
  
 

 

 
1 

 

 

 

 

 

 

 A STRONG NO SHOW PARADOX IS A COMMON FLAW IN 

 CONDORCET VOTING CORRESPONDENCES 

 

 

 

 

 

 

 Joaquín PEREZ 

Departamento de Fundamentos de Economía e Historia Económica.  

Universidad de Alcalá. Plaza de la Victoria. 28802 Alcalá de Henares. 

Madrid. Spain 

 

 E-mail: joaquin.perez@uah.es 

  

  

 

 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7055078?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


  
 

 

 
2 

 

 

 

 

 

 

 ABSTRACT 

 

 The No Show Paradox (there is a voter who would rather not vote) is known 

to affect every Condorcet voting function. This paper analyses a strong version of 

this paradox (there is a voter whose favorite candidate loses the election if she votes 

honestly, but gets elected if she abstains) in the context of Condorcet voting 

correspondences. All Condorcet correspondences satisfying some weak domination 

properties are shown to be affected by this strong form of the paradox. On the other 

hand, with the exception of the Simpson-Cramer Minmax, all the Condorcet 

correspondences that (to the best of our knowledge) are proposed in the li terature 

suffer this paradox. 
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1. INTRODUCTION 

 

In the theory of voting, the prospects of finding a best voting method have been 

disappointing, due to the negative results obtained through the systematic axiomatic 

analysis employed during the last half of this century, including the Arrow 

Impossibil ity Theorem and the Gibbard-Satterthwaite result, with its subsequent 

developments and refinements. We know now that no voting method simultaneously 

fulfil ls some minimal properties that apparently are required by any reasonable 

method, that is to say, no method is free from paradoxes (failures to satisfy some 

intuitively compelling properties).  

 However, it stil l makes sense to analyze and compare methods in order to 

select a reasonable one for a given setting. In this task of confronting methods and 

choosing the right one, perhaps the two main famil ies are the Condorcet and the 

Positional family. 

 The interest and relevance of Condorcet voting methods stem from their 

fidelity to the democratic principle which asserts that if there exists a candidate that 

is favored by a majority of voters (in a face to face comparison) over any other, this 

candidate should be the only one chosen. This is called the Condorcet property. For 

the definition and analysis of the best known Condorcet methods, see Fishburn 

(1977), Tideman (1987), Laffond et al (1995), and Peris and Subiza** (1999). 

 On the other hand, the Positional or Scoring methods, and in particular the 

Borda method, aggregate the preferences of voters through a scoring technique 

which in some way extracts a measure of the intensity of these preferences. These 

methods have a normatively appealing consistency property (if two electorates are 

combined, the global result is coherent with the partial results). For the definition 

and analysis of the Positional methods, see Young (1974, 1975) and Saari (1990). 

 Young and Levenglick (1978) have established the incompatibil ity of the 

Condorcet and consistency properties. A similar, but independent, property called 

Participation (none of the voters is disillusioned  by submitting his true ballot) has 

also been shown in Moulin (1988) to be incompatible with the Condorcet property. 

Hence, every Condorcet method suffers what has been termed as the No Show 
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Paradox.  

 This paper, which follows Moulin (1988) and extends some results from 

Pérez (1995), explores the incidence in Condorcet voting correspondences of a 

strong form of the paradox (from now on called Strong No Show Paradox, or SNSP 

for short) in which there is a voter V1 whose favorite candidate loses the election if 

V1 votes honestly, but gets elected if V1  abstains. 

 Although not all Condorcet methods suffer from the Strong No Show 

Paradox, the Simpson-Cramer Minmax method is, as far as I know, the only 

exception among those proposed in the literature. 

 Section 2 presents the basic terminology and some known results. Section 3 

defines the SNSP, and identify some weak properties that imply the paradox. 

Section 4 analyses, with the help of these properties (whenever possible), which 

known correspondences abide by the paradox, and section 5 concludes the paper 

with some additional remarks. 

 

 

 

 

2. TERMINOLOGY AND SOME KNOWN RESULTS.  

 

The terminology of Fishburn (1977) and Laffond et al (1995) will be used whenever 

possible, with few modifications. 

 Let X = {x1,x2,...,xn} be a finite set with two or more candidates. Preferences 

of any voter are supposed to take the form of a complete ranking, that is to say, a 

linear (strict and complete) order l over X. We say l = xyzt... to denote the preference 

order in which x is the most preferred candidate, y is the second one, and so on, and 

a l b means that a is preferred to y in l. 

 Given the set of candidates X = {x1,x2,...,xn} , and any finite set V = 

{1,2,...,m} with one or more voters, we call a Situation any pair (X,p), where p is a 

preference profile over X from V, that is to say, a m-tuple of orders over X, each one 

meaning the preferences of a voter over X. 
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 We call Voting Correspondence (from now on VC) any function f which 

maps any situation (X,p) to a non-empty subset of X, f(X,p). The elements of f(X,p) 

are the chosen candidates  (the winners) over X from the preference profile p. Given 

any two VCs f and g, we say f is a refinement of g if and only if f(X,p)⊆g(X,p) for 

every situation (X,p).  

