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Induced Innovation in the Agricultural Sector:

Evidence from a State Panel 

Yucan Liu and C. Richard Shumway

Abstract

This paper uses recently developed panel cointegration techniques and error correction 

modeling to test the hypothesis of induced innovation in a state-level panel of U.S.

agricultural production. These methods provide greatly improved power compared to 

conventional approaches.  A 5-step testing procedure is used to test the induced 

innovation hypothesis based on a 2-stage CES production function with aggregate output 

and four input categories.  For both pairs of inputs, the test fails to support the hypothesis 

of induced innovation at one or more of the critical steps.  
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Induced Innovation in the Agricultural Sector:

Evidence from a State Panel

Introduction

One of the fundamental issues in the literature concerning the economics of 

technology is the induced innovation theory which was developed to explain the nature of 

technical change. This refutable hypothesis suggests that high prices can induce 

associated input-saving innovations. Much research has been devoted to testing the

induced innovation hypothesis (IIH) since it was first proposed by Hicks in 1932. The 

hypothesis has been examined in a wide variety of countries and industries and using 

various analytical tools. Nearly all of the early tests found strong support for the IIH, but 

many have been criticized for inadequate testing procedure or data. With the recent 

development of high quality panel data for U.S. agriculture and the development of new

techniques for handling non-stationarity properties of data, this paper reexamines this

refutable hypothesis. 

Several studies have examined the IIH in the last decade using a time-series 

approach.  Yet, their findings have not always agreed. Some concluded their evidence 

confirmed the IIH (e.g., Khatri, Thirtle, and Townsend, 1998; Thirtle et al., 1998; Oniki,

2000; Thirtle et al., 2002; Liu and Shumway, 2006), while others failed to find clear 

evidence supporting the hypothesis (e.g., Machado, 1995; Tiffin and Dawson, 1995), 

even for the same industry and country.

Similar ambiguity appears in recent studies using a variety of other testing 

methods. For example, Olmstead and Rhode (1993) concluded that the induced technical 

change model held only for the central grain growing regions of the U.S. based on 
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regional tests. In a later paper (1998) using state-level data they found little support for 

the induced technical change. Using a nonparametric approach, Chavas, Aliber and Cox 

(1997) found evidence supporting the IIH for actively traded inputs but not for land and 

farm labor in the U.S. Armanville and Funk (2003) empirically tested the IIH by 

imposing parametric restrictions on an input demand equation jointly estimated with the 

innovation possibility frontier. They found conflicting results for different sectors in a 

variety of countries. 

The work presented in this paper attempts to bridge these divergent strands of 

research by using recently developed time-series techniques designed for panel data and a 

high-quality state panel for agriculture. Panel data have several important advantages

over time-series or cross-sectional data for economic research.  For example, they enlarge 

the sample size, enhance the power of statistical tests, and facilitate analysis of dynamic 

properties of relationships.

As Dickey and Fuller (1979) and many other time series papers have 

demonstrated, traditional unit root tests have extremely low power unless the number of 

observations is very large. Therefore, it is possible that the conclusions based on 

conventional unit root and cointegration tests could be spurious. The most obvious way to 

overcome a low power problem is to increase the number of observations, such as using 

very long time-series data. For example, Thirtle et al. (2002) obtained evidence 

supporting IIH using data spanning 110 years. Unfortunately it is not always possible to 

obtain such a long data set. Additionally, analysis for long periods may suffer from 

serious structural changes that can cause the cointegration relation implied by the model 

to be unstable over the entire sample. Alhough the sample size can be dramatically 
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increased by simple transformation from annual data to quarterly or monthly data, the test 

power remains low since cointegration is a long run concept (Hakkio and Rush, 1991).

Therefore, test results for the IIH will be more reliable when panel data and panel 

time-series techniques are employed.1 We test the IIH for the U.S. agriculture sector 

following the testing logic of Thirtle at al (1998), Oniki (2000) and Thirtle at al (2002). 

Using time series data for South Africa, Japan, and the United States, they found 

evidence supporting the induced innovation hypothesis in each of those countries.  Thirtle 

at al (2002) argue that five requirements must be satisfied for the IIH to be validated via 

time-series properties: (a) the affected series have time-series properties allowing 

cointegration, (b) cointegration occurs among the series if a valid long-run relationship 

exists, (c), the correlation between factor price ratios and the factor quantity ratios is 

negative, (d) the change in factor quantity ratios cannot be fully explained by factor 

substitution, and (e) causality runs from factor prices to factor quantity ratios. Although 

this method is appealing both because of its logic and its rigor, it has only been applied in 

a traditional time-series approach to an aggregate country-level data set. Application of 

the method to state-level panel data using panel time-series techniques could offer a more

robust test for the IIH. 

