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Value of Information and Averting Behavior:
The Case of Toxic Water Contamination

ABSTRACT: Little theoretical work has been done previously on the welfare valuation of
changes in price and quality when consumers are imperfectly informed. The presence of im-
perfect information is particularly important in the analysis of averting behaviors. We develop
a theoretical welfare measure, called quasi-compensating variation, as a natural extension of
compensating variation (CV ). We show that this welfare measure o¤ers not only a money met-
ric of the "value of information", but also a means to appropriately evaluate the welfare e¤ects
of various policies when consumers are imperfectly informed of water contamination. With a nu-
merical example and our decomposition results (Propositions 2 and 3), we demonstrate that
(i) the value of information could potentially account for a large portion of the total welfare gains
when regulators simultaneously disseminate accurate information and improve drinking water
quality, (ii) the willingness to pay to avoid toxic contamination is strictly larger for imperfectly
informed than perfectly informed consumers, and (iii) the distribution of imperfect information
among consumers a¤ects the relative performance of the two compelling policy alternatives,
"self-protection" and "pollution control".



I. Introduction

In the cases of air-borne and water-borne pollutants, people can adopt averting options, at least

to some extent, to protect themselves from their adverse health e¤ects. For example, individuals

concerned over the quality of tap drinking water can choose to use water �lters and boiled or

bottled water to avoid possible intake of microbial and chemical contaminants. A theoretical

premise is that, as long as consumers can choose the use of various averting options optimally to

adjust the quality of their "personal environment" (Bartik, 1988) for changes in the exogenous

water quality, their averting expenditures may be used as a lower-bound estimate for the welfare

gain from improving water quality. However, the approach critically relies on a set of underlying

information and behavioral factors. In particular, the approach assumes both that all consumers

are perfectly informed of the quality (and health e¤ects) of drinking water and that they have

access to appropriate averting options. If they cannot use proper averting options, due to lack

of information or lack of access (including lack of �nancial resources), then economic losses due

to their consequential health damages may be a more appropriate measure of welfare costs. This

issue is particularly important in developing countries, where health advisories and drinking water

quality standards are unlikely to be well established and disseminated to the public, and where

people or government agencies or both have very limited resources.

A rational consumer makes her choices given the information she possesses. In the case of

toxic water contamination, the consumer can choose her averting option(s) only suboptimally if

she is ignorant or imperfectly informed of the contamination problem. This suboptimal averting

behavior results in harmful health e¤ects, which weren�t anticipated at the time of her decision

(due to imperfect information) and are likely to be realized only after passage of time.1 Imperfect

information, therefore, can lead to signi�cant welfare losses. It seems reasonable to expect, then,

that the consumer�s willingness to pay (WTP ) for pollution control should be increasing in the de-

gree of imperfect information. That is, WTP should be larger for those with imperfect information

than those with perfect information. On the other hand, prior literature has suggested the problem

of information bias, which essentially states that the consumer�s WTP to avoid toxic pollution is

1 It is well known that many toxic contaminants such as PCE and TCE may cause cancer in humans only after
they are exposed to certain levels over long periods of time whereas every dose or exposure is accompanied with some
increased risk of cancer.
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likely to be higher for those who are aware of the pollution problem than for those who are not.

In fact, one study has empirically shown this information bias e¤ect for both WTP and averting

expenditures (Powell, 1991). The story just told suggests (at least conceptually) that one needs

to adjust empirical WTP measures for two factors, one for the cost of imperfect information and

the other for information bias. However, we do not seem to have a theory to examine these e¤ects.

As it turns out, our familiar welfare measures, compensating/equivalent variation (CV=EV ) and

compensating/equivalent surplus (CS=ES), are not suitable in the presence of imperfect informa-

tion. We propose alternative welfare measures, called quasi-compensating variation (QCV ) and

quasi-equivalent variation (QEV ), as a natural extension of CV=EV . We show that these welfare

measures o¤er not only a money metric of the "value of information", but also a means to appro-

priately evaluate the welfare e¤ects of various policies when consumers are imperfectly informed of

water contamination.

To illustrate the problem further, let us consider a simple example provided in Easter and

Konishi (2005). Suppose that there is only one toxic pollutant of regulatory concern. We wish to

evaluate the welfare costs of this pollutant in drinking water sources. Let E be the consumer�s total

averting expenditures for this pollutant. Let Cu denote her WTP value for protection against this

contaminant. Cu may represent the WTP value to avoid the (short-term and long-term) health

risks associated with this contaminant. Suppose that the health risks of this contaminant are well

known to regulators, and thus disseminated widely to the public. Suppose further that there are n

alternative options for avoiding entirely the health risks from the (potential) contamination, with

costs of option j being Cj ; j = 1; :::; n. Then, her averting expenditure is given by

E =  �minfC1; C2:::; Cn; Cug

where  = 1 if she is aware of the contamination risk and 0 otherwise. Note that the vector fCjg

could possibly contain zero if no averting option is available to the consumer.2 "True" welfare costs

2By availability we include technological as well as �nancial feasibility. For example, if a person�s income is less
than the least expensive averting option, then the vector should contain zero in this formulation.
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(or their ideal welfare estimates) of this toxic pollutant must have the property:

W =

8><>: E if  = 1

Cu > 0 if  = 0 or no available option,

whereas observed empirical welfare estimates using averting expenditures will result in:

Ŵ =

8><>: E if  = 1

0 if  = 0 or no available option.

Thus, we would underestimate the welfare costs for those without accurate information or

access to averting options, which can be quite important if a signi�cant portion of the population

has either  = 0 or no access to avoidance options.3 In fact, it is widely recognized from the

�ndings of prior avoidance-costs studies (for example, Powell, 1991; Abdalla, Roach, and Epp,

1992; Collins and Steinback, 1993; Kwak and Russell, 1994; and Abrahams, Hubbell, and Jordan,

2000) that (a) even in the United States, a majority of the population may be unaware of certain

contamination problems, (b) awareness of the pollution problem is one of the key determinants of

averting behaviors, and (c) those informed of the contamination tend to spend more on averting

expenditures than do those who are unaware. Despite its importance, such information has not

been used e¤ectively in the previous studies. From the point of view of a welfare-maximizing

regulator, the estimated percentage of the population with  = 0 should be no less important than

the estimated averting expenditures for those whose  = 1, because the regulator must use a more

appropriate estimate of Cu to calculate the welfare costs for those with  = 0 and E for those with

 = 1.4 What we want is not just the estimates of WTP for those with  = 1 but the estimates of

aggregate welfare costs (or equivalently, welfare bene�ts of reducing toxic water pollution).

A series of questions arise naturally from this example. First, what would be an appropriate

measure of welfare costs if the consumer is only partially informed (i.e. if  is a continuous variable

rather than a binary one)? More importantly, what is the size (in money metric) of the welfare cost

3Note that, when  = 1, W = Ŵ = E and E � Cu. Therefore, Ŵ � Cu = WTP , which is consistent with the
prior theory that averting expenditures is a lower bound estimate for willingness to pay.

4We will show that the consumer�s willingness to pay to avoid toxic contamination (Cu above) is not a constant
and varies with  (Section IV) and that it is higher for those with  = 0 than for those with  = 1. Thus, the
discrepancy between the observed E and Cu is larger for those with  = 0 (Section V).
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of being uninformed (or the value of providing accurate information) as a function of information

bias? Third, what would be the e¤ects of price changes if the consumer has a more �exible set of

options (i.e. if the consumer can choose from a continuous set of averting options given the prices)?

