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Abstract

We study a market where identical capacity-constrained sellers compete to attract identical buyers,

via price advertisements. Once buyers reach a store, prices might be renegotiable in a manner that

is responsive to excess demand. We focus on strongly symmetric equilibria, proving their existence

and providing explicit solutions for the distributions of advertised and sale prices as functions of

market characteristics. Since variations in the posted price can affect the store’s attractiveness

and the incidence of haggling, the model endogenizes the ‘pricing convention’ prevailing in the

market and generates several empirically testable predictions on market behavior.
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1 Introduction

The existence of price disparities for homogeneous products is empirically well docu-

mented (e.g. see Pratt et al., 1979 or Baye et al., 2004). In providing a rationale for such

observations, the theoretical literature has stressed the importance of market frictions,

for instance information heterogeneity as in Varian (1980) or costly search as in Carlson

and McAfee (1983). Several studies have relied on frameworks where frictions are made

explicit by means of a trade process based on random search. This friction limits the

information available on prices in Burdett and Judd (1983), for example, and impairs the

buyers’ ability to match to the cheapest sellers in Camera and Corbae (1999).

Our work broadly contributes to this research discourse. We study the theoretical

underpinnings of equilibrium price dispersion in a market for a homogeneous good or

service. We do not impose ex-ante heterogeneity elements or information frictions and

make trade frictions explicit by assuming a process of exchange that is decentralized and

subject to spatial and capacity constraints. We also set buyers free to direct their search:

trade matches do not follow the rather disorganized process of stochastic encounters so

common in matching frameworks. Rather, buyers are free to go where they prefer–much

as the “informed customers” in the pricing game studied by Baye et al. (1992)–and

stores compete to attract buyers by costlessly advertising (or posting) a price.

Our model is based on that of Burdett, Shi and Wright (2001). There, a countable

number of buyers and capacity-constrained sellers makes uncoordinated pricing and trad-

ing choices. Every buyer likes equally the indivisible good owned by each seller. Every

seller advertises a price at which she commits to sell and, given this information, buyers

independently select to approach a seller. In a symmetric equilibrium, sellers compete

for customers by listing a price below the buyer’s reserve value and buyers are indiffer-

ent across stores. Although this creates a non-degenerate distribution of demand, every

sale occurs at the listed price and stores that realize excess demand simply ration their

good. Hence, the price distribution is degenerate, unless heterogeneity is introduced (e.g.

rationing-wary buyers may prefer ‘larger’ stores, which thus advertise higher prices).

In reality, capacity-constrained sellers have incentives to sell above the advertised price

when demand is unusually high or to attract customers by committing to price reductions

if business is slow. This is perhaps why houses tend to sell above their list price in the

densely populated L.A. county (unlike Tippecanoe county), why new hot car models trade

above their MSRP (unlike older ones), why hotels rent rooms below the advertised prices

when demand is slow, or why airlines list fares ‘subject to change without notice.’ In

short, it is desirable to account for the fact that sale prices tend to respond to excess
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demand, even if advertised prices do not.

To do so we generalize Burdett et al. relaxing the assumption that the listing of a

price necessarily precludes further negotiations at the store.2 For instance, we consider

markets where sellers can exclude discounts but are free to suddenly raise the sale price,

or markets with better consumer protection, where stores can offer price reductions but

cannot sell above the advertised price. Of course, when the posted price is not binding one

must indicate how sale prices are determined. For generality, we do not impose a specific

price-formation protocol; instead, we provide results valid under any protocol generating

prices that increase in the store’s excess demand.

In this framework we prove a theorem of existence of strongly symmetric subgame

perfect equilibria, i.e., equilibria in which agents take the same action both on and off the

equilibrium path. Symmetry offers enough tractability to fully characterize the distribu-

tions of advertised and sale prices by means of explicit solutions. Hence, the model can be

used to make predictions on market behavior that can be empirically tested. For example,

we find that haggling over price discounts–as car dealers tend to do–is generally optimal

from the seller’s point of view only if the expected demand matches the store’s capacity.

Otherwise, trading at a fixed price is more profitable.

Equilibrium prices respond intuitively to commitment and market composition. Gen-

erally speaking, sellers advertise low prices in markets that have a small customer base.

In such a ‘buyer’s market’ average sale prices are low but dispersion in sale prices is con-

siderable. As the customer base expands we move into a seller’s market where advertised

and average sale prices grow, but their dispersion drops. What is the intuition? When

the customer base is small, a store’s distribution of demand–hence expected profit–

impinges heavily on the distribution of demand at other stores. Realizing this, stores

compete aggressively for customers by listing low prices. As the customer base expands

the covariance of demand across stores falls, lessening the need to compete.

Our analysis also contributes to a growing literature on endogenous selection of pricing

mechanisms (see Camera and Delacroix, 2004, for references). Indeed, the ‘pricing conven-

tion’ adopted in the market, i.e. the incidence of fixed-price trading versus negotiations,

is determined endogenously. We find that if sellers can commit to avoid price reductions,

2Coles and Eeckhout (2003), take a similar viewpoint letting stores run an auction in Burdett et al. A

two-point price distribution arises but sale prices are invariant to excess demand (be it two or two-million

buyers), to market size and composition. Arbatskaya (2004) studies the distribution of prices when stores

commit to a posted price but are sampled in a predetermined order by consumers differing in search costs.

Those with higher cost search less and spend more.
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then haggling is pervasive in a buyer’s market but very rare in a seller’s market. The

opposite occurs when prices cannot exceed what advertised. To the extent that haggling

involves a resource cost (say, time or personnel) the model provides a rationale as to why

fixed-price sales seem the convention in large but not in smaller markets.

2 The Model

The environment builds on the directed search model of Burdett, Shi and Wright

(2001). It is a static economy with one indivisible good type, capacity constraints, and

a finite number of spatially separated agents; S ≥ 2 identical sellers with one good each,
and B ≥ 2 identical buyers without endowment. The good generates consumption utility
linear in consumption and normalized to zero, for a seller, and one, for a buyer. Utility is

also transferable so there are gains from trade.

Sellers compete for buyers. They advertise by posting a publicly observable price

r ∈ [0, 1], the reference price (alternatively, advertised or posted price). In this context
the act of “posting” r simply makes it costlessly observable to every market participant.

Once reference prices have been posted, buyers simultaneously and independently select

to visit a single seller (search for a second store is assumed very costly). Since buyers’

choices are uncoordinated, different stores might be visited by different number of buyers.

To account for this possibility we let n = 0, 1, 2..., B denote the realized demand at the

store, i.e. the number of buyers who end up visiting the store.

We also define the variable λ = B
S we call the “customer base” of a store, to capture

the notion of market composition. If there are many sellers but only few buyers, then

stores have a small customer base λ and we are in a buyer’s market. When λ is large we

are in a seller’s market with few stores serving a large customer base. Any n > 1 results in

excess demand due to capacity constraints. In this case the seller selects a buyer to trade

with, at random. Thus, the existence of unit-capacity constraints contributes to make

trade frictions explicit. In equilibrium, market participants may experience idiosyncratic

trading risk; seller can experience demand shocks, while buyers can experience rationing.