We test the IIH using a two-stage CES production function. The two-stage CES 

model (de Janvry, Sadoulet, and Fafchamps, 1989) and its extensions have gained much 

attention in empirical tests of the IIH because of its simplicity.2  With the two-stage CES

model, a system of input demand equations is estimated. The logarithms of input quantity 

                                                
1 It appears that no extant literature has examined the IIH using such techniques. 
2 Hayami and Ruttan (1985), Thirtle (1985), Kawagoe, Otsuka, and Hayami (1986), Karagiannis and Furtan 
(1990), and Thirtle, Schimmelpfenning, and Townsend (2002) have all used the two-stage CES model to 
test the IIH.
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ratios serve as the dependent variables, and the explanatory variables include a constant

term, the own-price ratio, and an efficiency term. The benefits of using the two-stage 

CES are that the dependent variables are linear in parameters and symmetrically 

distributed around a zero mean. One shortcoming is that the conventional two-stage CES 

model is not locally flexible.  Among potentially relevant regressors that are excluded 

from the input ratio demand equations are output quantity and other input prices. 

The remainder of this paper is organized as follows. The next section develops the 

specification of the CES model and the panel testing methodologies. The subsequent 

section describes the data. The following section reports the empirical application of the 

model and panel testing methodology to a state-level panel data set for U.S. agriculture.

The last section summaries our main findings and concludes.

Methodology

Following de Janvry at al. (1989), Frisvold (1991), and Thirtle at al. (2002), our 

basic model is represented by the following input demand equations based on a two-stage 

CES functional form:

(1) 0 1 2 /ln(A/M)= ln( / ) ln( )A M A MP P E   

(2) 0 1 2 /ln(L/K)= ln( / ) ln( )L K L KP P E   

where A, M, L, K are the quantities of land, materials, labor and capital respectively; PA

PM, PL, and PK are the prices of land, materials, labor and capital respectively; EA/M and 

EL/K represent efficiency variables associated with land saving and labor saving 

techniques, respectively;  and  are parameters to be estimated. We treat the efficiency

variables as functions of research activities, extension, and farm size: 

(3) ( , , , ),     / , / ,i i pri pubE E R R Ext Size i A M L K 
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where Rpri is private research investment, Rpub is public research investment, Ext is public 

extension investment, Size is average farm size, and Ei is general functional notation.

In this model, the land-material ratio and the labor-capital ratio are presumed to 

be explained by a constant term, the own-price ratio, and efficiency variables, thus 

providing a clear-cut approach to a direct test of the induced innovation hypothesis.

Additionally, significantly negative coefficients associated with current price ratios are 

direct partial elasticities of substitution. 

In the first step of the analysis, each series is tested for a unit root. Several tests 

have been proposed to test for the null of nonstationarity in heterogeneous panels.  They 

include the early work of Levin and Lin (1993) which allows for heterogeneous, serially-

correlated errors but assumes identical first-order autoregressive coefficients in all series.  

Also included is the recent contribution of Im, Pesaran and Shin (2003) which allows for 

residual serial correlation and heterogeneous autoregressive coefficients across units. In 

this study, we apply the procedure of Im, Pesaran and Shin (2003), hereafter IPS, because 

of its stronger theoretical foundation and superior performance relative to alternative 

panel data testing procedures. The IPS statistic is the average of the individual ADF t-

statistics and is distributed as standard normal. 

In the second step of the analysis, a panel cointegration test is performed for 

nonstationary variables involved in equations (1) and (2). We use Pedroni’s (1999)

testing procedure which allows cointegration vectors to vary across units and is

considerably more powerful than conventional methods (Harris and Tzavalis, 1999).

Seven statistics are proposed by Pedroni (1999) and are categorized into two groups –
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between-dimension statistics and within-dimension statistics. The asymptotic distribution 

of each statistic can be expressed in the following form:

(4) )1,0(, N
V

NZ TN 
 

where ZN,T is the statistic, and  and V are the mean and variance, respectively. They are 

tabulated in Pedroni (1999, Table 2) up to seven explanatory variables. Under the 

alternative hypothesis, all the statistics diverge to negative infinity except one named 

‘panel v statistic’. Therefore, each is a one sided test for which a large positive value for 

the panel v statistic or large negative values for the other tests result in rejection of the 

null hypothesis of no cointegrated relation among the variables.