Lastly, which policy is more welfare-enhancing, to improve water quality or to promote "self-

protection" (by providing more accurate information together with lowering the price of averting

options) given the distribution of ? The valuation of the welfare e¤ects of imperfect information

becomes particularly important when one attempts to answer such policy questions.

The meaning of the term "value of information" needs to be clari�ed, as it has been widely used

in di¤erent contexts. The term frequently appears in the quasi-option value literature. The concept

of quasi-option value (or Arrow-Fisher-Henry option value) concerns an action with irreversible

consequences and focuses explicitly on the intertemporal aspect of decision-making. It is formally

the "correction factor" so as to optimally adjust the agent�s (sub-optimal) decision due to her

failure to recognize the prospect of obtaining full information (about the future bene�ts). In this

connection, quasi-option value is often compared against the expected value of obtaining perfect

information about the realization of future bene�ts (See Conrad, 1980 and Hanemann, 1989).

Another line of research de�nes the "value of information" as the increase in expected utility (or

welfare) by gaining more (re�ned) information about the distribution of possible outcomes prior

to decision-making.5 For example, Polasky (1992) considered the e¤ects of "exploration" in an

exhaustible resource economy. Early exploration can reveal better information about the size of

the unproven reserves prior to extraction, leading to higher expected pro�ts (and welfare under

some conditions).

The �rst two lines of research typically consider the cases where the value of acquiring better

information is intrinsically positive, at least, to the direct user of that information. It is well known

in the industrial organization literature, however, that the value of information can sometimes be

negative in multi-agent settings. For example, Mirman, Samuelson, and Schlee (1994) showed that

5Formally, Hanemann (1987) de�ned the expected value of perfect information (EVPI) as the di¤erence in the
optimal welfare values between the cases where the agent is allowed to make her decision after the realization of future
states and where she makes her decision before the realization. Hanemann�s EVPI does not necessarily coincide with
the "value of information" de�ned as the increase in expected utility, because the former compares the values of two
intrinsically di¤erent decision problems whereas in the latter, the same decision rules can be used both before and
after the learning.
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more information about demand can hurt duopolists. Schlee (1996) also established the conditions

under which the value of public information about product quality is negative to consumers. In

these papers, the negative impact of information essentially comes from the interactions among

agents � new information changes the agents�motivation and beliefs, leading to their updated

decisions, which in turn can negatively a¤ect the other agents. More recently, Morris and Shin

(2002) focused on the dual role of public information � of conveying more accurate information

as well as creating a focal point for beliefs. They showed that, when public information entails

some noise and when private agents have access to independent sources of information, the welfare

e¤ects of improved public information is ambiguous.

In contrast to the previous research, the present paper considers a static model with a contin-

uum of price-taking consumers. Moreover, public information does not contain any noise and the

consumer�s information is represented by a single parameter rather than a distribution. Therefore,

the model is admittedly simple in comparison to previous value-of-information studies. Nonethe-

less, a number of useful results are obtained by focusing on the valuation of the welfare gains of

obtaining better information about water quality � an area that has not been addressed in prior

literature. The main contributions of this paper are three-fold. First, we �nd that a money-metric

welfare measure of the value of information can be de�ned analogously to compensating and equiv-

alent variations. More importantly, this welfare measure can be used to evaluate the welfare gains

from a water quality improvement policy of those who are perfectly informed as well as those who

are not. Second, the welfare measure can be decomposed in such a way as to enable us to analyze

the contributions of di¤erent factors of a mixed policy (e.g. the policy of simultaneously improving

water quality and providing accurate information). Third, with a numerical example, we show

that a policy to promote self-protection can yield larger aggregate welfare gains than the policy

of improving water quality depending on the distribution of . The empirical estimation of its

distribution among consumers, then, is important.

The organization of the paper is as follows. In the next section, we review the Courant &

Porter (1981) and Bartik (1988) model (henceforth, the CP&B model) and discuss it in relation to

our model. In Section III, we fully develop the model and present a series of preparatory results

to demonstrate the welfare analysis in the relevant commodity space. We also introduce new
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welfare measures, called quasi-compensating and quasi-equivalent variation (QCV=QEV ). Section

IV discusses the welfare analysis of imperfect information and provides a series of decomposition

results (Lemmas 2, 3 and Propositions 2, 3). In Section V, we provide computational results,

in which we demonstrate that (i) the value of information could potentially account for a large

portion of the total welfare gains when regulators simultaneously disseminate accurate information

and improve drinking water quality, (ii) the willingness to pay to avoid toxic contamination is

strictly larger for imperfectly informed than perfectly informed consumers, and (iii) the distribution

of imperfect information among consumers a¤ects the relative performance of the two compelling

policy alternatives, self-protection and pollution control. The last section concludes the paper and

discusses key policy implications and potential extensions of our research.

II. Preliminaries

Prior empirical studies frequently cite Courant and Porter (1981) and Bartik (1988) as a theo-

retical basis of the averting expenditures method. They consider the following model. The quality

of one�s personal environment or one�s health, H, is a function of one�s use of averting options x and

the ambient quality level Q. H is increasing in each argument. The CP&B model uses an abstract

"price" of defensive measures, so that the consumer�s defensive expenditure D is a function of H

and Q. A notable feature of their model is that the price of the consumer�s health, P , has no clear

relationship to her choice of averting options and is assumed to be a function only of the ambient

quality Q where dP=dQ < 0. As a result, the price of health is exogenously given by Q. Thus, her

defensive expenditure function can be written:

D = P (Q)H(x�(Q); Q) = D̂(Q;H);

where x�(Q) is the optimal choice of averting options given Q. If we assume that ambient quality

Q a¤ects utility only through the production of health, the consumer�s utility is simply a function

of a composite numeraire good z and her health H. Thus, the consumer�s problem is written:

max U(z;H) s.t z + D̂(Q;H) � m;
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where m is income.6

In the CP&B model, individuals choose their "health" or quality of personal environment so

as to maximize utility, assuming that, given Q, the corresponding optimal use of defensive options

x�(Q) exists. This optimization program by itself is valid, as long asH(x;Q) is a one-to-one function

of x given Q. One of the drawbacks of this analytical framework, however, is that it fails to explain

a possibly endogenous relationship between the "price" of health and the choice of averting options.

In fact, it turns out that in models of this type, including ours, an endogenous relationship arises

naturally and the sign of dP=dQ depends on the health production technology H. Attending to this

endogeneity is a primary innovation of this paper. Another drawback of their model is that it fails

to take into account of the e¤ect of changes in the price of averting options. This price, denoted

p to distinguish it from the price of health, has quite di¤erent properties from those of P . One of

the most important di¤erences is that, even when Q changes, p may not change while P does. p

may change via a pricing policy, economic/technological advancement, or (long-run) equilibrium

e¤ects of changes in Q. This issue becomes critical when one intends to analyze the welfare e¤ects

of a policy that changes p and not Q. For example, regulators may consider providing water �lters

at low cost to residents of the communities exposed to serious water contamination. Lastly, the

CP&B model assumes that Hx > 0;HQ > 0;HxQ > 0; and Hxx = 0. In the case of drinking water,

however, it is more reasonable to assume that HxQ � 0, because the marginal e¤ect of x is typically

lower when the ambient water quality Q is high and vise versa.

III. The Model

To overcome these issues, we employ an alternative formulation that extends the CP&B model.