Regarding sale price determination we relax Burdett et al.’s assumption that sellers

commit to charge r. Precisely, consider a store with n customers. As in Burdett et al.

we assume that the seller chooses a buyer at random, with equal probability among all

n present at the store. However, we consider the possibility that the transaction price

might differ from r, being determined via some endogenous price-formation mechanism–

referred to as “negotiations” for short–that is taken as given. The available commit-

ment technology specifies whether negotiations can take place and who can initiate them.
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Specifically–once the seller has chosen a customer–the technology exogenously gives to

either the seller or the buyer (or both) the option to initiate negotiations. We denote by

θ =(θb, θs) such a technology, where θi = 0, 1 is the probability that agent i = b, s (b for

buyer and s for seller) is given the option to initiate negotiations. We clarify how this

formalization captures four broad notions of price commitments, in what follows.

3 The Determination of Sale Prices

The economic interactions can be thought of as proceeding in three stages. First sellers

choose and ‘post’ r simultaneously and independently. These selections are observed by

every agent. In the second stage, buyers choose which store to visit, simultaneously and

independently. Following these selections, every buyer reaches some store and the demand

realized at that store is observed by everyone present. In the third stage, at each store

the seller selects a buyer at random, among those present. Following this selection a sale

may take place at a price that is different from what originally posted, depending on the

seller’s ability to commit to it.

We study the strongly symmetric subgame perfect equilibria of this economy. These

are outcomes in which agents take the same action both on and off the equilibrium path

(see Abreu, 1986). In particular, in equilibrium every store optimally selects the same

reference price r and every buyer optimally visits any store with equal probability. We

move backwards in the analysis starting by determining the optimal sale price at a store

that has posted r and is visited by n buyers. Then, we study the optimal choice of store,

for the representative buyer, and the optimal choice of price r for the representative store.

We start by deriving the optimal sale price, given some θ, at a store that posted r and

has n customers.

3.1 The Outcome of Negotiations at the Store

Consider a match between a seller i = 1, 2, ..., S and n = 1, ..., B buyers; n is ob-

served by everyone in the match. Abstract (for a moment) from r and suppose seller and

buyers were free to determine the transaction price via some endogenous price-formation

mechanism that is taken as given by everyone.3 Let qn be the price arising from such a

negotiations process, denoting q0 = 0 and qB+1 = 1. For generality we do not impose a

specific mechanism but simply make three assumptions on the properties of its outcome.

First, the price-formation mechanism leads to a trade without delay at a unique price qn.

3For example, the seller can auction the good (as in Coles and Eeckhout, 2003, or Benoit, Kennes and

King, 2000) or there can be a negotation process whereby the seller makes an initial proposal to some

buyer, calling onto other buyers if the initial offer is rejected, as in Camera and Selcuk (2004).
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Second, no party gets the entire surplus. Third, the resulting price responds positively to

excess demand at the store, but is unaffected by factors outside the store (e.g. distribution

of demand elsewhere). Formally, assume

0 < qn < qn+1 < 1 and
∂qn
∂B

=
∂qn
∂S

= 0 for all n = 1, ..., B. (1)

A negotiation framework that generates (1) is studied by Camera and Selcuk (2004).

There, one seller and n buyers randomly alternate in making offers, discounting future

utility by β ∈ (0, 1). If γ ∈ (0, 1) is the seller’s probability of making an offer then

qn =
(n−β)[1−β(1−γ)]
n(1−β)+βγ(n−1) . (2)

This captures the notion that–when demand is strong–stores can negotiate prices up

by playing buyers against each other. Our numerical analysis will assume qn satisfies (2)

with γ = 0.3 and β = 0.9.

3.2 The Sale Price at a Store Visited by n Customers

Now that we know the outcome of possible negotiations, we can discuss the sale price.

Denote pn the sale price at a store visited by n ≥ 1 buyers, letting p0 = 0. Linearity in
preferences implies that the seller enjoys utility pn and the buyer 1− pn.

The interaction between seller and the n customers proceeds as follows. The seller

chooses a buyer at random, with equal probability among all n present at the store.

Then, depending on the commitment technology θ =(θb, θs), someone may get the option

to start the negotiations process. Given this option, denote ηi the (conditional) probability

to start negotiations, for i = b, s. It is assumed that if no-one selects negotiations trade

takes place at the listed price, so pn = r. Otherwise, negotiations take place and result in

the sale price pn = qn. If we focus on pure strategies, the individually optimal choices are

ηs =
1 if r < qn

0 if r ≥ qn
and ηb =

0 if r < qn

1 if r ≥ qn.
(3)

It follows

Lemma 1. Let r ∈ [0, 1] be the price posted by a store visited by n = 1, ..., B buyers and

let qn be the price expected to arise from negotiations. Then trade takes place at price

pn =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
qn if θ = θN ≡ (1, 1)
min(qn, r) if θ = θC ≡ (1, 0)
max(qn, r) if θ = θF ≡ (0, 1)
r if θ = θX ≡ (0, 0).

(4)
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The commitment technology θ = θk, for k = C,F,N,X, delimits the set of sale prices,

relative to r, allowing us to formalize four basic notions of pricing conventions:

θs = 0 θs = 1

θb = 0 Fixed Prices Price Floors

θb = 1 Price Ceilings Negotiations

If θ = θN we say that there is no commitment to the posted price, while sales necessarily

occur at that price when there is full commitment, i.e. θ = θX (as assumed in Burdett et

al.). We can then have two cases with limited commitment: the ‘price floor’ θ = θF , when

sellers charge at least r, and the ‘price ceiling’ θ = θC when sale prices cannot exceed r.4

The proof of the Lemma is obvious. Once the seller selects a buyer to trade with–

among the n identical buyers present at the store–they both know that negotiations will

generate qn. Thus, the buyer will negotiate–if given the option–only if qn ≤ r. The

converse is true for the seller. Thus, pn ≤ r under price ceilings and pn ≥ r under price
floors. Using (4) we let

P = {r} ∪ {qn}Bn=1 (5)

denote the ordered set of possible equilibrium sale prices, for any given θ and any possible

n. We will let p denote a generic element of P.

When qn satisfies (1), then {qn − qn−1}Bn=1 is a positive decreasing sequence, so {pn}Bn=1
and {pn − pn−1}Bn=1 are non-decreasing and non-increasing. In short, the sale price pn
tends to increase in the excess demand. From (4) we see that pn is defined by functions

that are continuous and non-decreasing in r, bounded above by one and below by zero.

Also, ∂pn
∂r = 0, 1 depending on both r and θ. Clearly, ∂pn

∂r = 0 if pn = qn and
∂pn
∂r = 1

if pn = r. However, ∂pn
∂r = 1 either (i) if r < qn when pn = min(qn, r) or (ii) if r ≥ qn

when pn = max(qn, r); it is zero otherwise. Thus, we say that sale prices at store i are

responsive to the price posted by the store if ∂pn
∂r = 1 for some n ≥ 1. Of course, sale

prices will generally responsive to r only if some commitment is available.