 Since we will consider only anonymous VCs (all voters are equally 

considered), a preference profile over X from V can also be described by specifying 

how many of the m voters from V sustain any of the n! linear orders on X. 

 Given any X, any two disjoint sets of voters V1={1,2,...,m1} and  V2={m1+1 , 

m1+2,...,m1+m2} , and any two preference profiles p1 and p2 over X from, 

respectively, V1 and V2, we can merge these two profiles in order to obtain a new 

profile over X, but now originated from V1∪V2. This new profile will be called 

p1+p2. 

 Let (X,p) be any situation with n candidates and m voters:  

Given any two different candidates x, y from X, p(x,y) means the number of 

voters in p which prefer x to y. Because ties are not allowed in any voter's ballot, 

p(x,y)+p(y,x)=m. The square nxn matrix Mp, whose entries are p(x,y), will be called 

the Paired Comparison Matr ix for (X,p). In this matrix, for any given candidate 

there is a row (say the i-th row) and a column (the i-th column). For every candidate 

x, the sum of the off-diagonal row entries in Mp is called the Borda Score of x. 

 Candidate x is said to beat y, denoted by xWpy, if and only if p(x,y)>p(y,x). If 

we use ≥ instead of >, we have the relation x beats or ties y, which is denoted by 

xUpy. Candidate x is said to beat indirectly (beat or tie indirectly), denoted by 

xWWpy (xUUpy) if and only if there are k candidates x1, x2, ..., xk in X such that x= x1 

R x2 R... R xk = y, being R=Wp (R=Up). If x beats any other, then x is called the 

Condorcet candidate.  

The situation in which the set of candidates is Z⊆X, and the profile is the 

restriction to Z of profile p, is called (Z,p/Z). The comparison matrices of this new 

situation are Mp/Z and Tp/Z . 

 For every order l:  x1x2...xn of the candidates, the sum  ∑i<j p(xi , xj) will be 

called the Kemeny Score of  l. Given an order l : x1x2...xn of the candidates, we say x 
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attains y through l in (X,p) if and only if there is a sequence of distinct candidates 

a1, a2, ..., aj , with x=a1 and y=aj , such that ai l ai+1 and p(ai , ai+1)≥p(aj , a1) for 

i=1,...,j-1. The order l is called a stack of (X,p) if and only if xi l xj  implies that  xi 

attains xj through l in (X,p). 

Let us call Bipartisan Plurali ty Game of (X, p) the two-player symmetric 

constant-sum game in which X is the set of pure strategies, and the payoffs for the 

profile of strategies (x,y) are: 

If x ≠y,  u1(x,y) = p(x,y) and u2(x,y)=p(y,x) 

If x=y,  u1(x,y) = u2(x,y) = m/2 

 In order to completely relate the terms p(x,y) and the payoffs of this game, 

we will suppose that all the entries p(x,x) of the main diagonal will be set as equal to 

m/2. This technical convention does not significantly affect any previous concept or 

result, and facilitates some definitions and computations. Thus,  Mp is the payoff 

matrix of the row player. 

 Any change in Mp by which a unit is added to the off-diagonal entry p(x,y) 

and subtracted from p(y,x), is called an elemental interchange in Mp. Any change 

in (X,p), by which two consecutive candidates x and y in a voter's order interchange 

their position in that voter's order, is called an elemental interchange in (X,p). 

 Following Fishburn (1977), we will distinguish three types of VCs. The 

correspondence f is said a C1, C2 or C3 Correspondence if, respectively: 

 C1: For every situation (X,p), the set of winners f(X,p) depends only on  

the Wp  relation.  

 C2: f is not a C1-Correspondence and for every situation (X,p), f(X,p)  

  depends only on the Paired Comparison Matrix Mp.  

 C3: f is neither a C1-Correspondence nor  a C2-Correspondence. 

 

Definition 1: A VC f is called Condorcet if and only if for every situation (X,p),  

(xWpy   ∀y∈X \{x} ) implies f(X,p)={x} . 

That is to say, if there is a Condorcet candidate, it wil l be the only winner. 

 

Definition 2: A VC f satisfies the Consistency property if and only if for any two 
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situations (X,p1) and (X,p2),  f(X,p1)∩f(X,p2)≠∅  implies  f(X,p1+p2)=f(X,p1)∩ 

f(X,p2). 

In other words, if some candidates are chosen for profile p1 and profile p2, they, and 

only they, are chosen when the two profiles are merged. This property characterizes, 

along with Anonymity and Neutrality, the positional choice correspondences, whose 

best known examples are the Plurality rule (the winners are those who are the most 

preferred candidates by a highest number of voters) and the Borda rule (the winners 

are those who obtain the highest Borda Score). See Young (1975), and see also 

Young (1974) for a characterization of the Borda rule where the Consistency 

property plays a fundamental role. 