If a cointegrated relationship exists among nonstationary variables in the input 

demand equations, the short-run and the long-run relationships of the variables are 

estimated by an error correction model (ECM) in the third step of the analysis. The ECM 

we estimate is based on a re-parameterization of an autoregressive distributed lag model 

(ARDL) of each input demand equation defined in (1) and (2). Suppose the model for the 

land-material quantity ratio and the labor-capital quantity ratio is ARDL (p1, q1, q2, q3, q4, 

q5) and ARDL (p2, r1, r2, r3, r4, r5) respectively. The ECM can then be written as follows:

(5)  

1 1 1 , 1 1 1 ,
, , 1 , ,

, ,,

ln (ln ) ' ( ) ln ( ) ln

                    ( ) ln[ ] ( ) ln ( ) ln

                    ( ) ln




                           

       

 

A
i i i t i t i i

i t i t i t M i t

i pri i t i pub i i ti t

i

A A A P
x x L A L
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C L R D L R E L Ext

F L
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(6)  

2 2 2 , 1 2 2 ,
, , 1 , ,

, ,,

ln (ln ) ( ) ln ( ) ln
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  ; 1  and 2  are vectors of long-run parameters accounting for the long-

run equilibrium relationship between factor quantity ratios and the explanatory variables;  

1  and 2  are corresponding error correction coefficients. The term associated with the 

error correction coefficient represents the deviation of the set of variables from the long-

run equilibrium path. Thus, the error correction coefficient measures the speed of 

adjustment for the system to move back to the long-run equilibrium. Specifically, a zero 

value for the error correction coefficient means no long-run relationship, a value between 

-1 and 0 indicates partial adjustment, a value of -1 implies full adjustment, a value 

smaller than -1 indicates the model overadjusts in the current period, and a positive value 

implies the system moves away from equilibrium in the long-run. 
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Since all the variables are in logarithms, the long-run elasticities are represented 

by the long-run coefficients, and the short-run elasticities are represented by associated 

short-run parameters. The short-run elasticities of substitution may be viewed as 

movements around the curvature of the isoquant, while the long-run elasticities can be 

explained as movements around the innovation possibility curve (IPC). Induced 

innovation requires the estimated long-run elasticities of substitution to be significantly

greater than the estimated short-run elasticities (Oniki, 2000). 

The dynamic panel data models specified in (5) and (6) are estimated by the 

pooled mean group estimation procedure (PMGE) developed by Pesaran at al. (1999). 

This estimation method uses a maximum likelihood approach which involves maximizing 

the log-likelihood function by means of the Newton-Raphson algorithm to estimate the 

ECM. The main benefit of the PMGE procedure is that it constraints only the long-run 

coefficients to be identical for the cross-sectional units but allows the short-run 

coefficients and error variances to vary across groups. This weak homogeneity 

assumption is preferable to the traditional procedures such as fixed effects, instrumental

variables, and Generalized Method of Moments (GMM) which presume strong 

homogeneity across groups (Pesaran at al., 1999). 

As proposed by Pesaran et al. (1999), a Hausman-type test is conducted to test for 

the validity of homogeneity restrictions of the long-run coefficients and the error 

correction term in each panel. Reference results are provided by mean group (MG) 

estimates, which impose no restrictions on estimates and are defined as the average of 

state-specific coefficients. The PMGE parameter estimates are consistent and efficient

only if homogeneity holds. Otherwise, the MG estimation method is preferred. Thus, we 



10

are able to evaluate whether imposing long-run homogeneity helps to reveal significant 

adjustment of the factor demands to long-run equilibrium.

Based on the estimation of the ECM, the short-run and long-run elasticities are 

computed and used to decompose the factor ratio changes into those induced by price

changes and those accounted for by factor substitution (Thirtle at al. 2002).  