There are two key consequences. First, variations in the posted price r will impinge on

the store’s “attractiveness”, i.e., the buyers’ choice to visit it, whenever the posted price

affects the set of feasible sale prices. Second, a weakening of the commitment to a fixed

4A practical way to commit to a certain price (or price range) is by means of hiring sale representatives.

For example, the commitment to fixed prices is credible if reps trading at non-authorized prices are fired,

and the commitment to charging at least r is credible is sale reps are compensated by pn − r.

6



price r implies that sale prices will not solely hinge on the posted price (as in Burdett et

al.) but also on the excess demand experienced by the store. Thus, in our framework a

change in the reference price r has a strategic impact not only because it may modify the

distribution of buyers at the store, but also because it may affect the distribution of sale

prices at that establishment. This is formalized in the following section.

4 Individually Optimal Selection of Prices and Stores

We now study the visiting and pricing choices of a representative agent. Recall that

we are focusing on strongly symmetric equilibria and that agents make choices in isolation

taking as given the strategies of others. Thus, we differentiate the strategy of everyone

else from that of a representative buyer or seller, by using a superscript ‘∗’.
4.1 The buyer’s problem

Let vi denote the probability that the representative buyer visits store i = 1, 2, ..., S,

and define v = (vi)
S
i=1 . Thus, v ∈ ∆S, i.e. v is a vector in the S−dimensional unit simplex

∆S = {v ∈ RS : v ≥ 0 and
S

i=1
vi = 1}. To find the optimal v we must examine how the

buyer’s expected payoff, conditional on being at store i, compares to the expected payoff

from being at any other store.

To do so suppose that store i posts r and every other store posts r∗, possibly different
than r. Denote by fn(B, v∗i ) the probability that a specific seller i is visited exactly by n
out of B possible buyers, given that every buyer visits this store with probability v∗i . Since
buyers choose stores in an uncoordinated manner the probability of visiting any store is

independent across buyers. It follows that, under symmetry, the distribution of buyers at

a store is given by bin(B, v∗i ), i.e.

fn(B, v
∗
i ) =

B

n
(v∗i )

n (1− v∗i )B−n for n = 0, 1, ..., B. (6)

It follows that, conditional on being at store i, the representative buyer faces proba-

bility fn(B− 1, v∗i ) that there are n = 0, 1, ..., B− 1 other customers. In that contingency
the expected payoff for the buyer is 1−pn+1

n+1 . Given the expected sale price pn+1, then

1− pn+1 is the buyer’s payoff if he gets to buy, which occurs with probability 1
1+n .

Letting Ui denote the buyer’s expected payoff, conditional on being at store i, we have

Ui =
B−1

n=0

fn(B − 1, v∗i )(1− pn+1)
n+ 1

. (7)

Clearly, the buyer prefers to visit the store where Ui is the highest. It is easy to

demonstrate (see also the proof of Lemma 3, later) that, all else equal, Ui is lower at
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more ‘popular stores’, i.e. ∂Ui
∂v∗i

< 0. This result hinges on the higher expected demand

generated by a larger v∗i . First, there is always an extensive margin effect: the buyer’s
ability to make a purchase falls as the number of customers increases, because stores are

capacity constrained. Second, there may be an intensive margin effect: higher expected

demand means higher prices since {pn} is a non-decreasing sequence.
Expression (7) tells us that, all else equal, the representative buyer will prefer to be

at stores expected to be less crowded or with lower sale prices. It follows that a buyer

may be indifferent between a cheap and an expensive store, if the latter is also likely to

have less customers. Of course, from our earlier discussion we know that–given n–the

sale price may differ across stores only if the stores advertised different prices (see (4)).

Now consider the representative buyer’s selection of store i versus other stores, given

that everybody else is playing an identical strategy (strong symmetry). He can visit store

i that has posted r and sells at prices {pn}, or any other store h = i that has posted r∗
and sells at prices {p∗n}. Given that v∗ is the selection of every other buyer, then we have
v∗h = v

∗ for all h = i where

v∗ =
1− v∗i
S − 1 , (8)

a decreasing function of v∗i . Denote by U the representative buyer’s expected payoff from
being at any store h = i,

U =
B−1

n=0

fn(B − 1, v∗)(1− p∗n+1)
n+ 1

. (9)

It follows that if vi satisfies

vi =

⎧⎪⎪⎨⎪⎪⎩
1 if Ui > U

[0, 1] if Ui = U

0 if Ui < U

(10)

then we say that vi is individually optimal or, equivalently, that it is a best response of

the representative buyer. Clearly,

v =
1− vi
S − 1

where vi depends on posted prices only if these affect sale prices, and it depends on the

choices v∗i of other buyers, as these affect the representative buyer’s trading risk.

4.2 The seller’s problem

Given some commitment technology θ, here we discuss the choice r of a representative

seller i when every other seller selects r∗ and every other buyer plays v∗. Clearly, the op-
timal r must maximize the seller’s expected profit from trading that depends on expected
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demand, i.e. the probability of visits v∗i , and on the possible sale prices {pn}. Since v∗
generally depends on r and r∗, we let W (r, r∗) denote the seller’s expected profit, i.e.

W (r, r∗) =
B

n=0

fn(B, v
∗
i )pn (11)

Since r is chosen while taking as given r∗, we define the seller’s choice set by letting
ϕ : [0, 1] [0, 1] define a continuous correspondence with nonempty compact values such

that ϕ(r∗) = [0, 1] for r∗ ∈ [0, 1]. Thus, we can define the “value function” Ŵ : [0, 1]2 →
[0, 1] by

Ŵ (r) = max
r∈ϕ(r∗)

W (r, r∗)

and the correspondence µ : [0, 1] [0, 1] of maximizers

µ(r∗) = r ∈ ϕ(r∗) :W (r, r∗) = Ŵ (r) .

Therefore, if µ is nonempty valued, we say that r is individually optimal or, equivalently,

it is a best response of seller i, if

r ∈ µ(r∗). (12)

Of course, in a symmetric equilibrium sellers must post identical prices, or

r = r∗. (13)

Buyers must also select identical strategies. It is easy to prove that this implies each buyer

must visit every store with an identical probability.5 Specifically,

vi = v
∗
i =

1

S
for all i = 1, 2, ..., S. (14)

We can now provide the following definition of symmetric equilibrium.

Definition 2. Given a commitment technology θ, a strongly symmetric subgame perfect

equilibrium (SSE) is a reference price r, a vector of sale prices {pn}Bn=1 and a vector of
probabilities v that satisfy (2)-(4), (6)-(10) and (11)-(14).

Before proving existence of equilibrium, it may be helpful to remark on some of our

modeling choices. The assumption that buyers cannot visit several stores in sequence

captures the notion of existence of search costs that, in the short run, ‘lock-in’ consumers at

5Of course indifference across stores implies that vi = 1
S
for every i. In the appendix we formalize why

v = v∗ necessarily implies that each element of v∗ must have value 1
S
.
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a store. Relative to richer dynamic analyses, this formulation allows a precise identification

of the effect that market composition and commitment have on advertised and sale prices.