 The following property, from Moulin (1988), is defined in the context of 

Voting Functions (VCs which, for any situation, chose only one candidate), which 

he calls Voting Rules. 

 

Definition 3: A Voting Function f satisfies the Participation property if and only if 

for any given pair of situations (X,p) and (X,v), where profile v has only one voter,  

(f(X,p) = {x}  and x is preferred to y in v)  implies f(X,p+v) ≠ {y} . 

 

That is to say, if x is the winner for a situation and a new voter who prefers x to y is 

added, candidate y will not become the winner. From the point of view of the new 

voter, he would do better if he abstained, because submitting his ballot would result 

in the election of a less preferred candidate. If we apply Moulin's terminology, 

fail ing to satisfy Participation means that the No Show paradox sets in. 

 

2.1 Some known results. 

 

The incompatibility of the above two properties with the Condorcet property is 

shown in propositions 1 and 2 below, established respectively in Young and 

Levenglick (1978) and Moulin (1988). 

 

Proposition 1: No Condorcet VC satisfies the Consistency property. 
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Proposition 2: No Condorcet Voting Function satisfies the Participation property. 

 

Consistency and Participation are not logically related. Moreover, Moulin (1988) 

proved that Participation does not imply nor is implied by the Reinforcement 

property, which is a natural translation of Consistency to the Voting Functions 

framework. 

 

 The following definition is a natural translation of the Participation property 

to the Voting Correspondences framework. 

 

Definition 4: A VC f satisfies the VC-Participation property if and only if for any 

given pair of situations (X,p) and (X,v), where profile v has only one voter,  

   If x∈f(X,p) and x is preferred to y in v, then (y∈f(X,p+v)  implies  x∈f(X,p+v) ). 

 

In other words, if candidate x is chosen for a situation and a new voter is added who 

strictly prefers x to y, candidate y wil l not be chosen if she is not accompanied by 

candidate x. 

 

 An easy adaptation of the proof (ii ) in Moulin’s statement  (1988, p. 57-59), 

allows to establish proposition 3 as below. See Pérez (1995). 

 

Proposition 3: No Condorcet VC satisfies the VC-Participation property. 

 

 

 

3. THE STRONG NO SHOW PARADOX 

 

The following property can be easily shown to be a weakening of both Consistency 

and VC-Participation, and it may be seen as the minimum to require to any VC, 

concerning the coherence in the set of  winning candidates when new voters are 

added. 



  
 

 

 
9 

 

Definition 5: A VC f satisfies the Positive Involvement property if and only if for 

any given pair of situations (X,p) and (X,v), where profile v has only one voter, 

If x∈f(X,p) and x is preferred to any y in v, then  x∈f(X,p+v). 

 

In other words, if candidate x is chosen, x will remain chosen when a new voter is 

added who prefers x to any other candidate.  Saari (1994) defines (in a slightly 

different way) Positive Involvement and shows that Correspondences defined by 

sequential pairwise comparisons according to a specified agenda fail to satisfy it. 

 The failure by an VC f to satisfy this property means that f suffers an acute 

form of Moulin's No Show Paradox, which we will call Strong No Show Paradox 

(SNSP). 

 Some Condorcet VCs that satisfy Positive Involvement do exist, as wil l be 

shown in proposition 6 below. 

 

3.1 Impossibility result for some famil ies of Condorcet VCs. 

The following domination properties will be needed to identify families of 

Condorcet VCs that fail to satisfy Positive Involvement. 
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Definition 6: Given a situation (X,p) and two candidates x and s, we say  s is C1-

dominated by x  if and only if the two following conditions hold: 

 a)  p(x,s) > p(s,x) 

 b) For any z ∈ X\{x,s}, if p(s,z) ≥  p(z,s) then p(x,z) >  p(z,x).  

In other words, x beats s and x beats any candidate z beaten by, or tied with, s.  

 

Note: If we consider only the information conveyed by the Wp relation (thus 

focusing on the underlying Tournament structure of the situation), we can say: 

1) The C1-domination relation coincides with the covering relation defined 

in the context of strict tournaments, in which Wp is a complete relation (∀x,y , if x≠y 

then xWpy or yWpx). See Fishburn (1977) and Laffond et al (1995). 

2) The C1-domination relation is stronger than any of the covering relations 

defined in the context of weak tournaments, in which Wp is the asymmetric part of a 

complete relation. Thus, if s is C1-dominated by x then s is covered by x. See Peris 

and Subiza (1999). 

 

Definition 7: Given a situation (X,p) and two candidates x and s, we say that s is 

C2-dominated by x if and only if the two following conditions hold: 

 a) p(x,s) > p(s,x) 

 b) For any z ∈ X \{ x,s} , p(x,z) ≥ p(s,z). 