In what follows, we assume for simplicity that there are (i) a composite x of all possible alleviating

options x = (x1; :::; xn) and (ii) a composite A of all possible toxic chemicals A = (A1; :::; Am),

where the vector A represents the ambient concentration levels for m toxic or non-toxic pollutants

6 In Courant & Porter (1981), the consumer�s optimization problem is written as:

max
z;x

U [z;H(x;A)] s:t: z + x = m

which seems to be identical to our formulation (3) below. However, carefully examining their arguments, one would
conclude that x is taken as defensive expenditures (i.e. x � D̂(Q;H) above) and does not coincide with our conceptual
framework below.
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in the ground and surface water bodies. As in Abrahams et al (2000), we introduce a health

production function H = H(x;A). It should be understood that A is the ambient level of water

pollution, so that health is expected to be monotonically decreasing in A. Furthermore, by this

function, we are implicitly assuming that individuals and regulators are perfectly informed about

the health e¤ects of using the source water of quality A when an individual adopts a vector of

averting behaviors x. For simplicity, we also ignore the joint production of health and utility by

water quality.7 We impose the following regularity conditions on our utility function U(z;H(x;A)).

A1 (i) U (�;H) is strictly increasing in z for each �xed H and U (z; �) is strictly increasing in H

for each �xed z; (ii) H(�; A) is strictly increasing in x for each �xed A and H(x; �) is strictly

decreasing in A for each �xed x.

A2 (i) U (�; �) is strictly quasi-concave in (z;H); (ii) H(�; A) is strictly concave in x for each

�xed A.

A3 (i) U (�; �) is continuous in (z;H); (ii) H(�; �) is continuous in (x;A).

A4 There are upper and lower satiation points for A. That is, there exist points Amax; Amin such

that 8x; 8A � Amax; H(x;A) = 0 and 8x; 8A � Amin; H(x;A) = Hmax: We normalize

our space such that Amin = 0.

A5 (i) U (�; �) is twice di¤erentiable in (z;H); (ii) H(�; �) is twice di¤erentiable in (x;A); and

(iii) HxA = HAx = 0.

Therefore, our analysis can be con�ned to the positive orthant in (z;H)-space. Unless otherwise

noted, the domain of H is restricted to [Amin; Amax] in the analysis below. We �rst develop a

series of preliminary results, which support the primary results to come. The consumer�s utility-

maximization problem is:

max
z;x

U [z;H(x;A)] s:t: z + p � x � m; (1)

7 If the averting options x and the water quality A exhibit joint production of utility and health, then our formu-
lation would be:

U = U [z;G(x;A); H(x;A)]

where G is a component of utility directly derived from the water consumption x of quality A.
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with solutions z�(p;m;A) and x�(p;m;A). The "price" of health in the (z;H)-space equals the

marginal rate of substitution, evaluated at the optimal x�:

P (A) =
p

Hx(x�(p;m;A); A)
: (2)

Furthermore, we introduce an information parameter to the model. Suppose that we can

represent a consumer�s "awareness" regarding the quality of drinking water by a parameter  2

[0; 1]. It is understood that  = 1 means that the consumer is fully informed of the contamination

level and  = 0 means that she is completely ignorant of the contamination problem. We simply

multiply A by this parameter .8 This representation allows us to interpret the parameter 

in a stylized manner. That is,  = 0 means that A = 0, so that the consumer perceives the

drinking water quality as perfectly safe, whereas  = 1 implies A = A, so that she knows its

true contamination level A. These polar cases may be understood in the context of a survey

questionnaire, in which a researcher phrases her question as "do you know there was a recent

contamination problem in your tap water?". We can also think of a case in which the consumer

is aware of the contamination problem but may not understand its severity. The consumer with

 2 (0; 1), therefore, is understood to be partially or imperfectly informed, as she knows that the

water quality is somewhat contaminated, yet thinks that it is better than its true quality A. Of

course,  could, at least conceptually, take values greater than 1. We would interpret this to mean

that the consumer thinks the water quality is worse than its true quality. Much of the analysis

below applies for  > 1 without modi�cation. However, unless otherwise noted, we take  2 [0; 1].9

8We could model this as a more general parameter, in which case we have:

H(x;A; ):

9 It may be true that consumers�information structure is more appropriately represented by a distribution rather
than a point parameter. For example, if a researcher phrases a survey question as "how safe do you think the quality
of your tap water is?" or "(given a maximum contamination level), what do you think is the contamination level of
your tap water?", then the respondent may have a distributional perception about the contamination level. As noted
earlier, much of the value-of-information literature focuses on the increase in expected utility due to learning relevant
information prior to decision-making. Thus, the prior and posterior distributions of possible outcomes is typically
the focus of their analysis. Much of the analysis below could be extended to the case where consumer�s information
is a distribution rather than a point parameter. Given a probability measure � on its compact support [0; 1] and an
underlying utility u(z;H), we de�ne an expected utility as:

U [z;H(x;A;�)]
def
=

Z
u[z;H(x; A)]�(d):
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Two points must be made clear. First, by "information", we refer to information concerning

the water contamination level, but not information about the risk (i.e. probability distribution)

of contracting a disease from drinking the contaminated water. Therefore,  captures neither

the consumer�s risk beliefs nor risk attitudes. In other words, the consumer (and the regulator)

knows with certainty what health e¤ects she would have if she knows the true quality of water. As

evidenced by Dickie and Gerking (1996), the consumer�s perception about the chance of contracting

a disease (i.e. risk belief) may be one of the key determinants of the willingness to pay to avoid

the disease. Though the risk-belief aspect may be incorporated into the model, its practical use

may be limited. Since the health risk information is often subject to a great deal of scienti�c

uncertainty, it is di¢ cult to evaluate the welfare losses due to having incorrect risk beliefs. Second,

in the value-of-information literature, there is typically an explicit account of timing. In such a

context, our formulation may correspond to the case in which the agent does not know what the

current state is and makes her decision knowing exactly what would happen in the future if she

did. However, the model is static, and we do not consider the timing issue either.

The following preliminary results will be useful in the sequel. All proofs are omitted, except

those of Propositions 1-3, which appear in the appendix included in the paper.

Result 1 De�ne a transformed utility function in (z; x)-space, ~U(z; x;A) = U(z;H(x;A)). Under

A2, ~U(�; �;A) is strictly quasi-concave in (z; x) for each �xed A.

Result 2 Let A0 6= A1 and let �v 2 R be �xed. Then, under A1, two indi¤erence curves I(�v;A0) =

f(z; x) : ~U(z; x;A0) = �vg and I(�v;A1) = f(z; x) : ~U(z; x;A1) = �vg cannot cross.

Result 3 Suppose that A1, A2, and A5 hold and that U(�; �) is homothetic in (z;H). Then the

optimal choice of alleviating options x�(A) is non-decreasing in A.

Result 4 Suppose that A2 and A3 hold. Then the optimal choice of alleviating options x�(A) is

continuous in A.

If the consumer has perfect information, her belief has the property �(1) = 1. Much of the analysis below could
then be extended by applying � in place of . This way of de�ning information structure makes sense in the current
paper, as its objective is to evaluate the welfare losses because of the choices made sub-optimally due to imperfect
information. In other words, our de�nition and analysis of quasi-compensating variation apply as long as there are
errors in the consumer�s choice whether her choice is based on a point parameter or a distribution.
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Result 5 Suppose that A1, A2, and A5 hold and that U(�; �) is homothetic in (z;H). The optimal

choice of alleviating options x�(;A) is continuous and non-decreasing in  for each �xed A.