The focus on SSE (where strategies are mixed) captures the notion that traders make

uncoordinated decisions, which seems a natural description of several market settings.

From a technical standpoint, this also allows us to clearly characterize the distribution

of sale prices across different markets; we can focus on sellers’ pricing behavior while

‘controlling’ for the equilibrium distribution of demand–invariant to the posted prices–

without assuming it exogenous (as, say, in a random search model).

5 Existence of Equilibrium

To discuss existence we move in steps. First, given a pair (r, r∗), we prove existence of
a unique symmetric best response v∗i = v(r, r

∗) and we characterize it relative to r and r∗.
Then, given v∗i , we prove existence of a symmetric best response r

∗ and we characterize
it relative to the parameters that define the market.

5.1 Directing Search in Equilibrium

Suppose store i posts r and every other store posts r∗. The following is proved:

Lemma 3. Consider a commitment technology θ. Suppose that store i posts r ∈ [0, 1]
while every other store posts r∗ ∈ [0, 1]. Then,

(i) there is a unique value of v∗i , denoted v̂
∗
i ∈ [0, 1], that satisfies Ui = U and it is such

that ∂v̂∗i
∂r ≤ 0 ≤

∂v̂∗i
∂r∗ ;

(ii) there is a unique symmetric best response vi = v∗i that satisfies (10) and v = v∗

satisfies (8). In particular,

v∗i = v(r, r
∗) =

⎧⎪⎪⎨⎪⎪⎩
1 if r ∈ [0, r∗)
v̂∗i if r ∈ [r∗, r̄∗]
0 if r ∈ (r̄∗, 1]

(15)

where r∗ ∈ [r∗, r̄∗] ⊆ [0, 1] and r∗ and r̄∗ are non-decreasing functions of r∗.

Even if the price r posted by store i differs from the price r∗ of every other store,
buyers can still be indifferent across stores as long as such price differences are moderate,

i.e. if r ∈ [r∗, r̄∗]. In fact, if store i posts a really low or a really high price, i.e., r ∈ [0, r∗)
or r ∈ (r̄∗, 1], then buyers either select store i or avoid it entirely.
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The main implication is that buyers can be indifferent across stores posting unequal

prices, although they generally prefer to visit the store posting the lowest price. Indeed,

(15) indicates v∗i = v̂
∗
i ∈ (0, 1) can hold under r = r∗ and generally6

v∗i

⎧⎪⎪⎨⎪⎪⎩
≥ 1

S ≥ v∗ if r < r∗

= v∗ = 1
S if r = r∗

≤ 1
S ≤ v∗ if r > r∗.

Why? In deciding whether to visit store i, the buyer considers not only (i) the expected

sale price but also (ii) the expected trading risk, relative to every other store. The first

element hinges on the posted price and–unlike Burdett el al.–on the demand expected

at the store, as both may influence the sale price. The second element depends entirely

on the demand expected at the store.

Expression (4) and Table 1 indicate that if store i posts a price r above every other

store, then the average sale price at store i might also be higher than elsewhere. This

intensive margin consideration reduces the incentive to visit store i in favor of other stores.

Unless the difference in posted prices is enormous, however, this does not lead to a corner

solution because extensive margin effects also exist. Indeed, greater expected demand at

stores with lower posted prices reduces the payoff expected by potential customers; every

customer is more likely to end up empty handed–due to capacity constraints–but also

the expected sale price can be higher if sellers cannot commit to the posted price. As

a result, (i) cheaper stores tend to attract more buyers on average, i.e., v∗i tends to fall
while v∗ grows as r rises above r∗, and (ii) buyers can be indifferent across establishments
with greater disparities in posted prices, when sellers cannot fully commit to r.

Figures 1a and 1b depict the set [r∗, r̄∗] across r∗ for baseline parameters and S =
B = 2. Panel a focuses on full commitment (i.e., fixed prices) and panel b on weaker

commitment (price floors, ceilings and negotiations). Draw a vertical line through some

r∗ to identify the set [r∗, r̄∗] of r values leaving buyers indifferent between store i and every
other store, i.e., v∗i ∈ (0, 1). Start by observing that if every store sell at a negotiated
price, θ = θN , then a mixed strategy is always feasible, i.e., [r∗, r̄∗] = [0, 1] for all r∗. This
is also true under price ceilings when S = B = 2, as here too sale prices are unresponsive

to posted prices. However, in all other pricing scenarios we have v∗i ∈ (0, 1) only if

r ∈ (r∗, r̄∗) ⊂ [0, 1], i.e., the difference between r and r∗ cannot be extreme or buyers
would simply avoid the store advertising the highest price. Indeed, if store i is charges

6Of course, strict inequalities require sale prices that are responsive to posted prices. For example,

setting r > r∗ does not lead to v∗i < v
∗ if, say, pn = min(qn, r) and r∗ > qB as here pn = p∗n = qn.
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much higher prices than any other store, then it is best to avoid it even if this would lead

to a certain trade, i.e. v∗i = 0 < v
∗ = 1

S−1 when r ∈ (r̄∗, 1].

Figure 1a Figure 1b

As indicated in Lemma 3, the difference r̄∗ − r∗ is function of r∗. Under fixed prices
r̄∗ − r∗ is the smallest and vanishes as r∗ → 1 (when store i is always preferred). Under

price floors, r̄∗ − r∗ shrinks for high values of r∗, i.e. when every other store essentially
sells at fixed prices (p∗n = r∗ for r∗ ≥ qn). We also emphasize that r∗ and r̄∗ depend on
market composition, λ, because of capacity constraints. For example, it is not necessarily

optimal to visit only a store that gives a good for free, when other stores don’t. If the

store is mobbed by customers then it may be nearly impossible to obtain the good.

5.2 Attracting Buyers in Equilibrium

It should now be obvious that when the buyer’s strategy is as in (15) then the rep-

resentative seller faces a trade-off in competing for customers. For example, suppose the

store posts r > r∗. This can have two opposing effects: it may generate higher revenue per
sale but it may also discourage customer visits. The optimal r maximizesW by balancing

these intensive and extensive margins.

Figure 2 (benchmark with S = B = 2) traces W under price floors, given v∗ as in
Lemma 3 and r∗ = 0.5. Due to price floors, sale prices are responsive to r only if r ≥ q1,
which is when the seller can trade-off some revenue per sale against the expected demand.

This trade-off is favorable until r reaches 0.5, which is why r = r∗ is optimal (indeed, it

12



is a symmetric equilibrium).

Figure 2

The next lemma proves general existence of a symmetric best response r = r∗.

Lemma 4. Consider a commitment technology θ. Let v∗i and v
∗ satisfy (8) and (15).