In other words, x beats s, and x performs equal or better than s in the matrix Mp, in 

her confrontation with any other candidate. Both C1 and C2 domination concepts 

are generalizations of the Pareto Domination relation. 

 

Definition 8:  Given a situation (X,p) and two candidates x and s, we say that s is 

C2-quasidominated in differences by x if and only if the three following conditions 

hold: 

 a) p(x,s) > p(s,x). 

 b) p(x,z) ≥ p(s,z) for any z ∈ X-{x,s} except perhaps for a unique z. 

 c) If p(x,z) < p(s,z),  then  p(x,s) - p(s,s) > p(s,z) - p(x,z). 
 
In other words, x beats s, x performs better than s in her confrontation with any other 
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candidate, except perhaps with only one, say the z candidate, and the difference in 

favor of x in her confrontation with s (as expressed by the difference p(x,s)-p(s,s)) 

more than compensates for the difference in favor of s when both are confronted 

with z. Candidate z can be called the weak  point of x with respect to s. 

 

Definition 9: Let (X,p) be any situation. Given three different candidates x, y and s, 

we say that s is C2-dominated by the pair  {x,y} if and only if the two following 

conditions hold: 

 a) Both x and y C2-quasidominate s in differences. 

 b) If w∈{ x,y} and p(w,z) < p(s,z),  then  p(y,z)-p(s,z) ≥ p(s,z)-p(x,z). 

 That is to say, besides the fact that both x and y C2-quasidominate s, the 

performance of any of them at the weak point of the other is enough to compensate 

the poor performance of the other at its own weak point. This compensation causes 

that, in every column of  Mp, the entry corresponding to candidate s is equal or lower 

than the average of the entries corresponding to candidates x and y. 

 Although stronger, this definition is formulated in the spirit of the concept of 

weak domination of a pure strategy by a mixed strategy in finite strategic-form 

games. In fact, in the Bipartisan Plurality Game associated to a situation (X,p), 

defined in Laffond et al (1993, 1994), if a candidate s is C2-Dominated by the pair 

{x,y} , then the pure strategy s is weakly dominated by the mixed strategy 0.5x+0.5y. 

 Every concept of domination among candidates tell us that, from the 

perspective of this concept, a dominated candidate, being surpassed by other(s), does 

not perform suff iciently well i n the preferences of voters and, therefore, does not 

deserve to win the election. So, for every concept of domination, it is relevant to 

pose the question of which VCs respect that concept, by not electing as a winner the 

dominated candidate or, at least, by not electing it as the unique winner. The 

following definition, being of a general character, is applicable to the four concepts 

of domination as defined above. 
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Definition 10: A VC f  Weakly Respects the Q-Domination if and only if for any 

given situation (X,p),  (s is Q-Dominated  implies that f(X,p) ≠ {s} ). 

(We say f Respect the Q-Domination if the consequent of the implication is 

s∉f(X,p)) 

 There is an obvious relation between the just defined properties of a VC and 

its refinements. Indeed, for any domination concept, if f is a refinement of g, the two 

following statements hold:  a) If g respects the Domination so does f. 

  b) If f weakly respects the Domination so does g. 

 

The following, the main proposition of the paper, establishes a logical 

incompatibil ity between Positive Involvement and some of the above defined 

domination concepts. 

 

Proposition 4:  No Condorcet VC that weakly respects the C1-Domination  or  

weakly respects the C2-Domination by a pair, satisfies the Positive Involvement 

property. 

 

Proof: The following lemma, whose proof is an easy adaptation of the proof of an 

analogous result in Moulin (1988a, p. 57) will be needed. 

 

Lemma 1: Given any Condorcet VC f satisfying Positive Involvement, any situation 

(X,p) and any two candidates x and z,     p(x,z) < Miny∈X p(z,y)  implies  x ∉ f(X,p)  

Proof of the lemma: Let m be the number of voters in profile p, and suppose p(x,z) 

< Min yeX p(z,y). Iteratively adding to p a number h = p(z,x) - Min yeX p(z,y) of new 

voters, all with identical preference order xz..., the minimal entry of the z row in the 

new profile p' is p'(z,x) = p(z,x). On the other hand, p'(x,z) < p'(z,x), because p'(x,z) = 

p(x,z) + h = p(x,z) + p(z,x) - Min yeX p(z,y) = p(z,x) + [p(x,z) - Min yeX p(z,y)] < p(z,x) 

= p'(z,x). Hence, the minimal entry on the z row in profile p', p'(z,x), is higher than 

(m+h)/2, making z a Condorcet candidate in the new situation and, because of the 

supposed Condorcet property, the only candidate chosen. 

