the associated problems, there still does not exist an unequivocal definition of 

capacity, or a means of estimating it, within the fisheries literature (Kirkley et al. 2002).    

 

However, one common thread among existing studies of fishing capacity is the need to estimate 

the fisheries production technology in order to be consistent with economic production theory.1  

Currently, there are two primary methods used to estimate production functions in fisheries: data 

envelope analysis (DEA) (Kirkley et al. 2001; Kirkley et al. 2003; Reid et al. 2003) and stochastic 

production frontier (SPF) models (Sharma Leung 1998; Felthoven 2002; Viswanathan et al. 2003; 

Garcia et al. 2005; Kompas and Che 2005).  DEA does not assume a parametric form for the 

production technology and is therefore a more general and flexible model.  However the DEA 

models used to date in fisheries estimate a deterministic production frontier, whereas SPF 

encompasses random variations along the production frontier to account for unexplained 

variability in production.  Deterministic frontier models assume that an agent’s inability to 

produce the maximum amount of output, given there current mix of inputs, is due to agent- 

specific technical inefficiency.  On the other hand, SPF models decompose this inefficiency into a 

                                                 
1 Alternatively, one could conduct a “peak to peak” production analysis.  However, these estimates are not 
as rigorous as those explicitly based on production estimates. 
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vessel-specific component and random error component.2  The method utilized in this research is 

a latent stochastic production frontier model (LSPF) (Schnier et al. 2006), which synthesizes 

latent class regressions with SPF models and allows for heterogeneity in the production frontiers 

within the fishery.   

 

To define capacity we base our measure of capacity on the technological-economic approach 

(Felthoven and Paul 2004).  This measure defines capacity as the maximum feasible output that 

can be produced given the current level of technology, and environmental and economic 

conditions.  This approach provides a primal measure of capacity because it is based on the 

physical relationship between inputs and outputs, rather than a dual approach in which one also 

incorporates behavioral assumptions such as cost minimization or profit maximization.  The latter 

approach is often infeasible given the lack of cost data for most fisheries. Therefore our definition 

of capacity is consistent with that conventionally used within the fisheries production literature.  

In fisheries the complexities of estimating capacity are often exacerbated by the multi-species 

nature of many fisheries as well as unexpected, and often times immeasurable, variation in 

environmental conditions.  Addressing the former concern is readily achieved using ray 

(Felthoven 2002) or distance functions (Orea et al. 2005).3  In our context, the flatfish fishery 

within the Bering Sea and Aleutian Islands (BSAI), we use distance functions to account for the 

multi-species nature of this fishery.  The latter concern is controlled for using stochastic 

production frontier (SPF) models, which control for unobservable variation in the production 

frontier and allow us to generate a new measure of fleet capacity which incorporates information 

regarding the reliability of a vessel’s technical efficiency. 

 

Estimates of capacity and capacity utilization that have been derived in the literature to date 

embody the assumption that all agents operate with the same production technology.  This 

assumption presumes, for example, that each vessel possesses identical output elasticities, 

elasticities of substitution, marginal rates of transformation, and returns to scale (among other 

things).  This further implies that all vessels have the same ability to react and adapt their fishing 

strategies to regulatory measures (such as input controls or trip limits for particular species) 

                                                 
2 The purpose of this paper is not to compare and contrast DEA and SPF models.  For a more complete 
analysis and discussion of these alternative methods see Felthoven (2002) and Kirkley et al. (2002). 
3 For a comparison of the two methods used to estimate multi-species fishery production see Fousekis 
(2002). 
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enacted to mitigate risks associated with excess fishing capacity.4  Presumably, this is a very 

strong assumption, as substantial variations in catch (for a given level of input use) often exist 

within the fleet.  These differences may be explained either by differences in the technical 

efficiencies possessed by vessels using a common production technology, or by asymmetries in 

the production technologies employed by different fleets or groups of vessels.  The latent class 

model used allows for both of these to be investigated and compared to the homogeneous 

production assumption.    

 

Heterogeneity in behavior has received a fair amount of attention in the stated preference 

literature via the utilization of random coefficient models (Train 1998; Train 2003).  In fisheries 

random coefficient models have been used to investigate heterogeneity in site choice modeling in 

commercial fisheries (Mistiaen and Strand 2000; Smith 2005) as well as recreational fisheries 

(Provencher and Bishop 2004).  Although these models could be adapted to investigate 

heterogeneity in production technologies within fisheries, they do not facilitate the estimation of 

vessel-specific capacity and capacity utilization measures 5, which are necessary to inform policy.  

To obtain vessel-specific measures of capacity we use the latent class regression method 

developed by El-Gamal and Grether (1995; 2000), the EC algorithm.  Alternatively one could 

estimate the latent class production functions using finite mixture regressions (Orea and 

Kumbhakar 2005).  However, finite mixture models estimate the probability of participation in 

each of the respective classes whereas the EC algorithm restricts class participation probabilities 

to be either zero or one.  This allows us to precisely identify class participation and therefore 

vessel-specific measures of capacity. 

       

II. Defining and Estimating Heterogeneous Capacity 

 

Each technology’s production function is defined as ),,,( jjjjjj CVSFYY = , where jF  is 

technology j’s vector of fixed inputs of production, jS  is technology j’s vector of exogenous 

input stocks, jV  is technology j’s vector of variable inputs and jC  is technology j’s vector of 

control variables.  Variables contained in F are the long-run production control variables, such as 

                                                 
4 This is true if we assume that fishermen do not alter their technological choice or targeting strategies for 
output, measured are the assemblage of species caught, within the fishery.   Changes in regulatory measures 
will have all kinds of implications on people choice sets for inputs and outputs, which will not only reflect 
technological production possibilities but other factors not captured by the production function. 
5 A random coefficients stochastic frontier model has been developed by Greene (2005). 
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a vessel’s level of horsepower and size, which are assumed to be fixed during the time horizon 

analyzed.6  In a natural resource economics setting variables in S represent the current stock of 

resources used in production such as the current stock level of the target species within a fishery.  

The amount of time and labor devoted to production is captured in the vector V , which in a 

fishery is represented by the number of crew members on board the vessel, the number of days 

fished within a season, and potentially the amount of time the fishing gear is deployed.  Variables 

contained in V represent short-run production inputs. The control variables captured in C  may 

be used to control for differences in technology when multiple methods of production exist as 

well as to control for time, space and environmental factors such as El Nino and La Nina events. 

 

Defining the production function as ),,,( jjjjjj CVSFYY =  we can further characterize the 

measures of jY and jCY |  used to define fleet capacity, JC , and vessel specific measures of 

capacity utilization, jCU . The observed output levels are used to determine O
jY , defined simply 

as ),,,( jjjjj CVSFY , hereafter denoted O
jY , whereas the technically efficient utilization of jF , 

and jV  is defined as ),,,( jjjj
TE
j

TE
j CVSFYY = , hereafter denoted TE

jY .  Should one assume a 

homogeneous production technology all subscript j’s are removed.  