Then a symmetric profit-maximizing price r = r∗ ∈ [0, 1] always exists.
The lemma is an application of Kakutani’s fixed point theorem. While it does not

establish uniqueness of r∗, it is easy to see that there may be payoff-equivalent cases in
which it is not. For example, if θ = θN then posted prices do not affect sale prices (hence

the buyers’ payoffs and strategies) so any r∗ ∈ [0, 1] is a profit-maximizing candidate.
Indeed, multiple values r∗ can arise also with some commitment, since sellers may choose
to always negotiate by posting either a very low price (r ≤ q1, under price floors) or a
very high price (r ≥ qB in price ceilings). We explore these possibilities, next.
5.3 Pricing in Equilibrium

Here, we present a theorem formalizing existence of equilibrium and characterizing r∗

in terms of the market parameters. Start by defining Rk as the set of equilibrium r∗,
given some θ = θk. Also, define the constant

ω ≡ B
n=1Mnqn−A

S−1

where A > 0 but Mn can be negative; specifically recalling that λ = B/S we have

Mn = S
2fn(B,

1
S ) 1− n−λ

S−1

A = S2 1− S−1
S

B − λ S−1
S

B−1
.
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Put simply, ω measures the strength of extensive margin effects, i.e. the change in profit

due to a small increase in the probability of visits, all else equal (see the proof of Theorem

5). Such effects are strong when ω > 0 and weak, otherwise. Then we have

Theorem 5. Let θ = θk and let qn satisfy (1) for all n. An SSE always exists such that

for all i = 1, 2, ..., S we have v∗i = v
∗ = 1

S and r = r
∗ ∈ Rk ⊆ [0, 1], with

RC =
{rC} if ω > 0

[qB, 1] if ω ≤ 0 , RF =
[0, q1] if ω ≥ 0
{rF} if ω < 0

, RN = [0, 1], RX = {rX}

where

rX =
A

B
n=1Mn

, rF =
A+Mjqj− B

n=jMnqn
j
n=1Mn

and rC =
A+Mhqh− h

n=1Mnqn
B
n=hMn

. (16)

Here, rX ∈ (0, 1), rF ∈ (qj , qj+1), rC ∈ (qh−1, qh) and j and h are unique values such
that 1 ≤ j, h ≤ B. In particular, (i) rC = rX iff rX ≤ q1 and rC > rX otherwise and (ii)
rF = rX iff rX ≥ qB, and rF = rX otherwise.

There are three main findings. First, there always exists a symmetric equilibrium in

which the posted price reflects market conditions and available commitment. Second, in

the absence of full commitment the equilibrium posted price may be indeterminate, with a

continuum of r supporting payoff-equivalent outcomes. Third, under limited commitment,

the model determines endogenously the equilibrium trading mechanism, i.e. the incidence

of transactions occurring at the posted price. We offer an intuitive interpretation of these

results, first, followed by a technical explanation.

Under limited commitment–price floors or ceilings–sellers have discretion over the

trading mechanism. In these scenarios choosing r is akin to selecting the probability

of haggling, because negotiated prices are positively correlated with realized demand.

Indeed, all else equal, a higher r corresponds to (i) a lower probability of haggling for

top prices, under price floors, and (ii) a higher probability of haggling for a worse deal,

under price ceilings. In any other scenario–negotiations or fixed prices–the sellers’

hands are tied to either always or never negotiating, and the trade-off between r and sale

prices cannot be exploited. Hence, posted prices will generally vary with the available

commitment. We discuss such differences aided by Figure 3, reporting the equilibrium r

in economies with S = 6 and B varying from 2 to 40.7

7Moving left to right both market size and λ vary. The resuls are similar if the market size is large but

fixed, since in large markets increments in B impact λ more than the market size. In small markets r∗

may vary non-monotonically with λ, for low values of λ, since the relative strength of the intensive and

extensive margin effect may change non-monotonically.

14



A first observation is that we expect higher posted prices in those markets where

sellers can be prevented from trading above the advertised price. Indeed, the price ceiling

rC can exceed rX while the price floor rF is generally below rX . Consider price ceilings,

when consumer are protected against price-hikes. Here stores can remain competitive even

when advertising a price above rX because they can give discounts. If demand is scarce

(B is small), however, there is heightened competition that drives rC below the minimum

negotiable price q1; effectively, sellers trade at fixed prices, which is why rC = rX . With

very large demand competition is minimal, which pushes r above the maximum negotiable

price qB. Indeterminacy arises because any r ≥ qB is a payoff-equivalent posting.

Figure 3

The reverse explanation applies to price floors: if buyers are unprotected against price

increases, sellers must remain competitive by advertising below rX .8 Very large demand

pushes rF above qB, hence rF = rX , and indeterminacy arises when demand is so low that

r falls below the minimum negotiable price. Hence, markets with different compositions

and commitment can generate identical price advertisements.

A second observation is that in sellers’ markets stores advertise higher prices than

in buyers’ markets. Figure 3 indicates that r∗ generally rises in B, hence in λ. This is
8This is not always the case. It can be proved that if λ > 1 and rX is sufficiently close (without

exceeding) to qB, then rX < rF < qB. This is a rare occurrence in which sellers barely need to compete

for customers. Being able to commit to a minimum price can only benefit sellers so rF can exceed rX . As

an example, set qB−1 < rX < qB and observe that for j = B − 1 we have qB−1 < rX < rF < qB.
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because stores compete solely by means of price advertisements instead of, say, product

differentiation. When the market is awash in buyers there is little incentive to compete

aggressively. The converse holds when the customer base is small, which is when ad-

vertising low prices can substantially improve the expected demand (hence profits). For

instance, consider rF in Figure 3. For B < 9 demand is so scarce that price reductions

sort strong extensive margin effects (ω ≥ 0); thus, in equilibrium sellers commit to always
negotiate with every customer setting r∗ ≤ q1 (the shaded area). As B passes 9, then r∗

grows because sellers do not need to compete as aggressively for customers.

As for the technical side of the story, denoting fn the equilibrium probability of n

visits, we report (from the theorem’s proof) the seller’s first order condition:

B
n=1 fnpn = 1− f0 − f1 +

B
n=1 fn(n−λ)pn

S−1 .

Recalling that p0 = 0 is the seller’s profit under zero demand, the above expression says

that r∗ must be such that the expected profit (left hand side) equals the probability of
having excess demand (1− f0 − f1) plus an additional term. Since–as we explain in the
next section–λ is the equilibrium expected demand, then the numerator of the last term

is simply the covariance of profits with demand, which is positive and finite. In a market

with many sellers this term is negligible, so an approximate solution for r∗ must satisfy

B
n=1 fnpn = 1− f0 − f1.

Note that pn equals r for all n under fixed prices, can exceed r only under price floors

and can trail r only under price ceilings. It follows that rF ≤ rX and rC ≥ rX , in general,
with strict inequalities when q1 < rX < qB. It is also obvious that since excess demand

is more likely as the customer base grows, then expected profit must grow with λ. Since

profits and average sale prices generally depend on posted prices, then the equilibrium r

and the average sale price must be non-decreasing in the customer base. To expand on

this, however, we must study the equilibrium distribution of demand and sale prices.

6 Equilibrium Price Dispersion

Here, we start by calculating the distribution of demand at a representative store.

Knowing the advertised price from the prior section, we can then find the distribution of

sale prices as a function of the model’s parameters.

