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Abstract:

Many conservation programs,  such as the Conservation Reserve Program (CRP),  use indices to

select offers. When modeling how  changes in the index weights effect program outcomes, one

must account for the attributes of available land, and which landowners  chose to participate.

This paper introduces a methodology to account for changes in participation as index weights

change.  Data on the actual CRP (all offers received) are combined with an artificial population

of available lands (based on National Resources Inventory data).  Bootstrapping methods are

used to calibrate estimates of participation probability, and to account for errors-in-variables

when estimating how index scores effect this probability.  Preliminary analysis suggests that

accounting for participation  effects will effect estimated impacts of changing the CRP’s index

weights.

* Economist, Economic Research Service, USDA. The views and opinions expressed in this
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Research Service or the USDA.



Modeling Conservation Program Impacts: Accounting for participation using

bootstrapping

Introduction

Agricultural conservation programs, such as the Conservation Reserve Program (CRP), often

have multiple objectives (such as reducing soil erosion, improving water quality, and enhancing

wildlife habitat).  Choosing what lands to enroll requires some method of ranking offers that will

account for more than one objective. In practice, indices are used to score and rank offer. These

indices, such as the CRP’s Environmental Benefits Index (EBI), combine measures of several

biophysical attributes of an offer (such as soil erodibility, and wildlife value of a  proposed cover

crop) with an index-weight

Given the difficulties of constructing weights that accurately represent social preferences,

in practice, index-weights are the products of technical information on physical characteristics,

input from stakeholders, and available economic insights.  It is of interest to examine how

program results would vary as these somewhat ad-hoc index-weights change? For example, are

there combinations of index-weights that greatly improve the provision of one environmental

benefit, with only small decreases in the others?

The impacts of a change in weights  will be a function of the distribution of physical

characteristics across the landscape – since each parcel of land provides a unique mix of

environmental attributes.  In addition, the impacts are a function of landowner willingness to

offer their land.

This paper considers the latter problem: how to account for changes in landowner

participation rates as index-weights change. I focus on the CRP.  The overall goal is to estimate

what the CRP would look like as the weights in its Environmental Benefits Index (EBI)1  change.

                                                
1 An EBI score (for a particular offer) is  a vector product:

EBI = N1 *  E1 + N2 * E2  + …. + Nn * En
Where Ni  is the relative value of the i’th factor (for a particular offer),  that ranges between 0
and 1; Ei the weight for the i’th factor (it is the same for all offers). For example, the N3 factor
(soil erosion) weight is 100.  Note that Ni * Ei is referred to as the  score for the i’th factor.



Using estimated probability of participation to compute an expansion factor

Estimating the first order effect of a change in EBI weights is simple: as weights change ,

the scores granted to existing offers would change, leading to a re-ranking of existing offers,

implying a that a different set of offers would be  accepted (assuming, say, that only the top X%

of offers are accepted).

However, this simple model suffers from at two sources of  “participation” bias:

a) As the EBI weights change, it is possible that different subsets of acres (out of the currently

eligible acres) will be offered.2

b) It is likely that the set of lands currently available are systematically different from the full

set of lands that are eligible. In particular, land currently enrolled in the CRP can not be “re-

offered”, and this land may be different than land not currently enrolled. This can lead to

biased projections of  the impacts on future enrollments (given a change in weights).

To  account for these concerns, I use a method based on augmenting current offers with offer

specific expansion factors. The expansion factor is based on an estimated, offer-specfic

probability of participation (PP).

The essential notion is that each observation in the CRP offer file is representative of a larger

set of acreage that could be offered into the CRP.  This implies that for a given offered acre,

there are other observationally equivalent acres out there. Some of these observationally

equivalent acres are already enrolled in the CRP, some were offered but were not accepted, while

others belong to landowners who have decided not to offer them to the CRP during this signup.

To compute the probability of participation, we assume that a landowners decision to offer

an acre to the CRP is influenced by an acre’s EBI scores, along with profitability and other

concerns. By modeling the probability of making an offer as a function of the EBI score (hence

as functions of EBI weights), we can estimate a new probability (of making an offer) should the

                                                
2 If landowner  transaction costs (such as the time and effort of submitting an offer  to the USDA) are non-
negligible, some landowners may not bother making an offer. In particular, landowners who judge, based on their
estimate of their EBI score, that they have a small chance of being accepted; and won’t submit an offer even if they
would like to be in the program.