 

There are two primary measurers of capacity we are interested in estimating: the fleet capacity 

and the vessel specific measures of capacity utilization.  These estimates are contingent on the 

available inputs, both fixed and variable, and the maximum output which may be derived from 

these inputs.  Assuming that there exist J separate production technologies within the fishery, we 

define three different measures of fleet capacity, JC , and one measure of capacity utilization, 

jCU .  Our first measure of fleet capacity is defined as, 

 

∑∑
= =

=
J

j

N

i

i
jCJ

j

YC
1 1

|
ˆ          (1) 

 

                                                 
6 This assumption implies that the estimates of capacity we obtain are short-run estimates of primal 
capacity. 
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where jN is the number of vessels possessing technology j, )|,,(|
MAX
jjjjjjjC VVCSFYY ==  

and MAX
jV is the maximum level of variable inputs utilized by segment j.  Estimates of jCY | are 

defined as the level of output each technology may derive from their fixed input base, given the 

maximum observed level of variable input use and the exogenous stock variables.  jCY | therefore, 

in general, lies above both O
jY and TE

jY on technology j’s production frontier and represents the 

maximum primal measure of output.7  The second measure of fleet capacity is defined as, 

 

∑∑
= =

=
J

j

N

i

TEi
jCJ

j

YC
1 1

|
~

         (2) 

 

where )|,,(|
MAX
jjjjj

TE
j

TE
jC VVCSFYY == which represents the technically efficient level of 

output producible by vessel i assuming maximum utilization of production technology j’s variable 

inputs. The final estimate of fleet capacity incorporates the probability that a given vessel is 

technically efficient, TEiF , which can be calculated using the vessel-specific distributions of 

technical efficiency derived in the stochastic frontier model (Horace 2005; Flores-Lagunas et al. 

In Press).  The final measure of fleet capacity is defined as, 

 

.
1 1

|∑ ∑
= =

=
J

j

N

i

TEi
jC

TEi
jJ

j

YFNC         (3) 

 

This last measure of fleet capacity refines the fleet-wide measure of capacity by assigning more 

weight to those vessel’s which possess a higher probability of being technically efficient, 

indicated by TEiF .  It also incorporates all information on all differences between the technical 

efficiency distributions of all vessels.  (That, is the probability that a vessel is efficient is a 

statement on the extent to which the vessel stochastically dominates all others.) 

 

                                                 
7This may not be true if a vessel is very inefficient, and expending a lot of effort for their vessel size.  In 
this case their capacity utilization score could be quite high and jCY |  may be less than TE

jY .  In addition, 
TE
jY will be greater than O

jY except when a vessel in segment j is technically efficient.  When this is true 
TE
j

O
j YY = . 
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For each specification of the production technologies that exist within the fishery, J, we will 

generate three different measures of fleet capacity, ,~,ˆ
JJ CC and JC .  Our new measure of fleet 

capacity, JC , emphasizes the reliability of our fleet capacity by utilizing information contained in 

the second moment of our stochastic frontier estimates.  Furthermore to investigate the sensitivity 

of our analysis to the assumption that MAX
jj VV = we use two additional specifications which 

estimate production when the variable inputs are 25% and 50% greater than current utilization 

levels, denoted 25
jj VV = and 50

jj VV = respectively.8 

 

Each vessel’s capacity utilization, jCU , is expressed as the ratio of their output, assuming a 

production function j, jY , to the capacity output level, jCY | , jCjj YYCU |/= .  The closer jCU  

is to one the less excess capacity each vessel possesses.  The inverse of jCU  indicates how much 

each vessel’s production could increase if they were to fully utilize their inputs in the short-run.  

To determine jCU  we must define how we will assess jY  and jCY | .9  To define jY  we use the 

predicted production estimate generated from the stochastic frontier model, jŶ , and we define 

)|,,(|
MAX
jjjjjjjC VVCSFYY == to generate the following capacity utilization measure: 

 

jC

j
j Y

Y
CU

|

ˆ
= .           (4) 

 

Furthermore, we specific two alternative measures of jCU  which utilize 25
jV and 50

jV defined 

25
jCU  and 50

jCU , respectively.10  Given that capacity utilization measures are vessel specific, 

we are not able to utilize the statistical information contained in the second moment of the 

                                                 
8 In the application we use Days fished in a week as the variable input maximized.  In the case that either 
25% or 50% greater than current utilization exceeded seven days we capped it at seven days. 
9 There are number of issues that must be addressed when defining the measures used to estimate capacity, 
for a more detailed discussion of these issues see Kirkley et  al. (2002). 
10 Alternatively we could estimate capacity utilization as jC

TE
j

TE
j YYCU |/= as proposed by Fare et al. 

(1989) which are “unbiased” because it is not directly influenced by technical inefficiency. 
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stochastic production function, reflective in our estimates of TEiF , to generate another estimate 

of capacity utilization analogous to the fleet capacity measure defined above.11   

 

By using the latent class model we can allow for differences in a given output elasticity among 

production technologies, representing potential differences in curvature among the production 

frontiers for groups of vessels.  The magnitude of these differences will determine the degree to 

which a homogeneous estimate of primal capacity will over/under estimate the heterogeneous 

estimate of primal capacity for a given vessel.  Figures 1 and 2 graphically illustrate these 

differences when one assumes a homogeneous versus heterogeneous model and the degree of 

over/under estimation of capacity generated by the homogeneous model assumption, when there 

exists two distinct production technologies within the population, J=2. 

 

Capacity utilization estimates assuming a homogeneous production technology generates an 

estimate of HCHA VV /  and HCHB VV /  using observed production and technically efficient 

production respectively, assuming 1KK = .  In this environment the two segments are evaluated 

as one and the production frontier is the average of the two technologies and predominately lies 

above one technology (depicted as the filled diamonds) and below the other technology (depicted 

as the open circles).  Allowing for heterogeneity generates production frontiers which are a better 

fit for the two distinct groups.  Similar estimates of capacity utilization are CA VV 11 / and CB VV 11 /  

for segment one (filled diamonds) and CA VV 22 /  and CB VV 22 /  for segment two (open circles). 

Because the production estimates of TE
j

O
j YY , and jCY | are tighter than the estimates assuming a 

homogeneous production technology the estimates of capacity utilization will be greater than 

those obtained under the homogeneous production model.  This implies that there exists less 

overcapacity in the heterogeneous model than the homogeneous model. 