Start by observing that in a symmetric equilibrium every buyer visits every store with

identical probability 1
S , independently of θ and the value of r

∗. Letting Pr[n] = fn(B, 1S )
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denote the equilibrium probability that a store i is visited by n buyers, (6) implies

Pr[n] = B
n

S−1
S

B 1
(S−1)n for n = 0, 1, ..., B, (17)

so average demand is λ = B
S and its variance is λ(

S−1
S ). In a buyer’s market λ is small

while the opposite occurs in a seller’s market (where variance is the largest).

Note that demand is not independently distributed across stores since the overall

number of customers must add up to B. Thus, if a store has many buyers other sellers

are likely to have few. That is, the covariance between the demand at any two stores is

negative. Let ni = 0, 1, ..., B be the demand at store i = 1, .., S, where S
i=1 ni = B.

Since the distribution of demand at a store is bin(B, 1S ) then the distribution of demand

in the market is multinomial with parameters B and 1
S . Thus, cov(ni, nj) = −λ

S < 0 for

any two stores i = j, clearly tiny in a large market or in a sellers’ market.

Now consider the representative store, given some θ = θk. The support P of the

sale price distribution is the discrete set defined in (5). Let Pr[p|θk] be the equilibrium
probability of a sale at price p ∈ P and define the mean sale price at a store by

p̄k =
p∈P

pPr[p|θk]. (18)

Theorem 5 tells us that the equilibrium distribution of sale prices generally depends not

only on the distribution of buyers but also on the equilibrium posted price. A store always

makes a sale when there is at least one buyer so, from (17), the probability of observing

a sale price is Pr[n = 0] = 1− S−1
S

B
. Now let Pr[n|n = 0] define the probability that a

sale takes place when there are n ≥ 1 buyers at the store, i.e.

Pr[n|n = 0] = Pr[n]
Pr[n=0] =

B
n

(S−1)B−n
SB−(S−1)B for n = 1, 2, ..., B. (19)

If in equilibrium r ∈ [qj , qj+1) then we say r = rj for a unique j = 0, 1, ..., B; hence, rj
denotes a generic element of the following sets partitioning [0, 1]:

rj ∈

⎧⎪⎪⎨⎪⎪⎩
[0, q1) for j = 0

[qj , qj+1) for 1 ≤ j ≤ B − 1
[qj , 1] for j = B.

(20)

To characterize the distribution of prices at the representative store we start with the

simplest case of an economy with full commitment. Here, although demand is random,

sale prices are fixed (deterministic) so we have a degenerate distribution with unit mass
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at p = r. To study economies with weaker commitment, we start with the case of no

commitment at all, as the remaining cases hinge on this.

6.1 Sale Price Distribution Under Negotiations

Lemma 1 indicates pn = qn for n = 0, which means that the sale price p is always

random as it depends on the realized demand n, i.e.

Pr[p|θN ] = Pr[n|n = 0] if p = qn
0 otherwise,

(21)

so sale prices are distributed as a bin B, 1S conditional on n = 0.

Expression (18) easily indicates that average sale prices increase in the average demand

λ, since {qn} is an increasing sequence. To calculate a measure of price dispersion we
consider the coefficient of variation, which is hump-shaped. This reflects the coefficient

of variation of the demand distribution (conditional on n = 0) which is hump-shaped.

Indeed, for λ small, sellers have a small customer base so most trades are likely to occur

at low prices. When λ is large, instead, seller is likely to trade at high prices and their

dispersion is low. Thus dispersion is highest for moderate values of λ.

Finding the distribution of prices in the market is more laborious, as we must calculate

the marginal probability of each possible demand realization. For instance, if S = 3 and

B = 4 then there can be four possible sale prices. The probability of observing any price

depends on the number of sales, hence on the distribution of buyers in the market. The

distribution of prices in the market is thus (see the Technical Appendix):

Pr[q1] =
12
27 , Pr[q2] =

10
27 , Pr[q3] =

4
27 , Pr[q4] =

1
27 .

Thus, the average sale prices is low since average demand at a store is low, λ ≈ 1.3, hence
trade at price q1 is the most likely.

6.2 Price Distribution Under Price Floors or Ceilings

When traders cannot fully commit to r, the distribution of sale prices still hinges on

(21). Suppose r = rj for a unique j = 0, 1, ..., B. In a price floor pn = rj if n ≤ j and
pn = qn if n > j. Clearly, if rj ≥ qB then pn = r for all n (i.e. fixed prices) and if rj ≤ q1
we have pn = qn for all n (i.e. negotiated prices). It follows that

Pr[p|θF ] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Pr[n ≤ j|n = 0] = j

n=1
B
n

(S−1)B−n
SB−(S−1)B if p = r = rj

Pr[n|n = 0] = B
n

(S−1)B−n
SB−(S−1)B if p = qn > r

0 otherwise.

(22)
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The probability to sell at the posted price rj is the probability of being visited by at most

j customers. Of course, the seller never charges qn > r if n > j and never charges p < r.

Under a price ceiling pn = qn if n ≤ j and pn = rj if n > j. Thus, if rj ≤ q1 then
p = r for all n while if rj ≥ qB then pn = qn for all n, so that

Pr[p|θC ] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Pr[n|n = 0] = B

n
(S−1)B−n
SB−(S−1)B if p = qn < r

Pr[n ≥ j + 1|n = 0] = B
n=j+1

B
n

(S−1)B−n
SB−(S−1)B if p = r = rj

0 otherwise.

(23)

Here, there is trade at the posted price when the demand is at least j. Otherwise, the

prices is bargained. In any event, the seller never charges p > r. The key conclusion is

Lemma 6. In an SSE we have

p̄C ≤ p̄N ≤ p̄F , (24)

with strict inequality if comparing equilibria with unique r∗, while p̄X cannot be ranked.

The lesson here is that the commitment technology affects in intuitive ways the average

sale price, hence the sellers’ profit and the buyers’ surplus. We emphasize that this is not

due to changes in the endogenous distribution of demand, which is invariant to θ. Indeed,

differences in average sale prices hinge on differences in r and the ability to depart from

it once customers arrive at the store.

Under price floors sale prices can only surpass what had been initially advertised so

average sale prices are the highest, for a given parameterization. The opposite occurs

under price ceilings, when sellers may end up giving discounts. Comparisons under fixed

prices are less clear-cut since they hinge on disparities between the price posted under

different θ but also the shape of the sequence {qn}. However, it is obvious that if the
commitment technology has a limited effect on the posted price, then p̄C ≤ p̄X ≤ p̄F ; in
this case any differences in the equilibrium r are of a lesser significance than the ability

to sell at a price above or below what posted (we present some examples, later).

Of course, the dispersion in sale prices is also affected by commitment. It is highest

under negotiations, as sale prices are completely independent of r, and zero under fixed

prices. In between these two extremes we have the coefficient of variation for price floors

and ceilings. To provide further analytical results, however, it is useful to consider an

approximation, which is the subject of the next subsection.

6.3 Price Distribution in Large Markets
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Consider economies with identical customer base λ = B/S but different populations

λS + S. We obtain the following result

Lemma 7. Fix λ ∈ R++ and let B = λS. Then, in an SSE as S →∞ demand is iden-

tically and independently distributed across stores according to a Poisson with parameter

λ. Thus, (17) becomes

Pr[n] = e−λλn
n! for n = 0, 1, ..., B (25)

Thus, in large markets the distribution of demand n at a store has approximately mean λ

and coefficient of variation 1
λ .