The last step of the analysis is to examine whether the factor price ratio Granger 

causes factor-saving technical bias. Several approaches have been developed to conduct 

Granger causality tests for a panel data model. Holtz-Eakin et al. (1988) applied an 

instrumental variable estimation approach to a panel vector autoregression (VAR) model 

to test for Granger causality in panels. We use a mixed fixed and random coefficients

(MFR) estimation algorithm which as developed by Hsiao (1989) for a non-dynamic, 

non-fixed-effects panel data model and extended by Nair-Reichert and Weinhold (2001) 

to the dynamic panel model. This procedure is followed since it results in least bias 

among the estimators, including Holtz-Eakin et al. (1988). In the MFR model, the 

coefficient on the lagged dependent variable is specific to the group and the coefficients

on the exogenous explanatory variables are taken as randomly distributed.

Data

Panel data on input quantities and prices for the 48 contiguous states for the 

period 1960-1999 come from Ball et al. (2004).  This high-quality aggregate data set 

include a comprehensive price and quantity inventory for three categories of agricultural 

outputs (crops, livestock, and secondary outputs) and four categories of inputs (capital, 

land, labor, and materials) compiled using theoretically and empirically sound procedures

which preserve the economic integrity of national and state production accounts and are 
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consistent with a gross output model of production. For example, labor inputs were 

constructed by incorporating a demographic cross-classification of the agricultural labor 

force. Capital stocks for depreciable assets and land were developed using the perpetual 

inventory method. Implicit asset rental prices were based on the correspondence between 

the asset’s purchase price and the discounted value of future service flows. Using data on 

land area and average value for each agricultural statistical district in each state, a

constant-quality stock of land was compiled (Ball et al. 1999).  In this study, all outputs 

were aggregated into one group.

The number of private patents is used as a proxy for private research investments.  

The data come from Johnson’s (2005) inventory of patents by state and by industry as the 

primary user of the patent for the period 1883-1996.  The panel data set was prepared by 

multiplying the percent of patents granted by state each year by the number of patents 

granted for use in agriculture.  Johnson’s patent classification since 1976 follows the 

international protocol, and the Yale Technology Concordance (Johnson and Evenson

1997) was used to calculate industries of manufacture and sectors of use.  Prior to 1976, 

the Wellesley Technology Concordance (Johnson 1999) was followed to classify patents. 

Deflated annual agricultural public research investment data for the period 1927-

1995 for each state were compiled by Huffman (2005).  Agricultural extension 

investments for the U.S. for the period 1951-1996 are from Huffman, Ahearn, and Yee

(2005).  They are total cooperative extension investments in current dollars divided by 

the price index for agricultural research.

Average farm size for each state was measured as the average gross value of farm 

assets for each state.  It was computed for each year as the total gross value of farm assets 
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reported for the state divided by the number of farms. Farm assets data for the years

1960-1999 were taken from the Farm Balance Sheets (USDA/ERS). Farm numbers data 

for the same years were taken from Farms, Land in Farms, & Livestock Operations (and 

its predecessor publication) (USDA/NASS, various issues) and compiled by Strickland 

(2005).  

Empirical Results

Panel Unit Root and Cointegration Test Results

The IPS unit root test results are reported in Table 1. They indicate the order of 

integration for each series. These tests allowed each panel member to have a different 

autoregressive coefficient and short run dynamics under the alternative hypothesis of 

trend stationarity. The tests were conducted using the econometric software package, 

Regression Analysis of Time-Series (RATS), version 6, routine IPSHIN. As suggested by 

Newey and West (1994), the number of lags included in each test was set equal to the 

integer of 4(T/100)2/9, i.e., 3 in our application. Test statistics and associated P-values for 

all series imply that a unit root could not be rejected at a 0.05 significance level for any 

variable except extension investments.  Thus, only extension investments are concluded 

to be stationary. Most variables (Ln(A/M), Ln(PA/PM), Ln(Rpri), Ln(Rpub)) are stationary 

in first differences, i.e., they are I(1) processes, at a 0.05 significance level. A few series 

including Ln(L/K), Ln(PL/PK) and Ln(Size) are I(2) processes. 

Based on the integration order of the time series, we proceed to analyze the long-

run relationship between the factor ratios and associated explanatory variables. If the data 

are cointegrated for a factor ratio equation, the factor ratio can be formulated using the 

original (i.e., untransformed) data for I(1) and I(0) series and first differences for I(2) 
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series to capture the long-run relationships in the data (Lim and Shumway, 1997; Tiffin 

and Dawson, 1995). If the data are not cointegrated, we will fail to support the IIH from a 

time series perspective since a long-run relationship is a necessary condition for induced 

innovation to occur (Oniki 2000). 