 

In general, the total measures of overcapacity will be greater when homogeneity is assumed than 

when one allows for heterogeneous production.  This is because the frontier in the homogeneous 

model can be thought of as the outer envelope for all observations, whereas in the heterogeneous 

model, there will be one frontier corresponding to each technology, some of which may lie below 

the uppermost frontier (representing the most productive technology).  However, it is possible 

                                                 
11 This is because TEiF will be contained in both the numerator and denominator of jCU and will cancel 
out. 
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that the measures of the overcapacity may be underestimated by the homogeneous model.  For 

example, if the output elasticities are substantially different (and large) for one production 

technology and a large number of agents possess this technology, the increase in output 

associated with heightened variable input use at capacity output will be also be large.  Capacity 

output estimates for this group of vessels will in turn be more precise than in the homogenous 

model, which would underestimate capacity.  The total impact of model misspecification, 

however, depends on the number of agents which possess distinct technologies and the nature and 

extent of the differences among them.  Presumably, the effects of misspecification will be 

lessened when the differences between technologies are symmetric, as the homogeneous model 

represents the average production process for the different segments.  We should also note that 

the issues discussed above also apply to measures of capacity utilization, as it is merely a ratio of 

capacity output to observed output.  

 

To estimate the heterogeneous production technologies and determine the appropriate number of 

technologies, J*, within the population, we utilize a LSPF model.  The LSPF model is based on a  

j segment production function with each segment possessing the following production function 

representation, 

 

}exp{);,,,( || jitjitititijit CVSKfY εβ= ,      (7) 

 

where, i indicates the agent, t the time period and j the segment assignment.  The error structure is 

decomposed into two components to generate the stochastic frontier model (Aigner et al. 1977; 

Meeusen and van den Broeck, 1977) and is specified as follows, 

 

jijitjit v ||| ηε −= .         (8) 

 

The first error term, jit|ν is independently and identically distributed ),0( 2
| jvN σ and ji|η is a one-

sided, non-negative vessel specific error term drawn from a truncated ),( 2
| jjN µσµ .  Given that 

the data set utilized is an unbalanced panel, the log-likelihood function is (Battese et al. 1989; 

Battese and Coelli 1995), 
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iT  is the number of observations within the unbalanced panel for vessel m and jθ is the 

parameter vector to be estimated for each segment and it consists of the following parameters, 
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Using the likelihood function specified in equation (9) the EC algorithm is used to determine the 

number of vessels in each of the j types and to generate estimates of the segment-specific 

parameters, jθ .  The EC algorithm proceeds by first pre-specifying the number of types within 

the data, J, and then obtaining parameter estimates by assuming the each agent’s contribution to 

the global likelihood function is the maximum joint likelihood of all their observations, iT , across 

all the J pre-specified types, given ( )Jθθ ,...,1=Θ .  This is specified as follows, 

 

∑ ∑
= =

=Θ
N

m

Ti

t
jititjitit XYLJXYL

1 1
)|;(maxarg),|;( θ      (10) 

 

To determine the optimal number of latent types, J*, estimates are conducted assuming a number 

of different type classifications, J=1,2,…J*, and likelihood ratio tests are utilized to determine the 
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optimal number of latent types within the data set.  This method is identical to that used by 

Schnier et al. (2006) to identify heterogeneous measures of technical efficiency, but this is first 

time it has been used to obtain capacity measures.12  Having outlined the motivation for 

investigating heterogeneous primal capacity measures, the following section describes the data 

used in our analysis and the econometric specification of jitY | utilized.  

 

III. Data and Econometric Specification 

 

To illustrate our model we use data on catcher-processor vessels operating in the BSAI flatfish 

fishery for the years 1994 through 2004.  The unbalanced panel data set consists of 4403 

observations on 45 distinct vessels greater than 125 feet in length, which are required to have 

federal observers on board for all of their trips.  Data obtained from the federal observers was 

merged with data from the weekly production reports filed by these vessels to create a dataset 

including vessel characteristics, the time period during which vessels fished, the number of hauls 

conducted, the total length of time their gear was in the water (duration), the number of crew 

members employed, and a complete characterization of their catch composition.  Although there 

are other vessels that operate within the flatfish fishery, because they are smaller than 125 feet the 

observer data is incomplete (only 30% of trips include federal observers).  However, given the 

size of this segment within the fleet and their predominance of their catch within the flatfish 

fishery, our data sets represents the most complete one which may be used to investigate capacity 

and capacity utilization within the BSAI flatfish fishery.  In addition, the large number of vessels 

within this data set will facilitate the characterization of multiple production processes, Yj within 

the fishery.  

 

The primary flatfish species caught by the fleet are yellowfin sole, rock sole, flathead sole, 

arrowtooth flounder, flounder, rex sole and Greenland turbot.13  Of these flatfish species, 

yellowfin sole comprises the largest percentage of total retained catch by the fleet, approximately 

57%.14  An almost exclusively foreign group of vessels began targeting flatfish in the BSAI in 

mid 1950s.  However, extremely high catch rates from 1959-1962 caused a dramatic decline in 
                                                 
12 This method has also been used in the experimental economics literature to investigate heterogeneity (El-
Gamal and Grether 1995, 2000; Anderson and Putterman 2006; Schnier and Anderson In press). 
13 In addition, a fair amount of Pacific cod and pollock is caught by these vessels.  These two species 
compose approximately 8% and 6% of the total retained catch by these vessels.  However, we do not 
incorporate them in the analysis as they are considered a bycatch species. 
14 We focus on retained catch in our analysis instead of total catch as we believe it more closely reflects the 
targeting practices of the fleet. 



 13

the fish population.  With the creation of the Exclusive Economic Zone (EEZ), these foreign 

vessels were eventually expelled in favor of a domestic fishery.  Populations within the flatfish 

fishery have since rebounded.    

 

To represent the fixed inputs in production, jF , we will rely on each vessel’s measure of gross-

registered tonnage and horsepower.  The vector of exogenous fish stocks, jS , is represented by 

the estimates of stock densities within the BSAI for the entire flatfish assemblage.  This variable 

was calculated by aggregating the stock densities for the three primary flatfish target species 

(yellowfin sole, rock sole and flathead sole) for each year over the years 1994 through 2004.  

These estimates were obtained from the NMFS stock assessment reports in 2004 for the three 

primary species used to construct the total stock variable.  The aggregate stock density, denoted 

Stock, was normalized relative to the stock densities reported in 1994.15   

 

The vector of variable inputs, jV , is represented by number of crew members on board during the 

week (Crew), the number of days fished during the week (Days) and the amount of time the gear 

was used during the week to harvest flatfish (Duration).  Although data on the number of hauls 

made during the week was also available, trawl duration provides a finer resolution of gear use 

and for parsimony (as well as collinearity concerns) we chose to use duration instead of hauls.  In 

addition, during the time period analyzed there has been a shift in the way many of the vessels 

fish.  Although total fishing/towing duration has remained stable, vessels have increased the 

number of hauls during the week (and thus the average duration of each haul) to decrease haul 

size and increase the quality of the deliverable product.  It is possible that this structural change in 

haul size could have impacted our ability to accurately characterize the contribution of hauls over 

the sample period, and provide misleading estimates for this new environment.  Dummy variables 

could have been used to capture such effects, but by using duration instead we can avoid the need 

to estimate additional parameters. 