The result hinges on the fact that demand co-varies little across stores in a large

market so the distribution of demand is approximately independent across stores. To see

why fix λ and let the market grows in size. The demand at any store is less and less

affected by the demand present at any other store. Hence, the distribution of demand at

a store approaches the marginal distribution, which is a Poisson with parameter λ.

The main implication of this approximation, is that we can easily characterize the

distribution of demand in a large market, via λ. Expected demand is higher in a sellers’

market and it is more dispersed in a buyer’s market (when measured by the coefficient

of variation) since there are many stores to choose from. We can then approximate the

price distribution at the representative store in a large market, using (25).

Since prices are observed only if a transaction takes place, the sale price distribution

is the Poisson λ, conditional on n = 0. The probability that a seller trades is 1−e−λ (i.e.,
the probability of n ≥ 1) and the seller has n customers with probability e−λλn

n!(1−e−λ) , thus
a sale price pn is observed with probability λn

n!(eλ−1) ,for n = 1, ..., B. This expression can
then be substituted into (21), (22) and (23).

The main implication of Lemma 8 is that we can use (??) to approximate the dis-

tribution of sale prices in a large market. This allows us to easily study how changes in

market structure affect not only the distribution of sale prices but also the equilibrium

posted price. Especially, we find the following

Lemma 8. Fix λ ∈ R++ and let B = λS. Then, in an SSE as S →∞ we have

rX = 1− λ
eλ−1

rF =
rX(e

λ−1)− B
n=j+1 λ

nqn/n!
j
n=1 λ

n
/n!

for 1 ≤ j ≤ B − 1

rC =
rX(e

λ−1)− h−1
n=1 λ

nqn/n!
B
n=h λ

n/n!
for 2 ≤ h ≤ B.

(26)
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Here, p̄k and rk increase in λ, rF < rX if q1 < rX < qB, while rC > rX if rX > q1.

The lemma is useful because it allows us to approximate the values of prices posted

in a large market with the expressions in (26). This allows us to establish the important

result that average prices and posted prices grow in markets with higher expected demand,

for any commitment technology.

Average sale prices grow in λ because stores (i) not only can compete less for customers–

so they can afford to post higher prices–but (ii) stores expect a greater incidence of high

demand, which is when sale prices can be higher. To discuss the first element, consider a

large market under θ = θX , when every trade occurs at the posted price. Here

p̄ = p̄X ≈ rX
B

n=1

λn

n! (eλ − 1) = rX = 1−
λ

eλ − 1
that increases in λ solely because the posted price rX increases. To illustrate the second

element, consider θ = θN when every sale is negotiated. Here

p̄ = p̄N ≈
B

n=1

λnqn
n! (eλ − 1)

that grows with λ because low-demand shocks are less likely and {qn} is an increasing
sequence. Finally, notice that under price floors and ceilings we have that sale prices are

more strongly correlated with demand (whose distribution is unchanged relative to fixed

prices or negotiations) while rF and rC increase in λ . This explains why p̄C and p̄F
respond positively to increases in λ.

7 Predictions on Market Behavior

We now simulate several economies to expand on our analytical results and to build

intuition on how equilibrium prices hinge on market structure and the pricing ‘convention,’

be it price floors or ceilings, fixed prices or negotiations. We start with S = B = 2 and

then study richer environments.

7.1 Equilibrium Posted Prices

Let B = S = 2. If {qn} satisfies (2) then
q1 = 1− β(1− γ) and q2 =

(2−β)[1−β(1−γ)]
2−β(2−γ) > 1

2 ,

so that q1 ≥ 1
2 if γ ≥ γ̄(β) = 1− 1

2β . As γ capture the notion of seller’s bargaining power,

this simply means that sellers can get the greatest share of surplus only if they are skilled

negotiators. Note also that ω ≤ 0 if γ ∈ [0, γ̄(β)], and ω > 0 otherwise.
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Under negotiations (p1, p2) = (q1, q2), and r∗ can be anything in the unit interval,
while if prices are fixed we are back into Burdett et al. (2001) and in an SSE

pn = rX =
1

2
for n = 1, 2.

Now suppose sellers can commit to a price floor, i.e., p ≥ q1. The choice of posted price
can be one of two types. Sellers may advertise a high price r∗ ≥ q2, which is equivalent to
choosing to always trade at the posted price. Alternatively, sellers may charge prices that

are progressively higher depending on the realized demand, setting q1 ≤ r∗ < q2. We find
that for all parameters, sellers will never choose to charge fixed prices, i.e. equilibrium

sale prices are positively correlated with the realized demand. Specifically, if θ = θF then

(p1, p2) =
(r∗, q2) if γ ∈ [0, γ̄(β)]
(q1, q2) otherwise

r∗ =
rF =

1
2 ∈ [q1, q2) if γ ∈ [0, γ̄(β)]

[0, q1] with q1 > 1
2 otherwise.

Since sellers can commit to charge at least q1, they can trade off improvements in

their store’s attractiveness (relative to other stores) versus the expected loss from doing

so. Thus, sellers will tend to exploit their ability to commit to a minimum price only if

their proficiency in negotiations is weak, i.e. when q1 is small. Indeed, r∗ = rF = 1
2 ≥ q1

only if γ ≤ γ̄(β). While r∗ is unresponsive to further decreases in q1, if q1 raises above 1
2

then sellers will compete aggressively by advertising a low price r∗ ≤ q1. In this case every
sale is negotiated so there is indeterminacy in posted price, as any r∗ ∈ [0, q1] conveys
identical information to the market.

When sellers commit to a price ceiling, then p ≤ q2. Here, too, seller may either choose
to charge a low fixed price r∗ ≤ q1 or can sell at prices that grow with the demand n.
Once again, selling at fixed prices is not an equilibrium, since for θ = θC then

(p1, p2) =
(r∗, q2) if γ ∈ (γ̄(β), 1]
(q1, q2) otherwise

r∗ =
rC =

1
2 ∈ [q1, q2) if γ ∈ (γ̄(β), 1]

[q2, 1] with q1 ≤ 1
2 < q2 otherwise.

Here sellers benefit from advertising low price limits when they have a strong bargaining

position, i.e., r∗ = rC < q2 when q1 > 1
2 . Otherwise, they will advertise a high price.

7.2 Equilibrium Average Sale Prices

In the benchmark example p1 and p2 are equally likely outcomes among all the trans-

actions observed. This allows us to easily calculate average market sale price (p̄) and its

coefficient of variation (c.v.) for the baseline parameters where q1 = .37, q2 = .86 and
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q3 = .92. The result is in the mid-column of Table 1.