 Therefore, candidate x can not be chosen for (X,p), because in that case, as 
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the new h voters are added, it would necessarily happen at some point that x will not 

be chosen, thus contradicting the Positive Involvement property. �  

 

 To complete the proof of proposition 4, let X = {x,y,z,u,t} and p the 

following profile: [yxtuz (11 voters), uzytx (10 voters), xztyu (10 voters), uztyx (2 

voters), utzyx (2 voters), zyxtu (2 voters), tzyxu (1 voter), xytuz (1 voter)].  The paired 

comparison matrix is:  

    x y z u t 

   x 19.5 11 22 25 24 

     Mp:  y 28 19.5 12 25 24 

   z 17 27 19.5 13 24 

   u 14 14 26 19.5 14 

   t 15 15 15 25 19.5 

 

 Suppose f is Condorcet and satisfies Positive Involvement. From Lemma 1 

applied to the pairs (x,y), (y,z), (z,u) and (u,t), candidates x, y, z, and u are not chosen 

for (X,p), and thus candidate t is the only winner.  

 However, both x and y C1-Dominate t (y is the weak point of x and z is the 

weak point of y), and the pair { x,y} C2-Dominates t (the difference in favor of t at 

the weak point of x is p(t,y)-p(x,y)=4, while p(x,t)-p(t,t)=4.5 and p(y,y)-p(t,y)=4.5; in 

a similar way, the difference in favor of t at the weak point of y is p(t,z)-p(y,z)=3, 

while p(y,t)-p(t,t)=4.5 and p(x,z)-p(t,z)=7). Therefore,  f fails to weakly respect the 

C1-Domination and also fails to weakly respect the C2-Domination by a pair, hence 

concluding the proof. �  

 

 Thus, proposition 4 shows that all sensible Condorcet C1-Correspondences 

(those that  weakly respect the C1-Domination) and the wide family of C2-

Correspondences that weakly respect the C2-Domination by a pair, suffer the Strong 

No Show Paradox. 

 

 The following proposition identifies a family of C2-Correspondences 
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respecting the C2-Domination by a pair, and to which Proposition 4 is consequently 

applicable. 

 Given any situation (X,p), let w={wk} k∈{1,2,...,n-1}  be a nonnegative real vector 

with n-1 components, such that w1=1. For every order l:  x1x2...xn of candidates, let 

us suppose that the rows and columns of Mp are ordered according to l. The sum 

Σi<jwipij, where pij =p(xi , xj). wil l be called the w-Generalized Kemeny Score of l, 

abbreviated K(l,w). We say that f is a w-Generalized Kemeny Correspondence 

 if and only if, for every situation (X,p), the winners are those candidates who are at 

the top of an order which has a maximal w-Generalized Kemeny Score. 

 It is easy to see that the Borda VC and the Kemeny VC can be selected as 

particular cases of this definition. Borda is selected if wk=0 when k>1, while 

Kemeny is selected if  wk=1 for every k. 

 

Proposition 5:  Every w-Generalized Kemeny Correspondence f respects the C2-

Domination by a pair. 

 

Proof: Let (X,p) be a situation in which t is C2-Quasidominated by x, 

w={wk} k∈{1,2,...,n-1} be the weights vector of f, and l: x1...xr...xn be an order of X where 

x1=t and  xr=x. Let xs be the weak point of x with respect to t. We will prove that 

interchanging in l the first candidate t with candidate x, the resulting lxt order has a 

w-Generalized Kemeny Score higher than that of l.  

The sums defining the scores of l and lxt differ only in two rows, the first row and the 

r-row, so that   K(lxt , w) - K(l , w) =   

= (Σ r≠j w1 prj  - Σ1<j w1 p1j ) + (Σr<j wr p1j  - Σr<j wr prj) =  

=(w1 pr1 +Σ 1<j<r w1 prj   +Σ r<j w1 prj  - w1 p1r - Σ1<j<r w1 p1j - Σj< r w1 p1j) + (Σr<j wr 

p1j  - Σr<j wr prj) =  

= w1 (pr1 - p1r )+ w1 Σ1<j<r (prj-p1j )+ w1 Σr<j (prj - p1j ) + wr Σr<j (p1j - prj) =  

=w1 (pr1 - p1r )+ w1 Σ1<j<r (prj - p1j ) + (w1- wr )Σr<j (prj - p1j ). 

As x=xr quasi dominates t=x1  in differences, and w1>w1-wr: 

 If s<r, K(lxt , w) - K(l , w) ≥ w1(pr1 - p1r )+w1(prs - p1s) > 0 

 If  s>r, K(lxt , w) - K(l , w) ≥ w1 (pr1 - p1r )+ (w1- wr ) (prs - p1s) > 0 
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Therefore, in any case, the order lxt has a w-Generalized Kemeny Score higher than 

that of l, which excludes t from being a winner, thus completing the proof. �  

 

 The situation described in the proof of proposition 4, in which there is no 

Condorcet Candidate, along with proposition 5, allows us to conclude that no 

Condorcet VC which coincides with a w-Generalized Kemeny Correspondence 

when there is no Condorcet candidate, satisfies the Positive Involvement property. 