EBI weights change. Using this new probability (in conjunction with a probability at the status

quo), it is straightforward to derive a new expansion factor.

The expansion factor measures how many acres (across the entire nation) are represented by

an acre in an actual offer. As this expansion factor changes (due to changes in the underlying

probability of participation), so will estimates of what lands are offered to the CRP. In particular,

simulations that predict just what the CRP will look like (as index-weights change) will use the

expansion factor, along with changes in an offer’s EBI score,  when “choosing lands” to be part

of the CRP.

This simulation strategy, which augments data on existing offers with an estimated expansion

factor, can be contrasted with micro-level approaches that carefully model participation using

detailed survey instruments  on the general population (for example, Lambert et al).  Such a

micro-approach has the appeal of clarity – given that one starts with a representative  sample,

prediction is a relatively straightforward exercise. However, the leveraging of available data is

the primary advantage of this simulation approach. This leveraging is especially useful if ones

goal is to detail the correlation of environmental impacts (as index-weights change) – since the

offers provide a rich census of what the actual possible tradeoffs are.

The basic probability of participation  model

The probability of participation model uses an estimated  probability of participation  to account

for changes in the probability that a landowner will offer his land to the CRP, changes that may

be due to changes in the EBI weight vector. This is a several step process that combines data

from several sources.

1) LTB: The USDA Farm Services Agency (FSA) likelihood-to-bid (LTB) model is used.  The

LTB model is based on NRI data. It determines which NRI points represent acres  are

eligible for the CRP, predicts EBI factor scores for these NRI points (given an EBI weight

vector), and predicts whether the land will be offered into the CRP or not.



The LTB model provides a simulated “universe” of data on US agricultural lands. In

particular, the LTB can provide estimates of the acres eligible for the CRP (eligible-acres3)

in each Major Land Resource Area (MLRA)4.

2) OFFER: The complete set of offers made to the CRP’s 26h  signup form a “basis” from

which we compute the total acreage in a MLRA offered into the CRP (offered-acres). Each

offer  contains locational information as well as information on EBI scores

3)  CONTRACT: The complete set of  currently active contracts contains the same

information, per observation, as the OFFER file.

The model uses the LTB and OFFER data to compute  MLRA specific offer rates (Ormlra):

(1)  OR m = (acres offered in this MLRA)  /   (eligible acres in this MLRA).

The participation probability can then be modeled by regressing the  offer rate on  several

explanatory variables.

(2) OR = f (X, β )

where

X is a vector of independent variables including an offer’s EBI score, measures of land

productivity, and average farmer characteristics (such as county-wide median age):

β  is a vector of coefficients to be estimated

The results of this regression can be used to generate an expansion factor is a function of  index-

weights (given an alternative vector of EBI weights):

1. For each observation in the offer file, predict

     (3)    RO  i 0   = f (X i 0  , β ) and   RO  i 1   = f (X i 1  , β ) ;

                                                
3 Eligible acres are defined as land that meets crop history and other criteria for enrollment in the CRP, and that are
not currently enrolled in the CRP.
4 More precisely, eligible acres can be estimated for each of the  approximately 300 “MLRAS-within-state” areas.
This choice of aggregation is based on the level at which the Natiional Resource Conservation Service deems NRI
data to be “statistically reliable”.



the “old” and “new” predicted offer rates.. These predictions use each offer’s attributes (such

as its EBI factor scores) and the estimated values of β .   RO  i 1, uses the alternative EBI

weight vector to compute the EBI scores for each offer, while  RO  i 0 is based on the weight

vector in place when the actual offers were made.

4) Compute  offer specific expansion factors using:

(4)  XPi  = RO  i 1  /   RO  i 0

Thus, if the predicted offer rate increases from 25% to 50%, then the expansion factor will

be 2.0.

5) For each observation, the  effective acres,  EA,  is computed as:

(5) Eai = actual_acresi * XPi.

Where actual_acresi  is the actual acreage  of observation i.

6) All the offers are sorted by EBI scores, and the “”best” offers are entered into the simulated

CRP. Note that each offer’s effective acres, rather then actual acres, is used when adding

lands to the simulated CRP.