 

The final input vector of production, jC , is captured using the month (Month) that the fishing 

activity was reported in the weekly production reports.  This control variable is used to capture 

seasonal variation in the migration of the flatfish species as well as the adverse climatic 
                                                 
15 Initially we used each stock assessment for the three primary flatfish species as separate elements within 

jS .  However, we did not obtain substantially different results and given the high degree of collinearity 
possessed by these species, elected to aggregate the species into one index. 
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conditions present within the fishery.  Yearly variations in the flatfish species composition are 

controlled for by the input vector jS which varies over time. 

 

Given that our application is a multi-species fishery, the output vector, jY , consists of all the 

flatfish species caught and described earlier.  For parsimony we define four segment-specific 

output categories: catch of yellowfin sole )( | jYellowY , rock sole )( | jRockY , flathead sole )( | jFlatY and 

all other flatfish species caught and retained )( | jAggY .  In addition to specifying the input and 

output vectors, we must also specify a functional representation of the production technologies.  

Here we will utilize the output distance function developed by Shephard (1970) and expand it to 

be segment specific. The segment-specific output distance function is predicated on the existence 

of a production transformation function for each segment j, 

 

0),,,,( =jjjjjj CVSFYG         (6) 

 

Furthermore the segment-specific output distance function represents the maximum proportional 

increase in the output vector that can occur to reach the production possibilities frontier, given the 

current level of inputs ),,,( jjjj CVSF for each segment. The output distance function is defined 

as, 
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where ),,( , jjjjj CVSFQ is the set of output vectors lying on or below the production 

possibilities frontier for segment j given the input vectors ),,,( jjjj CVSF .  If production within 

segment j is technically efficient the distance function, )(⋅jD , takes a value of 1.  Otherwise, the 

distance function captures the degree of inefficiency possessed by the production process within 

segment j.  The distance function can be directly related to the transformation function by scaling 

the output vector, jY , by )(⋅jD . This generates the following segment-specific transformation 

function, 

 



 15

.0,,,,
),,,(

=









jjjj

jjjjj

j
j CVSF

CVSFD
Y

G       (8) 

 

Conventionally, empirical applications of the distance production function normalize the distance 

function by dividing it through by one of the outputs within the vector jY  (Paul et al. 2000), 

generating an observable left-hand-side variable.  We have chosen to divide the output distance 

function by jYellowY | , the species with the largest composition of retained catch.  Therefore, the 

distance production function may be thought of as a ratio on outputs, jYellowjj YYY ||1
* /−= , where  

jY |1−  are all the other outputs in vector jY .  In addition, the output distance function is 

traditionally log transformed to the following, 

 

)ln()ln,ln,ln,ln*,(ln)ln( | jjjjjjjYellow DCVSFYGY −=− .    (9) 

 

where )ln( jD−  represents the radial distance away from the production frontier and is captured 

by the error structure, jit|ε , specified in equation (3).  It is important to note, as discussed by Orea 

et al. (2005), that this assumption implies that the random component of production is 

symmetrically applied to all species within the output vector, jY .  To further facilitate the 

interpretation of our econometric results we denote the dependent variable as )ln( | jYellowY  instead 

of )ln( | jYellowY− .  Our econometric model is expressed as follows, 
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To obtain this specification we started with the full trans-log functional form of the model and 

due to multicollinearity concerns, eliminated interaction and squared parameters that were highly 

collinear.16  This specification was further refined by eliminating interaction parameters that were 

insignificant using likelihood ratio tests, conditional on standard curvature conditions for the 

production possibilities frontier.  All of the above mentioned restrictions were used to develop the 

homogeneous production function characterization, J=1. Furthermore, the functional form 

utilized in the heterogeneous production estimates is identical to the homogeneous model.  

Although it is possible for each segment j to possess its own functional form, we do not 

investigate this phenomenon.  In addition, the specific curvature restrictions imposed on the 

homogeneous model were not imposed on the heterogeneous model, thereby allowing it to be 

mis-specified if the curvature restrictions are violated.  The homogeneous model is a special case 

of the heterogeneous model, J=1, and therefore the restrictions that are appropriate for the 

homogeneous model may not be appropriate for the heterogeneous model. 

 

Estimation of equation (10) is straight forward under the homogeneous assumption and was 

estimated via maximum likelihood in GAUSS.  Estimating equation (10) in the context of 

heterogeneous production requires simulation techniques to obtain the parameter estimates which 

maximize the likelihood function.  This is because the likelihood function expressed in equation 

(5) is not smooth and may possess a number of local maxima.  Therefore, alternative techniques 

may be used to obtain the maximum such as using repeated random starting points (Anderson and 

Puttherman 2006; Schnier et al. 2006), simulated annealing (Schnier and Anderson in press) or 

genetic algorithms.  For this study we use random starting points to generate the global maximum 

of our likelihood function.17 

 

IV. Results, Capacity and Capacity Utilization Estimates 

 

Estimation results assuming J=1 and J=3 are depicted in Table 1.18  To determine the appropriate 

number of production technologies we utilized likelihood ratio tests, the Akiake Information 

                                                 
16 Our criterion for this selection was a collinearity estimate of 0.9 or greater. 
17 We use 500 random starting points to determine the maximum likelihood function value. 
18 Estimation results assuming J=2 are available upon request from the author(s). 
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Criterion (AIC) and the Bayesian Information Criterion (BIC).19  The results from these tests are 

depicted in Table 2.  Due to the large number of parameters estimated per production technology 

(25) we were unable to estimate a J=4 model.  However, given the small number of vessels 

within the fleet (45) we believe that the J=3 captures a majority of the production heterogeneity 

within the fleet and expanding to J=4 may over-fit the data.  The production elasticities assuming 

a homogeneous versus heterogeneous production technologies are depicted in Table 3. 

 

The homogeneous production model, J=1, indicates that the most significant fixed input of 

production, F , is a vessel’s size (Net Tons).  In addition, all the variable inputs,V , are significant 

determinants of production. The most significant variable input in production is amount of time a 

vessel deploys their gear, Duration.  The complements in the multi-species production vector are 

all of the expected sign and the second-order terms indicate that the presence of flathead sole, 

rock sole, and the other aggregate species decrease the portion of yellowfin sole caught at a 

decreasing rate.  The only variable which is significant and not of the expected sign is the 

elasticity of flatfish stock densities within the Eastern Bering Sea, which is negative and 

statistically significant.  Given that stock density estimates are the best available population 

densities for the entire fishery and not for the location a vessel fishes within, nor based on the 

temporal resolution of our data, weekly production, the interpretation of this result is not clear.  