Investments in research activities have been shown to affect the technology, or the 

nature of the production function, at least seven years later and sometimes up to 30 years 

later (Chavas and Cox 1992; Evenson and Pray 1991; Pardey and Craig 1989). Because 

investments in research and extension may not induce technological change for several 

years, Akiake’s information criterion (AIC) is used in the cointegration analysis to 

determine lags on extension, public and private research investments. The optimal lag on 

public research investments was chosen from lags of 7-30 years. The optimal lag on 

private research investments was chosen from lags between 3 years and the optimal lag 

on public research investments. The optimal lag on extension investments was chosen 

from lags between 3 years and 9 years. The lag on public research investments that 

minimized the AIC was 28 years for the land-material ratio equation and 16 years for the 

capital-labor ratio equation. In both equations, a lag of 13 years on private research

investments minimized the AIC. The optimal lag on extension investments was 3 for the 

land-material equation and 4 for the capital-labor equation. For convenience in 

subsequent analysis, identical lags were selected for both equations.  A lag of 16 years 

was selected for public research investments and 3 years for extension investments. 

These lags were selected because the distributions of AIC values were much steeper at 

these values for the respective equation than were the distributions for the optimal lag in 

the other equation.
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Table 2 reports the results of the cointegration analysis. Except one test, all tests

for the land-material equation resulted in failure to reject the hypothesis of no 

cointegration. For the capital-labor equation, 5 of the 7 statistics supported rejection of 

the hypothesis of no cointegration at a 0.05 significance level and another at a 0.10 

significance level. Thus, it is concluded that a long run relationship exists for the capital-

labor equation but not for the land-material equation. Consequently, the IIH is rejected 

based on these time series testing procedures for the inputs of land and materials.

Additional testing will focus on capital and labor only.  

Estimation of the Error Correction Model

Having concluded that a cointegration relationship exists among the variables in 

the capital-labor equation, we next estimated the ECM. Based on the previous test results, 

the dynamic form of the model specified in (6) was modified by replacing the I(2) 

variables, Ln(L/K), Ln(PL/PK) and Ln(Size), with their first differences. Although 

considered redundant from a time series analysis perspective, the stationary variable, 

extension investments, was included in the ECM to determine whether it induces biased 

technical change. 

The pooled mean group estimation (PMGE) estimates were computed using a 

GAUSS program by Pesaran, Shin, and Smith (1999). The lag orders for dependent and 

independent variables were chosen by minimizing the AIC subject to a maximum lag 

length of 3. In this application, an ARDL(2,2,2,2,2,2) was determined by this process. 

The ECM parameter estimates are reported in Table 3. As noted previously, the 

estimated coefficients are elasticity estimates. Using the Hausman test, the hypothesis of 

long-run homogeneity among the variables was not rejected at a 0.05 significance level. 
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Thus, it was concluded that the PMGE is an appropriate method for estimating the ECM 

specified in (6). The capital/labor model performed quite well with an average adjusted 

R-square of 0.625, which is reasonably high for an ECM. The estimated error correction 

coefficient λ2 was negative and highly significant indicating that the system moves 

toward equilibrium. However, it has an estimated value of -1.361 which implies that the 

error correction overadjusts towards the long-run equilibrium. 

In the long-run, the negative coefficient with regard to the price ratio indicates 

that a reduction in the ratio between the prices of capital and labor generates a labor-

saving technical change that is consistent with the hypotheses of induced innovation. In 

agreement with de Janvry et al. (1989), and Thirtle at al. (2002), the long-run coefficient 

on public research investments is significantly positive. In addition, as expected, private 

research and extension investments have significantly positive impacts on the capital-

labor ratio. The significantly positive coefficients on all three variables that represent the 

technology creation and dissemination sector imply that increased research and extension 

investments would lead to capital using and/or labor saving technical bias. The farm size 

parameter is negative and significant. This result suggests that a decrease in farm size 

would increase the capital/labor ratio, so it is the smaller farms that increase the bias 

towards labor-saving technical change. Also, in state-specific regressions, all of the long-

run coefficients are significant and have the same signs as in the panel estimates. As 

shown in Table 3, most of the variables exhibited significant short-run effects at a 0.05 

level, and all the research and extension variables were significantly positive and 

consistent with theoretical expectations. Due to the over-adjustment of the system, 