A bootstrapping estimator

Prediction of the “offer rate” for each observation in the offer file is odd – after all, if an offer is

received, its “rate” is 1.0!  However, if one considers that each offer is representative of other

lands, lands that are already enrolled and unenrolled lands that were not offered (but are

observationally equivalent), then an “observation specific offer rate” does make sense.

As detailed above, one can use actual offers and information on the “eligible acres” data (from

the LTB dataset) to compute regional (say, county-wide) offer rates. One can

regress these regional offer rates against regional (county-average) measures of independent

variables (such as the EBI factor scores).  The notion is that this regional data will be



representative of actual individuals, so that the coefficients from this regression can then be

applied to individual observations from the offer file.

However, aggregation bias is likely to be present, especially if non-linear functions (such as

probits) are estimated. In this case, it would be convenient to introduce other variables to help

control for aggregation bias; variables such as standard deviations, ranges, and other such

measures of the dispersion of the independent variables.

Unfortunately, there is no obvious way to use coefficients on such dispersion variables in the

prediction phase. That is, for actual observations from the offer file, there is no “dispersion”

information  -- the attribute measures are exact.

To control for this bias,  a bootstrapping estimator, I use  simulated draws from an underlying

population of landowners.  Basicallly,  a simulated dataset of “bootstrapped” observations is

generated, and used in a probit estimator.  The idea is to convert errors in the independent

variable (aggregation bias) into errors in the dependent variable (inexact measures of outcome); a

conversion that should reduce bias.

The bootstrapping estimator has several steps:

1. For each MLRA (m), compute several non-parametric probability density functions (PDFm)

defined over a multi-variate vector of attributes (Z). This PDFm(Z) reports  what fraction of

acres (in MLRA m) are in the cohort that possesses attribute values of Z.  The details of these

probability distribution functions are discussed below.

2. Separate PDFs for the OFFER data (PDF_0m), the CONTRACT data ((PDF_Cm) and the

eligible acres (LTB) data (PDF_Em) are generated.  Note that a separate version of each of

these functions is defined for each of the 300 “MLRA-within-state” regions. The Z- attributes

over which these functions are defined are the values of the 6 EBI factors.

3. For each MLRA, draw (with replacement) j=1..J different bootstrap observations from the

eligible acres contained in the LTB file. The notion is to draw a representative sample of the

types of eligible land present in each MLRA.



4. For each bootstrap observation (j) from an MLRA (m), use its attributes  (Zj) to lookup two

cohort probabilities —

COHO_Oj = PDF_Om(Zj) and COHO_Ej= PDF_Em(Zj)

(for the offer and eligible cohorts respectively).

5. Randomly assign a dependent variable value of 0 (no-offer) or 1 (offer)  to each bootstrap

observation. The probability  of a 1 will be:

  P_1j = OR m * (COHO_Oj  / COHO_Ej )

where OR m  is the actual MLRA-wide offer rate.

The idea is to adjust the  MLRA-specific offer rate, accounting for observations from cohorts

that are over (or under) represented in the “population” of offered acres (relative to the

population of eligible acres).

For example,

• if PDF_Om(Zj) predicts that 5% of  offered acres are in COHO_Oj

• if PDF_Em(Zj) predicts that 4% of eligible acres are in COHO_Ej

• Then, for offers in this “cohort”< the overall MLRA probability (OR m ) will be increased

by 25% (multiplied by 1.25).

6. Estimate  the β  coefficient vector, using a probit model applied to all these bootstrap

observations (and the randomly assigned dependent variables accomplished in step 5)

Steps 3 to 6 are  repeated R times (R=100) times to form a  R row matrix  (B) of coefficient

vectors. The average of B vectors would be the estimate of β , with a coefficient covariance

matrix also derived from the covariance of the columns of B.

Notes that the chance of a bootstrap observation (that is drawn from the LTB file) being an offer

(having a dependent variable of 1) will increase  as OR m (the overall offer rate for the MLRA)

increases. It also  increases as COHO_Oj, the (the size of the cohort of offered acres  that “look

like this bootstrap observation”)”increases relative COHO_Ej  (the size of the cohort of eligible

acres “that looks like this bootstrap observation”).