However, given that it is the most resolute data available, and that a negative stock elasticity has 

been observed in other empirical applications in the Bering Sea (Felthoven 2002), we felt 

compelled to keep it in the model. 

 

The empirical results for the heterogeneous production model, J=3, generate distinctly different 

production technology profiles within the flatfish fishery.   The first production technology 

contains the largest number of vessels within the fleet, 30 of the 45 analyzed, and their production 

is primarily determined by the level of fixed inputs employed, Horsepower and Net- tons, as well 

as the amount of time their gear is deployed, Duration.  The number of crew members employed 

and the number of days at sea within a week appear to have a minimal effect on their production 

technology.  

 

                                                 
19 The Akiake Information Criterion (AIC) is -2ln(L)+2G and the Bayaesian Information Criterion (BIC) is 
-2ln(L)+G(ln(N)), where G is the number of parameters estimated in the model and N is the number of 
vessels in the fishing fleet. 
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These results stand in contrast to technologies two and three within the flatfish fishery.  Both of 

these technologies possess a negative and statistically significant elasticity associated with 

Horsepower and an insignificant elasticity of Net-tons.  This suggests that for these groups of 

vessels, greater output is associated with lower levels of horsepower.  Close examination of the 

data reveals that each segment possesses a vessel with a very high ratio of average productivity to 

vessel horsepower (likely due to a high degree of skipper skill).  However, when all vessels are 

lumped together in one representative technology, J=1, these anomalies tend to wash out and 

generate a well-behaved aggregate production technology.20  This result is a direct violation of 

production theory and could either be generated by outliers in the data set or the misspecification 

of the production technology possessed by boats in the second and third technology profile.  This 

could potentially be rectified by allowing for an alternative functional form to be possessed by 

each segment, for instance using only one fixed input of production in the estimation, but this 

generates an exorbitantly large number of production profiles which would be prohibitive to 

estimate given the time required to estimate the model using the EC algorithm.21 

 

Aside from this similarity the production profiles possessed by these two technologies are 

substantially different.  Technology two possesses a very high Crew influence whereas the third 

technology is strongly influenced by Duration and the number of Days in the week that they fish 

for flatfish. Furthermore technology two is differentiated from the other two technologies via the 

high impact of the Month in which they fish relative to the other vessels within the flatfish 

fishery.  This suggests the vessels possessing technology two are strongly influenced by the 

season in which they chose to fish.  This could either reflect the seasonality of their production 

behavior as they shift across fisheries or the limitations of their production technology to fish in 

the inclement weather in the early months of the year. 

 

 Tables 4 through 7 illustrate the vessel specific technical efficiency estimates generated as well 

as the resulting TEiF measure proposed by Horrace (2005) and Flores-Lagunes et al. (2006) used 

to generate our new fleet capacity estimate jC  sorted on TEiF .  In the homogeneous production 

                                                 
20 Within the two production technology model, J=2, this negative curvature violation arose as well.  Both 
of the vessels possessing the high ratio of average productivity to horsepower were lumped together.  In 
this model 36 vessels possessed a well-behaved production technology and 9 vessels possessed the negative 
curvature violation, two of which are driving the result in the J=3 model.  
21 Alternative a research could utilize a more generalized finite mixture model which does not restrict the 
technology probabilities to be 0 or 1.  This would presumably be able to capture the outliers in production 
by creating a technology which possesses this curvature violation yet assigns marginal weight to the 
probability of its occurrence. 



 19

model vessel 44 is the most technically efficient vessel, yet the probability that they are the most 

technically efficient vessel, TEiF , is very small.  Furthermore, the second most technically 

efficient vessel, vessel 40, possesses a zero probability of being the most technically efficient 

vessel.  Vessel 15 possesses the highest probability of being the most technically efficient vessel 

within the fleet, despite that their ordinal technical efficiency ranking is third within the fleet.  

This result highlights the importance of using the efficiency probabilities over (or in conjunction 

with) the usual point estimate of technical efficiency, because using the technically efficiency 

measures alone, may produce erroneous policy recommendations.  This can be seen looking at 

Tables 8 through 10 where the three measures of fleet capacity are estimated under the 

assumption of homogeneous, J=1, and heterogeneous, J=2 and 3, production technologies. 

 

Under the homogeneous production technology assumption the measures of technically efficient 

fleet capacity, jC~ , are substantially greater than our revised measure of fleet capacity,  jC .  

Fleet capacity estimates for jC~  are between 1.74 and 1.84 times greater than those obtained 

using jC  depending on the assumptions regarding the amount of days fished within the fleet, 

25.0,VV MAX and 5.0V .  Both of these estimates utilize a vessel’s technical efficiency score to 

predict their capacity.  jC  utilizes the additional information contained in the second moment of 

a vessel’s technical efficiency to generate a more statistically reliable measure of capacity, which 

not only controls for technical inefficiency but the variance in the technical efficiency measure as 

well.   Comparing these results to those obtained without controlling for technical inefficiency, 

jĈ , illustrates that jC provides a very close estimate to jĈ .  In fact, jC is below jĈ in the 

homogeneous production technology model.  However, given that both of these are based on 

predicted harvest rates, O
jŶ , instead of the truly observed production levels these marginal 

differences could be explained by statistical noise in the econometric modeling.  Where the 

relative differences in the three fleet capacity estimates become more interesting is when we 

begin to control for heterogeneity in the production technologies within the flatfish fishery. 

 

In the heterogeneous production model, vessel 15 retains their top TEiF ranking for vessels 

possessing the first production technology and their iTE measure increases.  Furthermore, vessel 

40 which was the second most efficient vessel in the homogeneous production model possesses a 
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much larger TEiF score and possesses the largest iTE  measure.  For the second and third 

production technologies the most technically efficient vessels, vessels 2 and 32 respectively, also 

possess the largest TEiF scores within their respective production technologies.  Both of these 

vessels were toward the bottom of the ordinal iTE rankings and TEiF scores in the homogeneous 

production model, suggesting that the homogeneous model did not accurately capture their 

respective production profiles. 

 

Fleet capacity estimates in the heterogeneous production case further illustrate the advantages of 

utilizing heterogeneous production technologies as well as their respective TEiF scores.  Focusing 

on the fleet capacity estimates generated by jC~  illustrate the differences between homogeneous 

and heterogeneous production technologies.  In all three variable input utilization cases, 
25.0,VV MAX and 5.0V , increasing the number of production technologies reduces the fleet 

capacity measure jC~ .  This is a direct result of the increases in vessel specific technical efficiency 

which result from controlling for production heterogeneity.  This is most pronounced with 

production technologies two and three, which possessed mean technical efficiency scores of 

0.3350 and 0.5390 in the homogeneous case, whereas they increase to 0.6251 and 0.6693 in the 

heterogeneous production model, respectively.  This resulted in a reduction of total jC~  by roughly 

35% for the J=2 model and 37% for the J=3 model.  Therefore, relying on the homogeneous 

production measures of technically efficient capacity may yield incorrect estimates when 

heterogeneity exists. 