Results 1 and 2 state that the transformed indi¤erence curves in (z; x)-space are well-behaved.

For each �xed utility level, the corresponding level curve will be shifted inwards (i.e. to the south-

west in (z; x)-space), as the quality of water improves. Thus, an improvement in ambient water

quality shifts the entire family of indi¤erence curves de�ned in the (z; x)-space. This result is ap-

pealing intuitively. As the quality of water improves, the need for self-protection decreases, and

therefore the marginal rate of substitution between goods z and x changes. As will be demon-

strated with a numerical example later, Result 3 combined with Results 1 and 2 implies that

the optimal vector (z�; x�) moves upwards along the budget line in the (z; x)-space as the ambient

water quality improves (Figure 1). These preliminary results bear upon our main �ndings, as the

(diagrammatic) welfare analyses in the (z;H)-space turn out to be problematic and need to be

transferred to the (z; x)-space. The following proposition pins down the problem.

Proposition 1. Suppose that A1, A2 and A5 hold. Let x�(A) be the optimal choice of x given A.

Then, the "price" of one�s personal environment in the (z;H)-space given by

P (A) =
p

Hx (x�(A))
;

does not coincide with the "budget line" in the (z;H)-space.

Although the averting expenditure is given simply by a vertical di¤erence m�z�, compensating

(equivalent) variation and compensating (equivalent) surplus are not well-de�ned as a money metric

in (z;H)-space. To see why, note that a change in A has two distinct e¤ects. The �rst e¤ect is an

income e¤ect due to increasing the supply of a valuable good H free of charge (i.e. H(0; A0) !

H(0; A1)). The second e¤ect is on the implicit price of H: Recall from equation (1) that the

price of health production is p=Hx (x�). Thus, the price of one�s health, even when p is �xed, is

indeterminate. It is de�ned only endogenously via the optimal choice of x. As we see from Result

3, under some regularity assumptions, a decrease in A (weakly) decreases x�. This has the e¤ect

of decreasing the implicit price p=Hx (x�). Because the implicit price does not coincide with the
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budget line, and indeed, is di¤erent before and after the change in A, we have four di¤erent "price"

vectors that could be used to employ conventional welfare analysis (Figure 2). For any of the

four conventional welfare measures to work, one needs to be able to pick and �x an appropriate

price vector before and after the environmental change. However, none of the four possible prices

can be reasonably justi�ed for both before and after the change. Fixing a price before and after

the change is justi�ed if optimal choices can arise at that price before and after the change. As

long as Hx is monotonic, this cannot happen. Thus, a simple diagrammatic representation is not

feasible in the (z;H)-space.10 Moreover, it may be useful to note that our assumption A5-(iii) is

used only to derive the explicit relationship between the budget line and the price (i.e. inequality

(3) in the proof of Proposition 1). A less restrictive assumption, HxA � 0; would not rescue

this problem. The alternative assumption would result in the price of health as p=Hx(x�(A); A),

which is still a function of A via the optimal choice of x. Thus, a change in A necessarily changes

the price of health. To overcome this di¢ culty, we o¤er an alternative means for diagrammatic

analysis of welfare measures. As we now show, transforming a well-de�ned preference order in the

(z;H)-space to that in the (z; x)-space enables us to use CV=EV and CS=ES measures.

Results 1 and 2 above guarantee that, under some reasonable assumptions, preferences in the

(z; x)-space are well-behaved. As the transformed utility function ~U(z; x;A) is quasiconcave for

each �xed A, the corresponding indi¤erence curves must show reasonable convexity in the (z; x)-

space. Let us consider a water quality improvement from A0 to A1 < A0. Given the quasiconcavity

of utility, interior solutions would occur at a tangency. We wish to evaluate the welfare changes

from (z�(A0); x�(A0)) to (z�(A1); x�(A1)). We can employ a conventional diagrammatic analysis

here. The indi¤erence curves exhibit di¤erent shapes for A0 and for A1, as depicted in Figure

3. Let v0 = ~U(z�(A0); x�(A0);A0) and v1 = ~U(z�(A1); x�(A1);A1) be the optimal values of utility

given A0 and A1, respectively. For CV , we evaluate the welfare change at A1. Thus, we look for

the tangency between a decreased budget line and the indi¤erence curve ~U(z; x;A1) = v0. Then,

CV is simply a vertical di¤erence between the original and the decreased budget lines. Similarly,

we look for a tangency point of an increased budget line and an indi¤erence curve ~U(z; x;A0) = v1.

10Furthermore, as a special case of A2, we could consider the case with Hx (�) = c = constant. In such a case,
P (A) = p=Hx (x

�) = constant, so that the willingness-to-pay for a change in A as de�ned in Courant & Porter (1981)
will be zero while CV=EV in the usual sense is nonzero.
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The CV and EV are appropriate measures of welfare changes under perfect information, because

a consumer can adjust her own consumption levels as environmental changes occur. We can also

conduct welfare analysis for changes in the price of averting options. Suppose the price decreases

from p0 to p1. The price change does not a¤ect the shapes of indi¤erence curves in the (z; x)-space.

Moreover, it is clear that, unlike in the (z;H)-space, �xing a price at either p0 or p1 before and

after the change does not present a problem, because optimal (tangency) solutions arise at each of

the prices. Thus, CV=EV for changes in the price of averting options are well-de�ned in this space.

Introducing imperfect information, however, complicates welfare analysis and prevents us from

using conventional measures. CV and EV measures are appropriate measures only when a con-

sumer can adjust her consumption optimally. Under imperfect information, though, she is likely

to be "stuck" in the consumption choice that she would not prefer if she had perfect information.

Thus, in such a context, it appears more appropriate to use CS=ES measures. However, CS=ES

measures will not be appropriate under imperfect information, because her consumption choices,

z and x, may be di¤erent before and after the change in environmental quality A. To see this,

consider three possible cases. First, the information parameter  may be the same before and after

the change. In this case, the environmental change is represented by (A1 � A0). Note that the

consumer�s decision is based on a triple (p; I; A). Thus, it is very likely that she changes her con-

sumption decision as a result of the change in A. Second, the consumer may obtain more accurate

information due to the policy change (i.e. 0 < 1 � 1). In such a case, the change is represented

by 1A1 � 0A0. The last case is that environmental quality does not change, but the consumer

obtains more accurate information. The change is then (1 � 0)A0. In all cases, her choices are

not completely determined by the environmental change and she adjusts her choices according to

the change (sub-optimally unless 1 = 1). Her choices are optimal given the information she has,

but would not be optimal if she were perfectly informed. Therefore, CS=ES measures cannot be

applied directly. We need to construct alternative welfare measures encompassing all of these cases

to deal with the presence of imperfect information.