Table 1 presents the Z variables, and the estimated coefficients β  , from estimating the above

model  using data from the CRP’s 26th signup. Note that the some Z values are available at the

“offer level”, while others are derived from aggregate (MLRA-within-state, or county-wide)

measures. While most variables did not have significant impacts, the overall EBI score did, as

did the contract rate  (the fraction of lands, in a region, currently enrolled in the CRP).

Creating a non-parametric probability distribution

As discussed above, to increase the accuracy of  several components of  the model, cohorts of a

region are used. A cohort is a subpopulation, of a region, described by a vector of attributes –

each acre in the cohort will have the same value of this vector.  In a sense, to further the goal of

using small and homogeneous aggregates, we are defining regions both over physical space

(MLRAs) and “attribute space” (Z).

To do this, probability distribution functions (PDF)  are defined for each MLRA; and for each

type of data (offered acres, contracted acres, and eligible acres).  These PDFs report the

probability of observing an acre with a given vector of attributes.

One approach is to define PDFs using a multivariate normal distribution for each MLRA, with a

mean and variance computed using observed data within the MLRA.  However, although this is

straightforward, it imposes a single-peaked structure on what might be a variously peaked

distribution.

Instead, use of  a non-parametric PDFs allows greater flexibility.  In the simple case, of a single

attribute, a histogram based algorithm could be used – with the attributes divided into a finite set

of classes, and a probability computed for each class. However, when there are many attributes a

histogram method becomes difficult to implement (to avoid a crippling number of empty cells

requires unobtainable amounts of data).  Therefore, we adopt a distance based metric.

Our non-parametric, empirical PDF is defined as follows. The PDF will return a probability-

measure within a particular MLRA, for a point (P) with attributes Z.



1. Extract R: all observations in the MLRA

2. Compute a pythagorean distance from P to each point in R, where the distance is in attribute

(Z) space.  Actually, to avoid scaling problems, the distance is in normalized Z space – the Z

values of  P and of  each point in R, are normalized by the mean and standard deviation (of

each element of Z), computed across  R.

3. Invert these distances

4. Take the average of these inverses.

This average is a measure of the relative probability. Hence, if P is close to the bulk of the points

in R: the average distance will be small, the average inverse  will be large, and the probability

will be large.  The use of an inverse helps control for multi-peaked distributions – points falling

near a peak (and far from another peak) will be assigned higher probabilities than points falling

in between two peaks.

Reiterating, each MLRA and each set of acres (offered, contracted, and eligible) has its own,

unique, PDF.

Note that this “probability” measure is relative.. Not only is it relative to the particular MLRA, it

is not meant to be taken as a true density function (there is no attempt to force the implied

distribution function to integrate to unity).  However, since these measures are used in ratios

(equation 5 above), absolute accuracy is not required.5

Some results

In our analysis of the effects of changing the EBI (Cattaneo et al), we created multiple

simulations. Each simulation is based on a different set of EBI weights, and yields a different set

of “lands accepted into the CRP”.  In each simulation, we computed the average value (across all

accepted lands) of factor scores; and then computed elasticies of factor scores with respect to

index-weights.



Tables 2a and 2b compare the with, and without, probability of participation effects

models. No striking differences are revealed. However, the without model has somewhat smaller

elasticity values , suggesting that changes in the index-weights have a lessened impact on the

benefits  when participation effects are ignored. For example,  reductions in expected erosion

differ the most, with a 10 percent increase in the soil erosion weight leading to a 2.8 percent in

the without model, compared to a versus 3.6 percent increase in the with model.  This is not

surprising, since weight changes can induce different bids to be submitted that favor concerns

with higher weights.

                                                                                                                                                            
5 It may be more appropriate to call these functions “similarity” functions.



Conclusions

In this paper we highlight how participation effects of changes in index-weights can be modeled,

and then used to simulate the CRP.  A simulation model, designed to fully leverage the data

contained in a full census of actual offers to the CRP, was devised to account for changes in

participation probability.  Preliminary empirical work suggest that accounting for such change

can have some impact on predicted results of a change in EBI weights.