 

The fleet capacity estimates generated using jC under the heterogeneous production model yield 

slightly higher capacity estimates than in the homogeneous production model, yet share the same 

qualitatively differences with the jC~  estimates.  In both the J=2 and J=3 production model the 

measures of jC where greater than those obtained using jĈ and less than those obtained using 

jC~ .  However, this does not hold within each production technology modeled.  The second 

production technology in both the J=2 and J=3 model generated lower estimates of jC than jĈ .  

The most dramatic difference occurs in the J=3 model and is a direct result of the high iTE  and 

TEiF measure possessed by vessel 2 and a correspondingly low level of flatfish production.  The 
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simultaneous occurrence of all three generates an anomalous fleet capacity estimate and should 

be cautiously interpreted. 

 

In general the jC~ fleet capacity estimates are substantially greater than the jC estimates and the 

jC estimates are greater than the jĈ estimates, with the few exceptions noted earlier.  This 

generalized result suggests that fleet capacity estimates generated using jC~ overestimate the 

excess capacity possessed within the flatfish fishery because the jC estimates utilize the same 

information contained jC~ as well as the statistical reliability of the iTE  measures used to 

generate jC~ .    

 

One additional benefit of using the jC estimates of fleet capacity is its ability to provide an out-

of-sample analysis of the expected production, generated by adding a vessel or vessels with 

similar characteristics to one of the production profiles.  For instance, in the J=3 production 

technology model, we conclude that adding another (out-of-sample) vessel to the first production 

technology class would generate an expected production level of 46,226 metric-tons of yellowfin 

sole over the time period 1994-2004 assuming that daysV MAX = .  This expectation is based on 

the statistical estimation of all vessels possessing the first production technology and is obtained 

by multiplying each vessels jC~  measure by their corresponding TEiF  and aggregating across all 

the vessels possessing the first production technology.  This out-of-sample prediction of a 

representative vessel is not feasible using the jC~  measures and is based on the statistical 

reliability of each vessel’s iTE .  This result could be used to facilitate policy development by 

predicting future production levels given a change in regulatory policy. 

 

The final measures of capacity analyzed, the vessel specific measures of capacity utilization, are 

depicted in Table 11 under the assumption of homogeneous, J=1, and heterogeneous, J=2 and 3, 

production assumptions.  Qualitatively the estimates for the homogeneous production model and 

those vessel possessing the first production technology in both the J=2 and J=3 model are very 

similar.  However, the capacity utilization measures obtained under the heterogeneous production 

profiles indicate that vessels possessing production technology two in the J=2 and technologies 

two and three in the J=3 model on average operate closer to their productive capacities.  In fact 
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vessel’s possessing the second production technology in the J=3 model are on average operating 

closer to capacity than any other production class within the flatfish fishery.  This result further 

highlights the importance of utilizing heterogeneous production technologies because the fleet 

wide capacity utilization measures depicted are substantially different than those obtained in the 

homogeneous production model.   

 

 

Conclusion 

 

Many previous investigations into fleet capacity and vessel specific measures of capacity 

utilization have been based on estimating a homogeneous production technology and 

extrapolating a vessel’s efficiency relative to a homogeneous production frontier.  This research 

expands previous investigations in heterogeneous production (Schnier et al. 2006) by analyzing 

production in a multi-species fishery and utilizing the information contained in the simultaneous 

differences of the distributions of technical inefficiency for each vessel to construct an alternative 

measure of fleet capacity.  Our production technology estimates indicate that ignoring 

heterogeneity in production may overestimate a fleet’s capacity.  Furthermore, utilizing complete 

distributional information of the fleets technical efficiency refines the fleet-wide estimate of 

capacity and suggests that traditional measures based on technically efficient production may 

generate substantially higher estimates which may be unreliable.  Combined, these results 

highlight the importance of focusing on both production heterogeneity within fisheries as well as 

the statistical reliability of the technical efficiency measures generated using stochastic frontier 

models.  Both of which should be beneficial for future policy development and especially for out-

of-sample policy responses. 
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Figure 1: Homogeneous Production Model. Open circles represent one segment and the filled 

diamonds represent another production segment.  
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Figure 2: Heterogeneous Production Model. Open circles represent one segment and the filled 

diamonds represent another production segment.  
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Table 1: Regression Results 

 

Coefficient Homogeneous 

Technology 

 Heterogeneous 

Technology 1 

Heterogeneous 

Technology 2 

Heterogeneous 

Technology 3 

Constant -5.8227** 

(-3.19) 

 -14.0679** 

(-6.59) 

-2.5578 

(-0.35) 

10.0996** 

(2.91) 

Net Tons 0.5759** 

(2.75) 

 1.3500** 

(4.06) 

-0.1392 

(-0.09) 

-0.1012 

(-0.39) 

Horse Power -0.0973 

(-0.41) 

 0.9081** 

(3.63) 

-3.3821** 

(-2.89) 

-1.3895** 

(-3.11) 

Duration 0.8452** 

(1.99) 

 2.3703** 

(4.35) 

3.5337* 

(1.67) 

-1.1919** 

(-2.05) 

Crew 0.5258* 

(1.84) 

 -0.5250 

(-1.03) 

7.0358** 

(2.52) 

0.0183 

(0.09) 

Days 1.0680* 

(1.65) 

 -0.9027 

(-0.99) 

3.8060 

(1.24) 

1.8625** 

(2.11) 

Month 0.8432** 

(6.95) 

 0.3421** 

(2.22) 

1.4978** 

(3.86) 

0.6880** 

(3.89) 

Rsol/Ysol -0.1086** 

(-14.88) 

 -0.0800** 

(-8.65) 

-0.2074** 

(-11.96) 

-0.1183** 

(-9.20) 

Fsol/Ysol -0.1630** 

(-18.10) 

 -0.0260* 

(-1.68) 

-0.2984** 

(-17.07) 

-0.1612** 

(-11.02) 

Agg/Ysol -0.3716** 

(-38.61) 

 -0.4955** 

(-32.04) 

-0.3567** 

(-19.49) 

-0.4082** 

(-24.53) 

Flatfish Stock -3.4794** 

(-6.13) 

 -1.5382** 

(-1.97) 

-5.8063** 

(-3.41) 

-2.9828** 

(-3.54) 

(Rsol/Ysol)2 -0.0131** 

(-13.74) 