De�nition (Quasi-CV): Quasi-compensating variation (QCV ) is the monetary compensation

required to make a person indi¤erent between the choices made at the new information structure

(1; A1) and at the old information structure (0; A0), evaluated by using perfect information  = 1
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given the new structure (1; A1). Formally, it is the monetary value QCV such that:

U [z�(m; p; 0A0);H(x
�(m; p; 0A0); A0)] = U [z

�(m�QCV; p; 1A1);H(x�(m�QCV; p; 1A1); A1)] :

Note that we cannot use an indirect utility function for this de�nition, because we are inter-

ested in comparing "true" (not "perceived") welfare levels between the choices made at (0; A0) and

(1; A1). In general, U [z
�(m; p; A);H(x�(m; p; A); A)] is not equal to v(m; p; A) = U [z�(m; p; ;A);

H(x�(m; p; ;A); A)]. The former is the consumer�s "realized" welfare level when she chooses a vec-

tor (z�(m; p; A); x�(m; p; A)) while the latter is the usual indirect utility function given (m; p; A)

and gives her "perceived" welfare level. In essence, quasi-CV is the money metric of a di¤erence in

welfare levels realized at (0; A0) and at (1; A1), evaluated at ( = 1; A1). We are slightly abusing

notation here by inserting QCV inside the demands (z�; x�) made at (1; A1). Quasi-equivalent

variation can be de�ned analogously by evaluating the change at ( = 1; A0). It is very important

to recognize that, if  = 1 before and after the environmental change, then QCV (QEV ) precisely

coincides with the usual CV (EV ), because in such a case we have:

U [z�(m; p;A0);H(x
�(m; p;A0); A0)] = U [z

�(m�QCV; p;A1);H(x�(m�QCV; p;A1); A1)] ;

or,

v(m; p;A0) = v(m�QCV; p;A1):

In this sense, QCV=QEV are natural extensions of CV=EV for the case of imperfect information.

Analogously, we can de�ne quasi-compensating (QCS) and quasi-equivalent surplus (QES)

by �xing the choice of averting options, either before (QES) or after (QCS) the environmental

change. An earlier version of the manuscript contained the de�nition of QCS and QES and welfare

analyses using these measures. However, QCS=QES has one undesirable property: CV=EV does

not coincide with QCS=QES when consumers are perfectly informed (i.e.  = 1). For this reason,

we prefer QCV and use it in the subsequent analyses.

IV. The Welfare Analysis
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Regulators may be interested in the e¤ects of three distinct policy alternatives. The �rst scenario

is to promote educational programs and strengthen public noti�cation programs concerning the

current water quality level, but not change water quality itself (Policy I). For simplicity, we assume

that this policy will help all individuals attain  = 1. The second alternative is to improve the

quality of the drinking water without educational programs (Policy II). The third alternative is to

do both (Policy III). Of course, as indicated above, there are several other intermediate cases. For

example, even when the regulators intend to achieve  = 1 for all individuals, a considerable portion

of the population may continue to be badly informed. Welfare-maximizing policies would take into

account the idiosyncratic nature of the impacts of educational/informational policies. Though our

de�nition of quasi-compensating variation is useful in analyzing such complications, the current

paper will not deal with them explicitly.

The �rst scenario gives rise to an interesting measure of welfare value � what we call the

welfare measure of the value of information � as it measures the consumer�s willingness to pay

to obtain accurate information. It is a measure or money metric of the value of information and

di¤ers from the concept of the value of information per se, which is commonly de�ned simply as

the increase in (expected) utility from possessing more (accurate) information a priori. The QCV

measure of this value of information can be readily depicted graphically (See Figure 4). To see

how our diagrammatic analysis works, let us work through Figure 4. First, obtain (z�(A); x�(A))

by solving problem (1). This is the "maximal" level of utility she would have achieved if she were

perfectly informed. Next, solve the ill-informed consumer�s problem:

max
z;x

U [z;H(x; A)] s:t: z + p � x � m

to obtain the "sub-optimal" demand (z�(A); x�(A)). Her "perceived" utility is given by her

indirect utility function v(m; p; A). Now, evaluate this sub-optimal point using her "true" utility

function v() = U [z�(m; p; A);H(x�(m; p; A); A)]. QCV is the money metric of the di¤erence

between the "true" utility and the "maximal" utility when she is allowed to make optimal choices.

The following results are immediate:
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Lemma 1. Suppose that A1-A3 hold. The cost of imperfect information  2 [0; 1), measured as,

U(z�(m; p; A);H(x�(m; p; A); A) = U(z�(m�QCV; p;A);H(x�(m�QCV; p;A); A)

is always nonnegative.

Lemma 2. Consider a policy represented by the change (;A0) to (;A1) with  6= 1 and A1 < A0.

Then, under A1-A3, the quasi-compensating variation of this policy change is given by:

QCV = [cost of imperfect information  given A0 (evaluated at A1)]

� [cost of imperfect information  given A1 (evaluated at A1)]

= [m� e(p;A0; v̂0)]� [m� e(p;A1; v̂1)] ;

where v̂0 = Û(z�(m; p; A0); x�(m; p; A0);A0) and v̂1 = Û(z�(m; p; A1); x�(m; p; A1);A1).

Lemma 3. Consider a policy represented by the change from (0; A0) to (1; A1) where 0 <

1; A1 < A0, and 1 = 1. Then, under A1-A3, the quasi-compensating variation of this policy

change can be decomposed into the following:

QCV = [cost of imperfect information 0 given A0 (evaluated at A0)]

+ [welfare gain due to water quality change (given v̂0)]

= [m� e(p;A0; v̂0)] + [e(p;A0; v̂0)� e(p;A1; v̂0)] ;

where v̂0 = Û(z�(m; p; 0A0); x
�(m; p; 0A0);A0).

Lemma 1 states that the QCV value of information (or cost of imperfect information) is

always nonnegative. It is, in fact, strictly positive if imperfect information leads to an ine¢ cient

level of averting behavior. Lemma 2 concerns the second policy scenario, in which A changes but

 does not. This scenario does not correct imperfect information, so that consumers are stuck at

the suboptimal decisions before and after the change. The lemma says that the welfare gain from

this scenario is the di¤erence between the costs of imperfect information at the new and old water

quality levels (Figure 5). Though the di¤erence depicted in the �gure appears small, the money

16



metric of the di¤erence may not, as shown in Section V.

Lemma 3 lays out a special case of Policy III, in which we suppose that 0 < 1 and 1 = 1.

Intuitively, we anticipate that there will be two sources of welfare improvements: (i) from correcting

imperfect information, and (ii) due to a change in water quality. It turns out that our intuitive

decomposition of welfare gains is in fact correct and that QCV can be decomposed into two parts.

The �rst component corresponds to the welfare cost of imperfect information. Unlike Lemma 2,

however, we need to evaluate it at A0 for this decomposition. The second component, as it turns

out, is the saving in expenditures due to the water quality improvement. The decomposition is

illustrated in Figure 6. It is important to keep in mind that the decomposition is not unique

whereas the QCV measure of welfare change due to this policy is. Thus, Lemma 3 (and therefore

Proposition 2) states only the existence, not uniqueness, of the decomposition. By combining the

proofs of Lemmas 2 and 3, we can establish the following proposition for a more general case in

which 0 < 1 < 1 and A1 < A0.

Proposition 2. Consider a policy represented by the change from (0; A0) to (1; A1) where

0 < 1 < 1 and A1 < A0. Then, under A1-A3, the quasi-compensating variation of this policy

change can be decomposed into the following:

QCV = [welfare gain due to A1 (given v̂0)]

+ [cost of imperfect information 0 given A0 (evaluated at A0)]

� [cost of imperfect information 1 given A1 (evaluated at A1)]

= [e(p;A0; v̂0)� e(p;A1; v̂0)] + [m� e(p;A0; v̂0)]� [m� e(p;A1; v̂1)] ;

where v̂0 = Û(z�(m; p; 0A0); x
�(m; p; 0A0);A0) and v̂1 = Û(z

�(m; p; 1A1); x
�(m; p; 1A1);A1).

Another interesting policy question may be to ask which policy alternative is more e¢ cient,

self-protection or pollution control. By self-protection, we mean the policy of letting consumers

protect themselves by simultaneously providing inexpensive �lters and more accurate information.