 

 

 

4. INCIDENCE OF THE PARADOX IN KNOWN CONDORCET 

  CORRESPONDENCES. 

 

4.1 C1-Correspondences. 

As shown by proposition 4, all reasonable Condorcet C1-Correspondences (that is, 

those weakly respecting the C1-Domination) suffer the Strong No Show Paradox. In 

order to see that no Condorcet C1-Correspondence proposed in the literature (as far 

as I know) is free from the paradox, we only need to analyze in detail the Top Cycle 

(fTC) and the Uncovered Set (fUS) correspondences:  

fTC (X,p) ≡{ x∈X: there is no y∈X such that  yWWpx and (not  xWWpy)}  

fUS(X,p) ≡ {x∈X: there is no y∈X such that  (xWpz   implies   yWpz)}  

 

If s is C1-dominated by x, then s is beaten by x, so that s can not belong to 

fTC (X,p) if x does not. Therefore, fTC weakly respects the C1-Domination and, by 

proposition 4, suffers SNSP. 

On the other hand, if s is C1-dominated by x, then s is covered by x, so that s 

can not belong to fUS (X,p). Therefore, fUS respects the C1-Domination and, by 

proposition 4, suffers SNSP. Observe that this is a valid argument for any definition 

of the covering relation, thus it applies to the correspondences known as Fishburn’s 

function and Miller's Uncovered set correspondence, and also to those Uncovered 

Set correspondences defined in Peris and Subiza (1999) for weak tournaments. 
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Furthermore, all the others neutral C1-correspondences proposed in the 

literature are, to our knowledge, refinements of the Uncovered set correspondence, 

hence they all respect the C1-Domination. This is the case of the following 

correspondences, and also of their counterparts in weak tournaments: Copeland, 

Slater , Kendall-Wei, Dutta's Minimal Covering, Banks, Laffond's Bipartisan 

Tournament Set, and Schwartz's Tournament Equilibr ium. See Fishburn 

(1977), Moulin (1986), Dutta (1988), Laffond et al (1993, 1995), Levin and 

Nalebuff (1995) and Peris and Subiza (1999). 

 

4.2 C2-Correspondences. 

Proposition 4 shows that all Condorcet C2-Correspondences satisfying a very weak 

compensation property (that is, those weakly respecting the C2-Domination by a 

pair) suffer the Strong No Show Paradox.  

On the other hand, all w-Generalized Kemeny correspondences are, by 

proposition 5, shown to respect the C2-Domination by a pair. Let us begin analyzing 

the Black and Kemeny correspondences (fBLACK and fKEM). See Fishburn (1977), 

Young and Levenglick (1978), and Young (1995). 

fBLACK(X,p) ≡  {c}  if a Condorcet candidate c exists,  

      {x∈X: x has a maximal Borda Score} , in any other case. 

 

fKEM (X,p) ≡  {x∈X: x is at the top of an order l with maximal Kemeny Score}  

 

The first correspondence applies the Borda algorithm when no Condorcet 

Candidate exists, while the second applies always the Kemeny algorithm. Therefore, 

both are w-Generalized  Kemeny correspondences (w1=1 and wk=0 when k>1, for 

the case of Black, and wk=1 for every k, for the case of Kemeny). Therefore, both 

suffer SNSP. 

 

Now we will show that Nanson’s and Simplified Dogdson’s 

correspondences (fNAN and fS.DOG) respect the C2-Domination by a pair, because no 

quasidominated in differences candidate is a winner. See Fishburn (1977) and 
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Young (1995). 

fNAN (X,p) ≡ limj→∞ Xj,     where X1 = X      and 

    Xj+1=    Xj ,   if all candidates in Xj  have the same Borda Score on (Xj , 

p/Xj). 

   Xj \{x∈Xj: The Borda Score of x on (Xj, p/Xj) is minimal} ,  in any other 

case. 

(Observe that the algorithm operates in an iterative fashion, eliminating all 

candidates with a worst Borda Score in the actual situation, except when all 

candidates have the same Borda Score) 

fS. DOG(X,p) ≡ {x∈X: x needs a minimal number of elemental interchanges 

in  

Mp to become a Condorcet Candidate}  

 

If t is quasidominated by x in differences, the Borda score of t is lower than 

that of x at any step of the elimination process. Hence, candidate t (which will be 

eliminated before x) is not a winner in fNAN (X,p). On the other hand, the number of 

elemental interchanges in Mp needed by t to become a Condorcet Candidate is 

obviously higher than that needed by x. This implies that t cannot be a winner in 

fS.DOG(X,p). Therefore, both fNAN and fS.DOG respect the C2-Domination by a pair, and 

suffer SNSP. 