 -0.0073** 

(-6.20) 

-0.0302** 

(-10.72) 

-0.0162** 

(-8.77) 

(Fsol/Ysol)2 -0.0230** 

(-16.50) 

 -0.0043** 

(-1.97) 

-0.0464** 

(-14.83) 

-0.0264** 

(-11.11) 

(Agg/Ysol)2 -0.0724** 

(-50.06) 

 -0.0594** 

(-28.56) 

-0.0683** 

(-19.26) 

-0.0676** 

(-26.25) 

(Net Tons)*(Duration) -0.0584 

(-0.92) 

 -0.3659** 

(-3.58) 

0.2453 

(0.69) 

0.1230 

(1.44) 

(Net Tons)*(Days) 0.0559 

(0.56) 

 0.3410** 

(2.51) 

-0.5061 

(-0.96) 

-0.1336 

(-0.93) 

(Duration)*(Crew) -0.0060 

(-0.96) 

 0.1251 

(1.01) 

-1.1122* 

(-1.71) 

0.2779** 

(4.04) 

(Days)*(Month) -0.2971** 

(-4.53) 

 -0.2575** 

(-3.11) 

-0.4191* 

(-1.88) 

-0.1460 

(-1.49) 
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Table 1: Regression Results (cont.) 

 

(Rsol/Ysol)*( Fsol/Ysol) 0.0027** 

(4.82) 

 0.0016** 

(2.30) 

0.0055** 

(3.27) 

0.0064** 

(6.34) 

(Rsol/Ysol)*( Agg/Ysol) 0.0081** 

(9.02) 

 0.0024** 

(2.25) 

0.0243** 

(9.87) 

0.0096** 

(5.10) 

(Rsol/Ysol)*(Stock) 0.0055 

(0.15) 

 0.0251 

(0.64) 

0.1531* 

(1.73) 

0.0180 

(0.40) 

(Fsol/Ysol)*( Agg/Ysol) 0.0163** 

(12.52) 

 0.0017 

(0.83) 

0.0346** 

(11.65) 

0.0162** 

(7.22) 

(Fsol/Ysol)*( Stock) 0.0351 

(1.12) 

 0.0544 

(1.38) 

-0.0582 

(-0.59) 

0.0728 

(1.36) 

(Agg/Ysol)*( Stock) -0.1105** 

(-2.53) 

 -0.1176** 

(-2.25) 

-0.1231 

(-0.81) 

-0.2014** 

(-3.03) 

(Stock)*(Month) 0.9362** 

(2.92) 

 -0.1233 

(-0.30) 

2.6454** 

(2.83) 

0.8259* 

(1.77) 

      

γ  0.4919** 

(3.27) 

 ------- 0.4894 

(1.07) 

------- 

2
Sσ  1.9457** 

(3.38) 

 ------- 1.6382 

(1.12) 

------- 

µ  0.5356 

(0.93) 

 ------- -0.4701 

(-0.18) 

------- 

      

# of Vessels 45  30 6 9 

Mean Log-Likelihood -1.42755   -1.34046  

(** indicates significant at the 95% level; * indicates significant at the 90% level.) 

 

Table 2: Model Specification Tests 

 

Classes Parameters Mean Ln(L) LR Test BIC AIC 
1 28 -1.42755 ------- 12677.592 12627.005 
2 53 -1.36536 547.645 12225.113 12129.360 
3 78 -1.34046 219.269 12101.010 11960.091 
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Table 3: Elasticities of Production 

 

Model/Parameter Homogeneous Heterog. j=1 Heterog. j=2 Heterog. j=3 

     

Net-tons 0.4213 0.3723 0.0478* 0.2814* 

Horsepower -0.0973* 0.9081 -3.382 -1.389 

Duration 0.4608 0.4670 1.300 0.5121 

Crew 0.5005 0.0010* 2.253 1.214* 

Days 0.9194 0.8853* 0.2039* 0.8418 

     

(* indicates not statistically significant) 

 

Table 4: Homogeneous Vessel Efficiency Results Sorted on TEiF  
 

Vessel Number *
iµ  

*
iσ  iTE  

TEiF  

15 -0.0193 0.0225 0.8966 0.58101 

43 -0.0153 0.0274 0.8850 0.39426 

41 -0.4978 0.4863 0.6982 0.02506 

28 1.3759 0.4863 0.2968 0.00012 

44 0.0526 0.0030 0.9340 0.00001 

16 1.0476 0.2451 0.3823 0.00000 

38 1.6840 0.3260 0.2169 0.00000 

35 2.1173 0.3260 0.1416 0.00000 

13 1.1020 0.1639 0.3580 0.00000 

14 1.1062 0.1639 0.3566 0.00000 

19 0.5996 0.0822 0.5620 0.00000 

40 0.0860 0.0040 0.9088 0.00000 

39 1.9372 0.1964 0.1590 0.00000 

29 2.9775 0.2451 0.0576 0.00000 

30 1.0069 0.0089 0.3670 0.00000 

42 0.4548 0.0329 0.6425 0.00000 

34 1.4593 0.1094 0.2455 0.00000 

6 0.1270 0.0033 0.8803 0.00000 

33 0.8635 0.0519 0.4327 0.00000 
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23 1.2530 0.0759 0.2967 0.00000 

10 1.4112 0.0822 0.2538 0.00000 

11 0.3811 0.0043 0.6846 0.00000 

37 0.9089 0.0449 0.4121 0.00000 

25 0.5687 0.0230 0.5728 0.00000 

27 0.4612 0.0040 0.6318 0.00000 

36 0.4833 0.0042 0.6180 0.00000 

31 0.5207 0.0055 0.5958 0.00000 

26 0.5565 0.0055 0.5748 0.00000 

9 1.8449 0.0704 0.1637 0.00000 

24 1.1751 0.0411 0.3152 0.00000 

22 0.6192 0.0031 0.5392 0.00000 

12 1.3382 0.0470 0.2686 0.00000 

45 0.6519 0.0039 0.5225 0.00000 

7 1.332 0.0095 0.4928 0.00000 

5 1.6606 0.0519 0.1950 0.00000 

4 0.8053 0.0122 0.4497 0.00000 

32 0.7232 0.0029 0.4859 0.00000 

18 2.4554 0.0759 0.0891 0.00000 

1 0.7955 0.0034 0.4521 0.00000 

21 0.8865 0.0048 0.4131 0.00000 

3 0.9137 0.0076 0.4026 0.00000 

2 1.3393 0.0267 0.2655 0.00000 

8 1.0471 0.0049 0.3518 0.00000 

17 1.7510 0.0395 0.1771 0.00000 

20 1.3757 0.0274 0.2562 0.00000 
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Table 5: Heterogeneous Vessel Efficiency Sorted on TEiF ; J=3; j=1 