To answer such a policy question, we would need both bene�t information and cost information.

Moreover, the issue becomes more subtle when the government can provide public information only
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with some noise or error. Thus, the welfare measure of bene�ts per se does not answer such a

question. Nonetheless, the welfare valuation of such a policy does help regulators make a more

informed decision. The following decomposition result is obtained in a manner analogous to that

of Lemma 3.

Proposition 3. Consider a policy represented by the change from (0; p0) to (1; p1) where 0 <

1 = 1 and p1 < p0. Then, under A1-A3, the quasi-compensating variation of this policy change

can be decomposed into the following:

QCV = [cost of imperfect information 0 given p1 (evaluated at p1)]

+ [welfare gain due to price change (given 0)]

= [m� e(p1; A; v̂p1)] + [e(p1; A; v̂p1)� e(p1; A; v̂p0)] ;

where v̂p0 = Û(z
�(m; p0; 0A); x

�(m; p0; 0A);A) and v̂p1 = Û(z
�(m; p1; 0A); x

�(m; p1; 0A);A).

The second term e(p1; A; v̂p1)�e(p1; A; v̂p0) of the QCV evaluates the welfare value of obtaining

the lower price p1 given 0. It is straightforward to verify that this term is always nonnegative.

This implies that the higher price of averting options exacerbates the welfare loss due to imperfect

information. However, the e¢ ciency of the "self-protection" policy relative to other alternative

policies is, in general, indeterminate. It depends not only on the primitives of the model but also

on the underlying distribution of . This point is addressed in the next section.

V. A Numerical Example.

To illustrate the quantitative impacts of imperfect information, we consider the following nu-

merical example. We use a Cobb-Douglas speci�cation of individual utilities and an additively

separable health production function:

U(z;H(x;A)) = z�(log(x+ 1) + log(Amax �A))(1=2)��

where A 2 [0; Amax] and � 2 [0; 1=2]. It is straightforward to verify that this utility function satis�es

A1-A3 and A5. Thus, our main results of Sections III and IV can be applied without modi�cation.
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For our base case, we set the following numerical values:

p = 2 (price of averting options x)

m = 10 (income)

� = 0:25 (preference parameter)

Amax = 5 (worst possible water quality)

A0 = 4 (water quality before the policy change)

A1 = 0:9� 4 (water quality after the policy change)

In the base simulation, we characterize the e¤ects of three alternative policies on individual welfare

as a function of parameter . As before, Policy I promotes educational programs and public noti�-

cation systems and is assumed to provide consumer i with parameter i0 with perfect information:

i1 = 1. Policy II does not a¤ect her information, but improves the quality of drinking water by

10% from A0 to A1. Policy III combines both Policy I and Policy II.

Figure 7 illustrates the relative e¤ectiveness of the three policy alternatives. Figure 7-(a)

uses the base preference parameter � = 1=4. The value of information (VOI) or the QCV measure

of Policy I increases as 0 decreases (i.e. as consumers become more badly informed) for a �xed

A0. This is consistent with our intuition. The consumer�s error in choosing defensive options

becomes larger and larger as her perception of water quality becomes more and more distant from

its true value. In the base simulation, providing more accurate information (in addition to the

water quality improvement) can improve welfare gains by up to 30%. More importantly, providing

perfect information alone accounts for as much as 53% of her potential welfare gain. This implies

that, when regulators cannot a¤ord to implement costly corrective programs (e.g pollution control

and water treatment), they could improve the welfare of the uninformed population considerably

by providing accurate information as a second-best alternative.

Interestingly, Figure 7 (a)-(c) show that the welfare gain from Policy II is also a decreasing

function of 0. This implies that, even if regulators do not correct for imperfect information, an

improvement in water quality can have larger impacts on those who are badly informed of toxic

water contamination. The intuition behind this result is that, as water quality improves, the adverse
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health e¤ect from falsely adopting defensive options is also alleviated. Since this e¤ect is larger

for ill-informed consumers, the welfare gain from Policy II is larger for them. We emphasize this

result, as it con�rms our original point � the welfare e¤ect of (and therefore the consumer�s true

willingness to pay for) pollution control changes as information changes and it is larger for those

unaware than those fully informed of contamination. As the empirical estimate of WTP is expected

to be an increasing function of 0, the disparity between the theoretical measure and the empirical

estimate of WTP becomes larger as the consumer becomes more and more badly informed. This

disparity must be treated carefully in policy analysis, as its magnitude (in money metric) can be

potentially quite large.

Figure 7 also provides another set of results. Though our numerical example above seems

to work with di¤erent primitive parameters, the relative e¤ectiveness of three policy alternatives

seems to be most sensitive to the choice of preference parameter �. The � parameter essentially

characterizes the relative importance to the consumer of the two goods, z and H. With the

speci�cation above, the smaller the � becomes, the greater weight she places on her health. Figure

7-(b) and 7-(c) illustrate the impact of parameter �. When the consumer has more preference

toward her health, the value of information becomes small and therefore Policy I (Policy II) becomes

less (more) e¤ective. In contrast, when she places more weight on the numeraire, the value of

information becomes very critical, and therefore, Policy I (Policy II) becomes more (less) e¤ective.

This has intuitive appeal in that when the consumer places more weight on her health, she consumes

more defensive options and protects herself su¢ ciently even if she believes the water quality is good.

Thus, the welfare loss due to imperfect information is smaller. However, when the consumer places

more weight on the numeraire, she tends to spend more on it if she believes the water quality is

good. Thus, the welfare loss due to imperfect information is larger. The latter case (� = 3=8) is

interesting because the QCV measure of Policy I exceeds that of Policy II for the consumer with

 = 0.11

Table 1 compares the changes in averting expenditures (corresponding to the change in A)

with the QCV measures of the welfare changes due to the three policies above, at varying degrees

11Though we experimented with various combinations of primitive parameters, only a limited set of parameters
produced the result that Policy I outperforms Policy II.
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of imperfect information . This comparison is interesting because it illustrates the extent of

potential bias in welfare valuation that could occur if one uses the change in averting expenditures

as an approximation alone. The full welfare cost of not implementing the change (from A0 to A1)

is equivalent to the welfare gain from Policy III (i.e. the direct welfare cost plus the cost that

consumers incur due to ignorance). If we measure only the change in averting expenditures, we

would report zero welfare cost for a consumer with  = 0; while in fact her welfare cost is 2.88 (or

28.8% of her income). As the consumer gains more accurate information, the di¤erence becomes

smaller. As prior theory predicts, averting expenditure does o¤er a lower-bound estimate of WTP

(and of full welfare costs). However, this result con�rms our original point that if consumers are

ill-informed, averting expenditures could be too small to be informative.