however, the short-run direct elasticity of substitution had a value of -0.143 which was 
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greater in absolute value than the long-run elasticity of -0.108.3 As noted by Oniki (2000), 

a crucial requirement to support the IIH is that the curvature of the isoquant is greater 

than that of IPC, i.e., the long-run elasticity has a greater absolute value than the short-

run elasticity. Despite the other supporting evidence for the IIH in capital and labor 

inputs, this violation results in rejection of the IIH in all four inputs using a robust, panel 

time series testing procedure.4

In contrast with other empirical studies, our conclusion that the IIH is not 

supported in U.S. agriculture is consistent with the earlier conclusions of Olmstead and 

Rhode (1993, 1998), Machado (1995), Tiffin and Dawson (1995), and Antle (1986).

However, it is counter to the earlier conclusions of Binswanger (1974), Kawagoe et al. 

(1986), Lambert and Shonkwiler (1995), Thirtle at al (2002) and others who found 

evidence supporting the IIH in U.S. agriculture.

In order to determine whether inclusion of potentially relevant variables would 

affect conclusions relative to the IIH, we also conducted all tests using a generalization of 

                                                
3 In the state-specific analyses, only two states, Colorado and Nevada, exhibited smaller short-run 
elasticities than long-run elastisticies in absolute value, which would be required for a partial adjustment
process.
4 Although the IIH has now been rejected for all inputs by this time-series testing procedure, we also 
carried out the final test, the FMR causality test, to determine whether causality ran from the factor price 
ratio and research and extension variables to the factor quantity ratio for capital and labor. We used a 
dynamic model in which the capital-labor ratio was modeled as a function of its lags and other explanatory 
variables:

(7)

0 1 1 2 2 1 1 2 2

3 1 4 2 5 1 6 2

7 1 8

ln( / ) ln( / ) ln( / ) ln( / ) ln( / )

                     ln( ) ln( ) ln( ) ln( )

                     ln( )

it i it i it i L K it i L K it

i pri it i pri it i pub it i pub it

i it

L K L K L K P P P P

R R R R

Ext

    

   

 

   

   



    

   

  2 9 1 10 2ln( ) ln( ) ln( )i it i it i it itExt Size Size      
Consistent with previous ARDL models, we selected a lag length of two for all the variables. The lagged 
terms of the dependent variable were included to proxy omitted variables (Nair-Reichert and Weinhold,
2001). The estimates were computed using a GAUSS program distributed by Nair-Reichert and Weinhold,
(2001). Insignificance of the coefficients on the two terms representing lagged own-price ratio indicated 
that the hypothesis of causality running from the factor price ratio to the factor quantity ratio was clearly 
rejected. The hypothesis that research and extension activities Granger-cause the change in factor quantity 
ratio was also rejected. Thus, the testing results for causal relationships in the capital-labor equation also 
failed to support the IIH.  This finding is consistent with Liu and Shumway (2006).
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the two-stage CES model. This generalization includes a term representing output level 

and all input prices as regressors. That is, the factor ratio is explained not only by its own 

price ratio and an efficiency variable but also by other price ratios and a term 

representing aggregate output level. This generalization is treated only as an 

approximation to an unknown but more general functional form. The model has the 

following form:

(1’) 0 1 2 3 4 5 /ln(A/M)= ln( / ) ln( / ) ln( / ) ln( ) ln( )A M k L A L A MP P P P P P y E         

(2’) 0 1 2 3 4 5 /ln(L/K)= ln( / ) ln( / ) ln( / ) ln( ) ln( )K L A M A L L KP P P P P P y E         

where y represents aggregate output level, and other variables are the same as in above 

sections. The conclusions regarding cointegrated relationships were the same for this 

generalization of the CES model as for the traditional two-stage CES model. An ECM 

was also estimated using this generalization, and the results were qualitatively the same 

as for the traditional CES model. The system over-adjusted, and the long-run elasticity 

was smaller than that of the short-run, thus the IIH was not supported by this model either. 
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Conclusions

The hypothesis of induced innovations is that technology is developed and 

implemented in ways that facilitate replacement of scarce and expensive production 

factors by abundant and cheap factors. This hypothesis has been widely tested in many 

sectors, and especially in the agricultural sector in many countries. Surprisingly, we do 

not yet have a stylized fact based on the broad testing, even for the agricultural sector in 

the U.S. Part of the reason for conflicting test results is due to the low power of 

traditional testing methods and part is due to inadequate data.  