 

 Let us analyze now the Laffond's Bipartisan Plurality Set correspondence 

(fBPS). Defined in Laffond et al  (1994), it respects the C2-Domination by a pair. Let 

(X,p) be any situation in which p(x,y)≠p(y,x) for every x≠y. 

fBPS(X,p) ≡ {x∈X: x belongs to the support of the unique symmetric Nash  

   Equil ibrium of the Bipartisan Plurality Game of  (X,p)}  

 

Let (X,p) be any situation in which, as in that of the proof of Proposition 4, 

p(u,v)≠p(v,u) for every two different candidates u and v. Laffond et al (1994) have 

shown that the Bipartisan Plurality Game of this situation has a unique Nash 

Equil ibrium, and that this equilibrium is symmetric. Let us suppose now that 
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candidate t is C2-Dominated by the pair {x,y} . If a player of the game plays strategy 

t with a strictly positive probabil ity φ, the best response of the other player can not 

include t in its support (Indeed, he would obtain a strictly higher payoff by 

transferring the probability φ from t to 0.5x+0.5y). Therefore, t cannot be in the 

support of the unique symmetric Nash Equilibrium of the game, and thus t is not a 

winner in fBPS(X,p). Hence, fBPS respects the C2-Domination by a pair in this type of 

situations and suffers SNSP.  

 

 Let us show now that the Tideman's Ranked Pairs correspondence (fRP), 

defined and studied in Tideman (1987) and Zavist and Tideman (1989), suffers the 

SNSP despite the fact that it does not weakly respect the C2-Domination by a pair 

nor the C1-Domination. 

fRP (X,p)   ≡   {x∈X: x is the top candidate of a stack l}  

 

In the situation of the proof of proposition 4, candidate t is the only winner 

because tuzyx is the unique stack. Thus, fRP does not weakly respect the C2-

Domination by a pair nor the C1-Domination. Nevertheless, let X = {x,y,z,u} and p 

the following 11-voters profile: [uzyx (3 voters), xzyu (3 voters), yuxz (3 voters), 

zyxu (1 voter), xyuz (1 voter)]. Let p' be the profile p+v where v is the one-voter 

profile with preferences xyuz. The comparison matrices are:  

 

  Mp      Mp' 

 x y z u    x y z u 

x 5.5 4 7 5   x 6 5 8 6 

y 7 5.5 4 8   y 7 6 5 9           

z 4 7 5.5 4   z 4 7 6 4 

u 6 3 7 5.5   u 6 3 8 6 

 

We will prove that x is elected in (X,p) but not in (X,p'). Let us first see that 

the order l: xzyu is a stack of (X,p). Candidate x attains z through l in (X,p) because 

p(x,z)>p(z,x), attains y because p(x,z) ≥  p(y,x) and p(z,y) ≥  p(y,x), and attains u 
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because p(x,z) ≥  p(u,x),  p(z,y) ≥  p(u,x) and   p(y,u) ≥  p(u,x). Candidate z attains y 

because p(z,y)>p(y,z), and attains u because p(z,y) ≥  p(u,z) and p(y,u) ≥  p(u,z). 

Candidate y attains u because p(y,u) > p(u,y). Therefore, candidate x is a winner. 

 Let us now see that no order with x at the top can be a stack of (X,p'). For the 

order l: xz1z2z3 to be a stack, it is necessary that any candidate in l beats or ties in 

(X,p') to his immediate successor. The only orders with x at the top and satisfying 

this necessary condition are l1:xzyu and l2:xuzy. However, l1:xzyu is not a stack 

because z fails to attain u through l1 in (X,p') and l2:xuzy is not a stack because u fails 

to attain y through l2 in (X,p'), thus x is not a winner in (X,p'). Therefore, fRP fails to 

satisfy Positive Involvement and suffers SNSP. 

 

The last C2-correspondence to be analyzed, the Simpson-Cramer Minmax 

correspondence (fMINMAX), is (as far as I know) the only one known Condorcet 

correspondence not affected by the paradox. See Fishburn (1977) and Young (1995). 

fMINMAX(X,p)≡{x∈X: The minimal off-diagonal term of row x in Mp is 

maximal}  

Let us show that fMINMAX satisfies the Positive Involvement property. Let 

(X,p) be any situation, z1 a winner candidate for (X,p), and (X,v) be any one-voter's 

situation with preferences l: z1...zn . Call p' the profile p+v. The matrix Mp' of the 

new situation is: 

  p'(x,y) = p(x,y) + 1   if x≠y and xly. 

    p(x,y) + ½   if x=y 

    p(x,y)  in any other case 

As supposed, the z1 row has a maximal minimal off-diagonal entry in Mp. Let p(z1, 

zj) a minimal off-diagonal entry of the z1 row in Mp. Since p'(z1, z)= p(z1, z)+1 for 

every z≠z1, while p'(x, y)≤p(x, y)+1 for every x,y, it is obvious that p'(z1, zj) is also a 

minimal off-diagonal entry of the z1 row in Mp' , and that the z1 row has a maximal 

minimal off-diagonal entry in Mp. Therefore, z1 is a winner in the new situation.  