Lastly, we simulate four reasonable policy scenarios and compute aggregate welfare gains from

each scenario for an economy with 100 consumers. The �rst policy scenario (Scenario A) is simply

to reduce the toxic contamination level by 10%. This scenario corresponds to Policy II above and

is a strategy commonly undertaken in many developed countries. The second scenario not only

improves water quality by 10% but also provides accurate information to all consumers. This

policy corresponds to Policy III above and is also used commonly, though the merit of such a

policy is frequently overlooked in welfare theory. The third policy scenario is to lower the price of

averting options by 20%. The last policy scenario is to simultaneously provide accurate information

together with the low pricing of averting options. Our main interest here is to compare the aggregate

welfare e¤ect of Scenario D with that of Scenario A or B. However, our main focus is not so much on

whether or not a certain policy performs better than the other, but rather on how the distribution of

information parameter  a¤ects the relative performance of di¤erent policy alternatives. To do this,

we generate a random sample of 100 individuals endowed with information parameter i and income

mi. The 0s are generated according to a beta distribution with various combinations of parameters

(�; �). The beta function was chosen because it allows us to simulate �exible distributions on the

unit interval [0; 1]. Income parameter m0s are generated from the lognormal density with � = 15

and �2 = 0:5 and assumed to be independent from . As we do not have a priori knowledge about

the distribution of the preference parameter �, we ignore the variation in � and �x � = 1=4 for this

simulation.
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We employed a Monte Carlo simulation with a relatively small number of repetitions, 100, as

each repetition involves 8�100 optimization runs for this economy. Table 2 reports the means and

standard deviations of the simulated aggregate welfare gains for each policy scenario with di¤erent

combinations of initial policy parameters (p0; A0). The beta PDF function with (�; �) = (1; 3)

(or (3; 1)) is highly skewed toward 1 (toward 0) whereas (�; �) = (3; 3) gives us a symmetric

distribution with mean 0.5. The relative performance of Scenario D ("self-protection") against

Scenario A ("pollution control") depends on the choice of initial policy parameters. Pollution-

control policy always performs better than self-protection policy when (p0; A0) = (2; 4) whereas

the situation reverses when (p0; A0) = (3; 3). More importantly, regardless of (p0; A0), the relative

performance of self-protection policy appears to improve, as more and more of the population

becomes badly informed about the toxic pollution. Using Welch�s t-distribution approximation,

we can also test the null hypothesis that the aggregate gain from self-protection policy is less

than that from pollution-control policy. With (p0; A0) = (3; 3), we can reject the null at the 0.01

signi�cance level for every distribution of , but the t-statistic clearly increases as a greater share

of the population becomes badly informed. For our simulation analysis to be more informative to

regulators, we would still need information on the costs of implementing each policy. Nonetheless,

the result seems to demonstrate that the distribution of  is an important policy factor and needs

to be empirically estimated for more e¢ cient policy making.

VI. Conclusion

Conventional welfare measures, CV=EV and CS=ES, are not suitable for evaluating the welfare

e¤ects of changes in price and quality in the presence of imperfect information. We propose alterna-

tive welfare measures, called quasi-compensating variation (QCV ) and quasi-equivalent variation

(QEV ). These welfare measures not only enables us to analyze the welfare e¤ects of changes in

information, but also o¤ers a means to appropriately evaluate the welfare e¤ects of various poli-

cies when consumers are imperfectly informed. QCV and QEV measures coincide with CV=EV

when people are perfectly informed and, therefore, are natural extensions of CV=EV measures. In

addition, QCV and QEV o¤er a money metric of the consumer�s welfare loss when she possesses

inaccurate perception about the quality of drinking water. It compares the realized utility that the

consumer attains when she is badly informed with the maximal utility that she could have achieved
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if she were perfectly informed. We have shown numerically that the consumer�s true willingness

to pay to improve water quality increases, as she becomes more and more badly informed due pri-

marily to the welfare loss incurred from errors in her choice of averting options. This is in a sharp

contrast to prior empirical �ndings that suggested that the consumers�WTP values are higher

for those who are aware of the contamination than those who are not. This inverse relationship

between the empirical estimate of WTP and the true welfare cost occurs because of two distinct

impacts of imperfect information � one from "information bias" in the survey and the other from

the additional welfare loss due to errors in averting behaviors. This relationship must be treated

more carefully in welfare valuation studies on toxic contamination. For those who are imperfectly

informed and are thereby exposed to certain contamination, it may be more appropriate to use

their WTP to avoid the adverse health e¤ects from the exposure.

There are several important policy implications from our �ndings. First, people in developing

countries are typically badly informed about the quality of their drinking water and have limited

access to defensive options. Even worse, these countries have limited social and economic resources

to employ costly policies that would improve the quality of drinking water. Establishing stringent,

enforceable ambient and drinking water regulations could mean considerable social opportunity

costs in these countries, at least in the short run. In such a case, the best (short-term) strategy

may be for regulators to put more e¤orts into providing (1) consistent and reliable information and

(2) inexpensive, privately installable �lters for people without public water sources (Easter and

Konishi, 2005). Second, even in developed countries where ambient and drinking water regulations

are well established, consumers may be still unaware of some toxic chemicals in drinking water. For

example, Abdalla, Roach, and Epp (1992) reported that in a survey of households in the borough

of Perkasie in Pennsylvania, only 43.2% of survey respondents were aware of the trichloroethylen

(TCE) contamination despite the government�s mandatory noti�cation of the contamination prob-

lem. As shown above, the cost of imperfect information for those unaware may be quite high and

require much more attention from regulators. By appropriately targeting an ill-informed subpopu-

lation, regulators may achieve highly cost-e¤ective results. Another unwelcome implication is that

our �nding will add another reason why the empirical estimate of averting expenditures may not

provide a good approximation to the welfare costs of not controlling toxic pollutants. The averting
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expenditures can be a good (lower bound) approximation for willingness to pay only if all conditions

in Bartik (1981) are met and if consumers are fully aware of the water quality. If they are unaware,

then the cost of imperfect information can be quite high. Thus, the empirical estimate of welfare

costs must be adjusted for this factor. We are unaware of previous empirical studies that have

dealt with this issue. Lastly, our simulation demonstrates that the distribution of the information

parameter  is an important policy factor that needs to be estimated. A series of econometric

questions arise naturally. One of the most challenging questions will be, in our opinion, how to

identify this parameter. Further research e¤orts will be needed on this front.
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Appendix.

Proposition 1. Suppose that A1, A2 and A5 hold. Let x�(A) be the optimal choice of x given A.

Then, the "price" of one�s personal environment in the (z;H)-space given by:

P (A) =
p

Hx (x�(A))
;

does not coincide with the "budget line" in the (z;H)-space.

Proof : By A5, the �rst-order conditions are su¢ cient for the unique maximum of (1).

Under A5, Hx depends only on x, so that the FONC gives:

Uh(z
�;H(x�; A))

Uz(z�;H(x�; A))
=

p

Hx (x�)
:

By the Implicit Function Theorem, the LHS is the negative of the slope of the indi¤er-

ence curve at (z�;H�). Thus, we can interpret p=Hx (x�) to be the "price" of H. Now,

the question is whether or not this coincides with a budget line in the usual manner.

Because the consumer obtains the amount H(0; A) free of charge, her "budget line"

starts from the point (m;H(0; A)) in (z;H)-space. By Walras Law, z� = m � px�.

Therefore, the optimal point in the (z;H)-space is (m � px�;H(x�; A)). This implies

that the slope of the line connecting the H(0; A) and the H(x�; A) points is:

�px�
H(x�; A)�H(0; A) :

This is the familiar "budget line". For the price and the budget line to coincide with

each other, we must have:

x�

H(x�; A)�H(0; A) =
1

Hx (x�)
:

However, this cannot be true, because H is strictly concave in x. In fact, strict concavity
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implies that for all x� > 0:

Hx (x
�) <

H(x�; A)�H(0; A)
x�

() � 1

Hx (x�)
< � x�

H(x�; A)�H(0; A) : (3)

This means that the budget line is not tangent to the indi¤erence curve at the optimum

(z�;H�). �

Proposition 2. Consider a policy represented by the change from (0; A0) to (1; A1) where

0 < 1 < 1 and A1 < A0. Then, under A1-A3, the quasi-compensating variation of this policy

change can be decomposed into the following:

QCV = [welfare gain due to A1 (given v̂0)]

+ [cost of imperfect information 0 given A0 (evaluated at A0)]

� [cost of imperfect information 1 given A1 (evaluated at A1)]

= [e(p;A0; v̂0)� e(p;A1; v̂0)] + [m� e(p;A0; v̂0)]� [m� e(p;A1; v̂1)]

= e(p;A1; v̂1)� e(p;A1; v̂0);

where v̂0 = Û(z�(m; p; 0A0); x
�(m; p; 0A0);A0) and v̂1 = Û(z

�(m; p; 1A1); x
�(m; p; 1A1);A1).