In this paper, both issues are addressed in a rigorous fashion. A high quality state-

level panel data set is used for the tests, and recent time-series testing procedures for 

panel data are used that result in much higher power than traditional time-series methods. 

In addition, a 5-step sequential testing logic is employed that assures a more powerful 

approach for examining the induced innovation hypothesis. Based on a two-stage CES 

model with aggregate output and four factors of production, none of the inputs satisfied 

the necessary conditions for supporting the hypothesis. Land and materials failed to 

support the hypothesis at the 2nd step (existence of a cointegrated relationship) and capital 

and labor failed to support it at the 3rd step (long-run elasticity of substitution greater in 

absolute value than the short-run elasticity). While other steps in the testing procedure 

supported the hypothesis, these did not and resulted in rejection of the hypothesis. The 

test conclusions were confirmed using a generalization of the CES functional form.

Despite rejection of the induced innovation hypothesis, one of the significant 

results from this study is that both research and extension investments have positive 

impacts on innovation of labor-saving inputs.  That is true in both the short run and the 
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long run. This finding suggests that policies encouraging investment in public and/or 

private research and development will help lead producers’ decisions toward more 

economical and efficient technical progress in saving relative expensive inputs. Our 

results also make clear that policy makers cannot rely exclusively on price signals to 

induce efficient technical change. One possible implication is that input substitution is 

inelastic and results in augmentation of the relatively more expensive input even after the 

development of new technologies (Armanville and Funk 2003). Another possibility is 

that the marginal costs of developing and implementing input-saving technologies for the 

relatively expensive inputs are greater than for the relatively cheap inputs. Available data 

impose the assumption on tests of the induced innovation hypothesis that the marginal 

cost of developing and implementing input-saving technologies are the same for each 

input, so we cannot definitively rule out this possibility. It begs for data that would permit 

the supply side of technology development to be explicitly incorporated into future tests 

of the hypothesis.
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Table 1. Panel Unit Root Test Results

Data Series a Ztbar statistic b P-value

Ln(A/M) -1.535 0.062

 Ln(A/M) -2.194 0.014

Ln(L/K)   1.220 0.111

 Ln(L/K) -1.533 0.063

2 Ln(L/K) -4.073 0.000

Ln(PA/PM)   0.847 0.199

 Ln(PA/PM) -2.071 0.019

Ln(PL/PK)   1.101 0.136

 Ln(PL/PK) -1.560 0.057

2 Ln(PL/PK) -5.347 0.000

Ln(Rpri) -0.536 0.296

 Ln(Rpri) -2.862 0.002

Ln(Rpub) -0.225 0.411

 Ln(Rpub) -2.041 0.021

Ln(Ext)   1.765 0.038

Ln(Size)   0.568 0.285

 Ln(Size) -0.196 0.422

2 Ln(Size) -2.878 0.002
a 2 indicates the variable is second differenced.

b When testing for unit root in levels, a time trend was included. For the differences, the 

unit root was tested without time trend.
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Table 2. Panel Cointegration Test Results

Equation
Test Statistic

Ln(A/M) Ln(K/L)

Panel v-statistic a 2.073** -0.523

Panel -statistic b 0.369 -1.962**

Panel t-statistic (nonparametric) b 0.441 -4.556***

Panel t-statistic (parametric) b 0.612 -4.349***

Group -statistic b 1.098 -1.349*

Group t-statistic (nonparametric) b 0.760 -4.883***

Group t-statistic (parametric) b 0.952 -4.649***
a Critical 1-tailed test values for rejecting hypothesis of no cointegration (Pedroni 1999): 

10% level* 1.282, 5% level** 1.645, 1% level*** 2.326.

b Critical 1-tailed test values for rejecting hypothesis of no cointegration (Pedroni 1999): 

10% level* -1.282, 5% level** -1.645, 1% level*** -2.326.
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Table 3. Estimated Error Correction Model