While accounting for several sources of bias, the model presented above was fairly simple. A

number of issues were not discussed. These include:

• How does land currently in the CRP differ from land not in the CRP?  Using cohort

weights, it is relatively straightforward to adjust for observable differences. More

troublesome is question of whether can one assume that currently enrolled acres are more

likely to be offered into the CRP (assuming that the CRP were to be reset to zero) then

observationally equivalent acres that are not currently enrolled. If so, using the offer file

(containing offers from a single, 2 million acre, signup) to compute offer-rates will lead

to biased predictions. In particular, offer-rates will be underpredicted for lands that tend

to have high contract rates. That is, the predicted offer rates for land most likely to be

accepted into the CRP will be too low.

Note that the CRATE variable of  Table 1 was included to partially control for this effect

– a high CRATE capturing the proclivity of landowners in that region for enrolling into

the CRP.  We also experimented with a two-stage sample selection model; with the first

stage estimating an enrollment rate (prior to a signup), and the second the probability of

offering land during a signup. However, this model didn’t reveal a correlation between

stages, although empirical evidence (from large signups in  the mid 1990’s) suggest that

most CRP landowners will re-enroll their land.

• How will practices change as weights change.  Landowners can effect their EBI scores by

planting different cover crops. The current methodology does not allow for this – it



assumes that offers are representative of a fixed pool, a pool whose attributes do not

change.

• The CRP is not formed from a single signup. Thus, if infra marginal effects are of interest

(say, if the CRP were to be started from scratch), the dynamics of enrollment over

multiple signups may be important, since landowners have several chances to offer their

land.6

Lastly, the statistical properties of this methodology are unknown. Future work will use

controlled simulations, using artificial universes with based on a generated (hence known) set of

underlying data.

                                                
6 Note that in other work, we simulate a “full CRP”, via  a repeated simulation model, that reduces eligible acres
over the course of several signups.
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TABLE 1: Coefficient and estimated coefficients of the probit model

-------------------------------------------------------------------------

Var         Estimated beta       stderr      tstat

------------------------------------------------------------------------------------

Constant         -2.97337       0.937  -3.17

SRR           0.000834442     0.0021       0.38

EBI_TOTA      0.00155435    0.000203       2.69

CPA            -0.091982      0.071           -1.29

AVGAGE           0.00628953      0.017             0.36

MEAN_BID   -0.000779105     0.001           -0.44

HIGH_COS    -0.0630138       0.128           -0.49

RETURNBY   -0.604321       0.478          -1.26

CRATE           0.853022       0.127           6.68

Where:

SRR Offer’s soil rental rate (one of the EBI factors).

EBI Offer’s EBI score.

CPA 0/1 dummy if the county is in a Conservation Priority Area

HIGH_COST 0/1 dummy: 1 if the county is in a high-cost region

AVGAGE average age of proprietor in county

MEAN_BID County average of mean minimum bid acceptable to farmer  (estimated from

values generated by the LTB model)

RETURNBY county level measures of total net cash returns divided by total cropland

CRATE county level contract rate (fraction of eligible lands currently enrolled in the

CRP)



Table 2a  Simulated impacts of changing EBI weights – with participation effects

Dependent Variable Independent variables
Wildlife
Weight

Water
quality
weight

Erosion
reduction

weight

Enduring
benefits
weight

Air quality
weight

Wildlife impacts 0.133 -0.015 -0.126 0.002 0.003
Water quality impacts 0.034 0.240 -0.022 -0.010 0.002
Erosion reduction
impacts -0.104 -0.039 0.362 -0.045 -0.025
Enduring benefits
impacts 0.049 -0.118 -0.262 0.324 -0.017
Air quality impacts -0.010 -0.068 -0.124 -0.016 0.040

Elasticities computed across 1000 simulations

Table 2b  Simulated impacts of changing EBI weights – without participation effects

Dependent Variable Independent variables
Wildlife
Weight

Water
quality
weight

Erosion
reduction

weight

Enduring
benefits
weight

Air quality
weight

Wildlife impacs 0.106 -0.016 -0.102 0.002 0.004
Water quality impacts 0.022 0.204 -0.019 0.002 0.010
Erosion reduction impacts -0.091 -0.034 0.282 -0.013 -0.011
Enduring benefits impacts 0.015 -0.116 -0.177 0.260 0.002
Air quality impacts -0.008 -0.055 -0.105 -0.011 0.033

Elasticities computed across 1000 simulations