Proof : By de�nition, QCV is the monetary amount given implicitly by:

U [z�(m; p; 0A0);H(x
�(m; p; 0A0); A0)]

= U [z�(m�QCV; p; 1A1);H(x�(m�QCV; p; 1A1); A1)] :

The LHS is equal to v̂0, and the RHS without the term QCV is simply v̂1. Thus, QCV

is a di¤erence in expenditures, evaluated after the change (i.e. at A1), to obtain two

di¤erent utility levels, v̂0 and v̂1. Therefore, under A1-A3, we can write:

QCV = e(p;A1; v̂1)� e(p;A1; v̂0):

where e(p;A; v) is the expenditure function de�ned by e(p;A; v) = minfz+pxjU(z;H(x;A)) �
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vg. The welfare gain due to the change in water quality from A0 to A1 controlling for

v = v̂0 is the di¤erence in expenditures, between A0 and A1, to obtain the same utility

level v̂0. Thus, it can be written as:

e(p;A0; v̂0)� e(p;A1; v̂0):

Moreover, by Lemma 1, the cost of imperfect information i given Ai (evaluated at

Ai) is:

m� e(p;Ai; v̂i) for i = 0; 1:

Thus, combining these terms, we obtain exactly the above QCV . �

Proposition 3. Consider a policy represented by the change from (0; p0) to (1; p1) where 0 <

1 = 1 and p1 < p0. Then, under A1-A3, the quasi-compensating variation of this policy change

can be decomposed into the following:

QCV = [cost of imperfect information 0 given p1 (evaluated at p1)]

+ [welfare gain due to price change (given 0)]

= [m� e(p1; A; v̂p1)] + [e(p1; A; v̂p1)� e(p1; A; v̂p0)]

= m� e(p1; A; v̂p0);

where v̂p0 = Û(z
�(m; p0; 0A); x

�(m; p0; 0A);A) and v̂p1 = Û(z
�(m; p1; 0A); x

�(m; p1; 0A);A).

Proof : By de�nition, QCV is the monetary amount given implicitly by:

U [z�(m; p0; 0A);H(x
�(m; p0; 0A0); A)]

= U [z�(m�QCV; p1; 1A);H(x�(m�QCV; p1; 1A); A)] :

where 1 = 1. The LHS equals v̂p0 , and the RHS without the term QCV is simply the

indirect utility v(m; p1; A). Thus, the above equality can be reformulated as:

v̂p0 = v(m�QCV; p1; A)
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Therefore, QCV is a di¤erence in expenditures, evaluated after the change (i.e. at p1),

to obtain two di¤erent utility levels. Under A1-A3, the solution to the equation can be

obtained explicitly by:

QCV = e(p1; A; v(m; p1; A))� e(p1; A; v̂p0)

= m� e(p1; A; v̂p0)

By Lemma 1, the cost of imperfect information given p1 is:

m� e(p1; A; v̂p1)

On the other hand, by the analogue of Lemma 2, the welfare gain due to the price

change from p0 to p1 given 0 can be obtained by:

e(p1; A; v̂p1)� e(p1; A; v̂p0)

Thus, adding up these, we obtain exactly the above QCV . �
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Figure 1: Indifference Curves in the (z, x)-Space. 
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Figure 2: Four “Prices” in the (z, H)-Space. 
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Figure 3: CV and EV Measures of Welfare Changes. 
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Figure 4: Value of Information, Policy I: γ0 = γ < 1 and γ1 = 1. 
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Figure 5: Welfare Gains from Policy II: γ0 = γ1 = γ < 1 and A1 < A0. 
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Figure 6: Welfare Gains from Policy III: γ0 < γ1 = 1 and A1 < A0. 
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Figure 7: Welfare Gains under Three Policy Alternatives under Different Preference Parameters. 
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Table 1: Welfare Changes vs. Changes in Averting Expenditures. 

γ

0.0 0.2 0.4 0.6 0.8 1.0

Chg. in AE 0.001 0.017 0.043 0.093 0.200 0.536
Welfare Changes

Policy I 1.492 1.235 0.946 0.619 0.261 0.000
Policy II 2.196 2.102 1.991 1.855 1.690 1.549
Policy III 2.880 2.651 2.394 2.102 1.782 1.549

Discrepancy 2.879 2.634 2.350 2.010 1.582 1.013
 

Note: Changes in averting expenditures are differences in averting expenditures at A0 and A1 with γ fixed. Other parameter values are 
fixed at p = 2, m = 10, A0 = 4, A1 = 3.6.  
 

Table 2: Summary of Simulated Aggregate Welfare Gains from Four Policy Alternatives. 

 

Distribution of γ

α 3.0 3.0 3.0 1.5 1.0
β 1.0 1.5 3.0 3.0 3.0

p0 = 2, A0 = 4

304.11 308.20 321.08 329.64 334.40
(7.26) (7.70) (7.14) (7.98) (8.29)

318.02 328.90 355.15 377.05 388.36
(7.68) (8.18) (7.50) (8.70) (8.84)
159.87 161.33 165.55 168.02 169.80
(4.82) (5.11) (4.77) (5.23) (5.47)
188.53 199.74 226.35 249.21 260.69
(5.62) (5.98) (5.48) (6.37) (6.38)

p0 = 2.5, A0 = 3.5

184.60 188.08 192.32 197.21 198.88
(4.12) (5.63) (3.97) (4.46) (5.19)
192.76 199.75 211.88 225.39 231.22
(4.26) (5.63) (4.17) (4.97) (5.74)
141.06 142.98 143.88 145.87 146.23
(4.37) (5.86) (4.18) (4.58) (5.33)
153.47 160.51 172.56 186.04 191.82
(4.50) (5.95) (4.40) (5.22) (6.03)

p0 = 3, A0 = 3

122.91 124.03 126.26 128.65 129.81
(3.35) (3.42) (3.37) (3.09) (3.35)
127.44 130.66 137.71 145.52 149.68
(3.44) (3.58) (3.45) (3.31) (3.58)
128.91 129.37 130.01 131.02 131.42
(5.15) (5.32) (5.29) (4.78) (5.16)
134.99 138.20 145.01 152.69 156.72
(5.20) (5.47) (5.34) (5.00) (5.42)D. 20% reduction in price + full information

A. 10% reduction in pollution

B. 10% reduction in pollution + full information

C. 20% reduction in price

D. 20% reduction in price + full information

A. 10% reduction in pollution

Policy Scenarios

A. 10% reduction in pollution

B. 10% reduction in pollution + full information

C. 20% reduction in price

B. 10% reduction in pollution + full information

C. 20% reduction in price

D. 20% reduction in price + full information

 

Note: Distribution of γ is assumed to follow a beta distribution B(α,β).  
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