 

Vessel Number *
iµ  *

iσ  iTE  TEiF  

15 -0.0886 0.0190 0.9222 0.90130 

40 -0.0284 0.0034 0.9635 0.14784 

19 -0.0670 0.0695 0.8374 0.07518 

41 -1.0990 0.4094 0.7892 0.02492 

14 0.4805 0.1384 0.6035 0.00002 

35 1.1342 0.2749 0.3558 0.00000 

13 0.6711 0.1384 0.5248 0.00000 

39 1.0775 0.1659 0.3667 0.00000 

27 0.0871 0.0033 0.9106 0.00000 

23 0.6629 0.0641 0.5297 0.00000 

34 0.9868 0.0925 0.3900 0.00000 

9 0.6469 0.0596 0.5373 0.00000 

11 0.2129 0.0036 0.8097 0.00000 

43 0.3203 0.0232 0.7286 0.00000 

20 0.3335 0.0232 0.7200 0.00000 

42 0.4098 0.0278 0.6703 0.00000 

21 0.2653 0.0041 0.7685 0.00000 

10 1.0227 0.0695 0.3723 0.00000 

31 0.2869 0.0046 0.7523 0.00000 

12 0.7551 0.0397 0.4794 0.00000 

37 0.7678 0.0379 0.4729 0.00000 

1 0.4057 0.0029 0.6675 0.00000 

5 0.9580 0.0439 0.3922 0.00000 

25 0.5502 0.0194 0.5824 0.00000 

17 0.8306 0.0334 0.4431 0.00000 

3 0.4846 0.0064 0.6180 0.00000 

45 0.5067 0.0033 0.6034 0.00000 

24 1.0357 0.0348 0.3612 0.00000 

36 0.8206 0.0035 0.4410 0.00000 

30 0.9410 0.0075 0.3917 0.00000 
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Table 6: Heterogeneous Vessel Efficiency Sorted on TEiF ; J=3; j=2 

 

Vessel Number *
iµ  *

iσ  iTE  TEiF  

2 -0.0172 0.0226 0.8957 0.98270 

28 0.3570 0.4094 0.5640 0.01091 

38 0.4180 0.2749 0.5829 0.00669 

22 0.1191 0.0027 0.8876 0.00000 

29 1.2435 0.2069 0.3172 0.00000 

4 0.6914 0.0103 0.5035 0.00000 

 

Table 7: Heterogeneous Vessel Efficiency Sorted on TEiF ; J=3; j=3 

 

Vessel Number *
iµ  *

iσ  iTE  TEiF  

32 0.0382 0.0025 0.9451 0.96290 

16 0.2778 0.2069 0.6472 0.03710 

44 0.0799 0.0025 0.9185 0.00000 

33 0.4689 0.0439 0.6340 0.00000 

26 0.2701 0.0046 0.7650 0.00000 

7 0.3212 0.0080 0.7282 0.00000 

8 0.3624 0.0042 0.6975 0.00000 

6 0.5727 0.0028 0.5648 0.00000 

18 2.1220 0.0641 0.1237 0.00000 
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Table 8: Fleet Capacity Estimates ( daysV MAX = ) 

 

  ),,(ˆ
jjjj VSFY  jĈ  ),,( jjj

TE
j VSFY jC~  jC  

       

J=1  1,434,210 1,737,207 3,422,634 4,167,582 1,525,143 

       

J=2; j=1  931,136 1,152,410 1,652,989 2,060,881 1,386,766 

J=2; j=2  332,593 376,680 585,942 641,737 335,048 

Total  1,263,729 1,529,090 2,238,931 2,702,618 1,721,814 

       

J=3; j=1  796,307 990,832 1,359,849 1,696,781 1,412,682 

J=3; j=2  260,174 270,449 299,389 311,124 18,763 

J=3; j=3  263,017 312,223 492,228 600,923 402,190 

Total  1,319,498 1,573,504 2,151,466 2,608,828 1,833,635 

       

  

Table 9: Fleet Capacity Estimates ( daysV =25.0 ) 

 

  ),,(ˆ
jjjj VSFY  jĈ  ),,( jjj

TE
j VSFY jC~  jC  

       

J=1  1,434,210 1,568,064 3,422,634 3,762,251 1,322,635 

       

J=2; j=1  931,136 1,023,671 1,652,989 1,823,842 1,130,229 

J=2; j=2  332,593 353,804 585,942 611,691 329,477 

Total  1,263,729 1,377,475 2,238,931 2,435,633 1,459,706 

       

J=3; j=1  796,307 874,607 1,359,849 1,495,596 1,129,345 

J=3; j=2  260,174 266,800 299,389 306,705 19,348 

J=3; j=3  263,017 285,310 492,228 534,204 381,503 

Total  1,319,498 1,426,717 2,151,466 2,336,505 1,530,196 
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Table 10: Fleet Capacity Estimates ( daysV =50.0 ) 

 

  ),,(ˆ
jjjj VSFY  jĈ  ),,( jjj

TE
j VSFY jC~  jC  

       

J=1  1,434,210 1,642,848 3,422,634 3,952,422 1,401,642 

       

J=2; j=1  931,136 1,076,517 1,652,989 1,922,685 1,215,709 

J=2; j=2  332,593 376,604 585,942 640,301 335,048 

Total  1,263,729 1,453,121 2,238,931 2,562,986 1,550,757 

       

J=3; j=1  796,307 992,635 1,359,849 1,701,740 1,412,682 

J=3; j=2  260,174 270,272 299,389 310,637 19,083 

J=3; j=3  263,017 298,266 492,228 561,566 394,419 

Total  1,319,498 1,561,173 2,151,466 2,573,934 1,826,184 
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Table 11: Capacity Utilization Measures CU 

 

Model/CU measure  Mean Std. Dev. 

    

J=1    

    

CUDays  0.8156 0.2054 

CU0.25  0.8990 0.0874 

CU0.5  0.8567 0.1334 

    

J=2    

    

CUDays; j=1  0.8100 0.2140 

CU0.25; j=1  0.9008 0.0880 

CU0.5; j=1  0.8563 0.1365 

CUDays; j=2  0.8892 0.1505 

CU0.25; j=2  0.9346 0.0702 

CU0.5; j=2  0.8892 0.1505 

    

J=3    

    

CUDays; j=1  0.8090 0.2137 

CU0.25; j=1  0.9014 0.0880 

CU0.5; j=1  0.8082 0.2137 

CUDays; j=2  0.9668 0.1359 

CU0.25; j=2  0.9794 0.0533 

CU0.5; j=2  0.9726 0.0799 

CUDays; j=3  0.8408 0.1834 

CU0.25; j=3  0.9084 0.0796 

CU0.5; j=3  0.8727 0.1196 

    

 

 

 