PMGE MGE Hausman test
Variable Coef.a S. E.b t-ratio Coef. S. E. t-ratio h-value p-value
Long-run Coefficients
Ln(PL/PK)t-1 -0.108 0.011 -10.237 -0.115 0.055 -2.106 0.02 0.90
Ln(Size)t-1 -0.052 0.021 -2.439 0.088 0.175 0.501 0.65 0.42
Ln(Rpri)t-1

c 0.020 0.007 3.055 0.072 0.040 1.797 1.73 0.19
Ln(Rpub)t-1 0.019 0.005 3.670 -0.030 0.043 -0.693 1.32 0.25
Ln(Ext)t-1 0.051 0.009 5.511 0.088 0.033 2.677 1.35 0.25
Error Correction Coef. λ2 -1.319 0.055 -23.903 -1.415 0.068 -20.788
Short-run Coefficients
Ln(PL/PK)t -0.143 0.006 -23.903 -0.127 0.044 -2.873
Ln(Size)t -0.069 0.003 -23.903 0.005 0.137 0.034
Ln(Rpri)t 0.026 0.001 23.903 0.068 0.029 2.365
Ln(Rpub)t 0.025 0.001 23.903 0.002 0.023 0.079
Ln(Ext)t 0.068 0.003 23.903 0.132 0.041 3.191
2Ln(L/K)t-1 0.123 0.038 3.238 0.164 0.043 3.804
2Ln(L/K)t-2 0.020 0.021 0.953 0.018 0.025 0.694
2Ln(PL/PK)t -0.042 0.018 -2.343 -0.048 0.040 -1.205
2Ln(PL/PK)t-1 -0.043 0.021 -2.027 -0.048 0.037 -1.286
2Ln(PL/PK)t-2 -0.034 0.016 -2.101 -0.045 0.021 -2.119
2Ln(Size)t 0.183 0.038 4.850 0.144 0.113 1.273
2Ln(Size)t-1 0.123 0.039 3.159 0.028 0.076 0.368
2Ln(Size)t-2 0.012 0.032 0.394 -0.016 0.056 -0.296
Ln(Rpri)t -0.008 0.016 -0.534 -0.042 0.026 -1.600
Ln(Rpri)t-1 -0.021 0.010 -2.038 -0.029 0.014 -2.020
Ln(Rpri)t-2 0.016 0.008 2.090 0.028 0.014 2.076
Ln(Rpub)t 0.032 0.024 1.298 0.074 0.036 2.075
Ln(Rpub)t-1 -0.006 0.014 -0.470 0.004 0.014 0.279
Ln(Rpub)t-2 0.037 0.016 2.266 0.051 0.021 2.460
Ln(Ext)t -0.018 0.036 -0.506 -0.036 0.065 -0.562
Ln(Ext)t-1 -0.203 0.050 -4.029 -0.280 0.068 -4.128
Ln(Ext)t-2 -0.111 0.032 -3.480 -0.176 0.046 -3.860
Constant -0.665 0.028 -23.658 -0.968 0.216 -4.489

2R 0.6252 0.727

Note: The critical t values are 1.68 for 95% confidence level and 2.02 for 97.5% 
confidence level. 2R is an average of state-specific adjusted R-square.
a Coef. represents coefficient
b S.E. represents standard error
c Ln(Rpri)t, Ln(Rprub)t and Ln(Ext)t are lagged values on private research, public research, 
and extension expenditures with optimal lags 13 years, 16 years, and 3 years respectively 
which were selected by minimizing the AIC.
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Table 4. MFR Causality Test

Variable Estimated Coefficient Standard Error t-value

Constant -1.152 0.538 -2.142

Ln(L/K)t-1 -0.212 0.519 -0.408

Ln(L/K)t-2 -0.081 0.527 -0.154

Ln(PL/PK)t-1 0.045 0.396 0.114

Ln(PL/PK)t-2 0.033 0.409 0.081

Ln(Rpri)t-1
a 0.031 0.256 0.121

Ln(Rpri)t-2 0.003 0.253 0.011

Ln(Rpub)t-1 0.047 0.447 0.106

Ln(Rpub)t-2 -0.019 0.448 -0.042

Ln(Ext)t-1 -0.036 0.331 -0.107

Ln(Ext)t-2 0.111 0.332 0.336

Ln(Size)t-1 0.034 0.824 0.042

Ln(Size)t-2 -0.151 0.840 -0.180

a Ln(Rpri)t, Ln(Rprub)t and Ln(Ext)t are lagged values on private research, public research, 

and extension expenditures with optimal lags 13 years, 16 years, and 3 years respectively 

which were selected by minimizing the AIC.

Note: The critical t values are 1.68 for 95% confidence level and 2.02 for 97.5% 

confidence level. 