 

4.3 C3-Correspondences. 
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The statement of proposition 4 is not applicable to these correspondences. However, 

some of the arguments used in this proposition may be applicable, and in fact are. 

Let us analyze the two C3-correspondences proposed in the literature, the Dogdson 

and the Young correspondences (fDOG and fYOUNG). See Fishburn (1977). We wil l see 

that both suffer the SNSP. 

fDOG (X,p) ≡ {x∈X: The number of elemental interchanges in (X,p) needed 

 by x to become a Condorcet Candidate is minimal}  

fYOUNG(X,p) ≡ {x∈X: The number of excluded voters in (X,p) needed  

by x to  become a Condorcet Candidate is minimal}  

 

Note: Fishburn (1977) provides slightly different definitions of Dogdson and Young 

correspondences. Firstly, they are based on the concept of QuasiCondorcet 

Candidates (those that beat or tie every other) and secondly, he introduces a limit 

process in order to avoid that these correspondences fail satisfying homogeneity. 

The results obtained in this paper are not affected by these modifications. 

In the situation (X,p) described in the proof of proposition 4, since candidate 

t needs more than 12 elemental interchanges in (X,p) to become a Condorcet 

Candidate, while y needs only 8 (obtained by switching y and z in 8 voters with 

preferences uzytx), t is not chosen in fDOG(X,p). On the other hand, and for the same 

situation, since  candidate u needs only the removal of 12 voters (the ten voters with 

preferences xztyu and the two with preferences zyxtu) to become a Condorcet 

Candidate, while t needs more than 12 voters removed, t is not chosen in 

fYOUNG(X,p).  Therefore, both fDOG and fYOUNG fail to satisfy Positive Involvement 

and suffer SNSP. 

 

 

 

5. FINAL REMARKS. 

 

Remark 1: A practical question, which has not been dealt with here, refers to the 

number of candidates and voters that are necessary to invoke the paradox. Although 
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a situation with 5 candidates and 39 voters was needed in the proof of proposition 4, 

usually a simpler situation (typically of 4 candidates and a number of voters between 

15 and 30) is enough to build a counterexample of the Positive Involvement 

property for any given method.  

 

Remark 2 (a stronger and a weaker version of the paradox):  We can define an 

even stronger no show paradox, called SNSP+, in the following way:  

 

Definition 11: A VC f  is said to satisfy the Weak Positive Involvement property if 

and only if for any situation (X,p), there is a winner x such that: 

   If (X,v) is a one-voter situation with favorite candidate x, then  x ∈ f(X,p+v). 

In other words, at least one winner x will remain a winner when a new voter,  

who prefers x to any other candidate, is added. An VC f that fails to satisfy this 

property is said to suffer SNSP+. 

 

The proof of proposition 4 remains obviously valid for the following 

alternative statement: "No Condorcet VC that respects the C1-Domination  or  

respects the C2-Domination by a pair, satisfies the Weak Positive Involvement 

property". Among the VCs studied in this paper which suffer SNSP, all suffer this 

new paradox, except the Top Cycle VC and (perhaps) the Tideman's Ranked Pairs 

VC. The reason is that in the situation (X,p) described in the proof of proposition 4, 

none of them chooses candidate t as a winner. 

 

On the other hand, if we allow ties in the voter's preferences, a paradox 

weaker than SNSP, and affecting every Condorcet VC, can be defined in the 

following way:  

 

Definition 12: A VC f satisfies the Positive Involvement with ties allowed property 

if and only if for any given pair of situations (X,p) and (X,v), where profile v has 

only one voter, 

If   x ∈ f(X,p) and x is preferred or tied to any y in v, then  x ∈ f(X,p+v). 
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In other words, if candidate x is a winner, x will remain a winner when a new  

voter is added for whom no candidate is strictly preferred to x. 

To establish the following proposition, let us make some necessary, but 

natural modifications in the definition of Mp: 

 p(x,y) = Σi=1,...,n (1/i)pi(x,y),  where p1(x,y) is the number of voters who 

strictly prefer x over y and pj(x,y), when j>1, is the number of voters who have x 

sharing with y a j-candidates tie. If there are no ties, p(x,y) has the usual meaning. 

 

Proposition 6: No Condorcet VC f satisfies the Positive Involvement with ties 

allowed property. 

Proof: Let  f be a Condorcet VC, X={x,y,z} and p be the following classical 

symmetric profile p=[xyz (1 voter), yzx (1 voter), zxy (1 voter)]. Let us suppose that, 

without any loss of generality, x is a winner. Then, if we add to p two new voters 

with preferences x~z>y, candidate z becomes a Condorcet candidate and, as a 

consequence, the only winner. Thus x becomes a loser when the first voter is added 

or when the second voter is added. Therefore, f fails to satisfy the Positive 

Involvement (with ties allowed) property. �  
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