(S = 3, B = 2)

(strong competition)

(S = 2, B = 2)

(moderate competition)

(S = 2, B = 3)

(weak competition)

––– –––––––– ––– θ = θF ––– ––––––––

r∗ = [0, q1] 0.5 0.7 < q2

p = 0.53 0.68 0.85

c.v. = 0.44 0.27 0.1

––– –––––––– ––– θ = θC ––– ––––––––

r∗ = 0.27 < q1 [q2, 1] [q3, 1]

p = 0.27 0.62 0.76

c.v. = 0 0.4 0.3

––– –––––––– ––– θ = θN ––– ––––––––

r∗ = [0, 1] [0, 1] [0, 1]

p = 0.53 0.62 0.76

c.v. = 0.44 0.4 0.3

––– –––––––– ––– θ = θX ––– ––––––––

r∗ = 0.27 0.5 0.72

p = 0.27 0.5 0.72

c.v. = 0 0 0

Table 1

Perhaps the most remarkable finding is that sellers are not necessarily better off in

markets with full commitment rather than weaker commitment to the posted price. In-

deed, when S = B = 2 mean sale prices are the lowest under a policy of fixed prices. The

reason is that the expected demand matches exactly the store’s capacity, λ = 1, and the

market is so small that there is high risk of having no buyers (25%). To insure against

this risk, stores compete aggressively posting low prices. This reduces p since, under fixed

prices, demand pressure cannot be exploited to ‘bargain prices up.’

Interestingly, average sale prices are higher even if buyers can bargain prices down,

i.e., under price ceilings. Why? Promising possible price reductions is a very effective

way to compete for buyers in market scenarios where stores expect low demand with high

probability (here, one customer arrives with 50% chance). Thus, sellers can entice buyers

to their store by posting a price that is high but it is likely to be reduced.

More generally, two elements provide incentives to aggressively compete for customers

by advertising low prices: great risk of having unsold inventory (Pr[n = 0] high) and small
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expected demand (λ small). These factors have a particularly strong effect on r when

sellers cannot increase their attractiveness by committing to possible price reductions and

when they cannot exploit large demand realizations to bid prices up. Thus, we expect

that sellers should fare better under fixed prices, rather than price ceilings, in markets

that are either large or have large expected demand. We validate this intuition, next, by

varying λ in a small market and then by simulating several large markets.

7.3 Prices and Market Composition

To build intuition on how market composition affects sellers’ strategies and distribution

of sale prices, we modify the basic example to consider a buyer’s market (S = 3 > B = 2)

and a seller’s market (S = 2 < B = 3). The distribution of buyers in the market changes

and so does the distribution of sale prices as illustrated below:

(S,B) Pr[p1] Pr[p2] Pr[p3]

(3, 2) 2/3 1/3 0

(2, 2) 1/2 1/2 0

(2, 3) 2/8 3/8 3/8

Table 2 reports values of key endogenous variables as we change market structure

adding a seller or adding a buyer (moving left or right of the third column). A central

observation is that sale prices fall and their dispersion grows as a seller is added to the

market (second column). This reflects the increased competition for customers, as ex-

pected demand at a store falls to λ = 0.66 from λ = 1. The opposite naturally occurs in

a seller’s market, i.e., by adding a buyer (last column).

Remarkably, adding a store to the market raises the competition so much that ad-

vertised prices end up below the minimum negotiated price, i.e., r∗ = 0.27 < q1. This is
particularly striking under price ceilings, when sellers simply give up on promising dis-

counts to attract customers; instead, they choose to charge a low fixed price. The opposite

occurs under price floors: stores advertise their readiness to always negotiate by posting

r∗ ≤ q1. Hence, fixed prices and price ceilings are revenue-equivalent pricing conventions,
in a small buyer’s market; the same is true for negotiations and price floors.

The analysis is almost symmetric in the opposite scenario of a small seller’s market.

Here price ceilings and negotiations are revenue equivalent but the symmetry is not exact

since r∗ is not identical under price floors or fixed prices (although close).
7.4 Customer’s Base, Prices and the Incidence of Negotiations

To study how expansions of the customer’s base affect sale prices we simulated a larger

market. Figure 4 considers the same parameters of Figure 3, and plots average equilibrium
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sale prices at a store (panel a) and their coefficient of variation (panel b) as, keeping fixed

S, the customer base λ and the market size B + S expand.9

Figure 4a

Panel (a) confirms the intuition that average sale prices are positively correlated to the

customer base. Notably, the curve p̄F envelopes all other curves, which means that stores’

expected profits are generally the highest under price floors. The intuition is simple.

Although sellers may advertise the lowest r under price floors (see Figure 3) they are

also free to raise prices when demand is high. This explains two additional observations.

First, when λ is very small, then expected profits are higher under negotiations than fixed

prices (the opposite is true when λ is large). With few customers per seller, high-demand

realizations are rare so there is less to gain from posting a low fixed price r relative

to always bargaining. Second, committing to a policy of price discounts is superior to

charging fixed prices in small markets with demand expected to be close to capacity, i.e.,

p̄C > p̄X when λ ≈ 1. Price ceilings allow sellers to post a high r while still competing
effectively for the few customers.

Panel (b) indicates that the dispersion of sale prices is hump-shaped (except under

fixed prices, when it is zero) because as B moves above 2 stores can get more customers

more frequently. Eventually the coefficient of variation drops since excess demand is so

likely that most trades tend to occur at high prices. Of course, dispersion is the highest

9Larger markets where B varies or B+S is constant and λ varies produce qualitatively similar results.
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under bargaining (it is the envelope of the two curves) as each n necessarily implies a

different sale price, and it converges to dispersion under price ceiling since in the latter

case as B becomes large sellers eventually post r∗ ≥ qB (i.e., under θC stores always

negotiate). Conversely, as B contracts to 2, price dispersion under negotiations and price

floors coincides as r∗ ≤ q1 (i.e., under θF stores always negotiate).

Figure 4b

We expand on these considerations in Figure 5, reporting the endogenous probabilities

of haggling, under price ceilings and floors.

Figure 5 - Haggling probabilities

It is immediate that the extent of negotiations hinges on both available commitment

and customer base. We see that there is more haggling under price floors than ceilings,
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if λ is small. As the customer base expands the general trend is less frequent haggling

under price floors and more frequent under price ceilings. Thus, for λ large haggling is

certain under price ceilings but absent under price floors (when sale prices jump only in the

unlikely event of exceptionally large demand). The incidence of haggling is non-monotonic

since both r and the expected demand grow with B; these intensive and extensive margin

effects have opposing effects. For instance, if under price floors an increase in expected

demand raises r just a little, then negotiations may become more likely.

This discussion has an interesting implication. Suppose it is the sellers that jointly

select the ‘pricing convention’ to be adopted on the market. Suppose also that full com-

mitment to the advertised price is unfeasible but haggling involves a variable resource

cost for the seller (e.g., time or personnel cost). Then the model predicts that in markets

with a wide customer base prices would be advertised as subject to increase (e.g. real

estate prices in L.A. county) but we would see prices advertised as subject to reductions

in markets with a smaller customer base (e.g. real estate prices in Tippecanoe county).

8 Final Remarks

We have studied a directed search market with capacity-constrained sellers and ho-

mogenous buyers. Sellers compete for customers by means of price advertisements. These

may differ from the sale price depending on available commitment and the demand shock

realized by the seller. We have fully characterized the equilibrium distribution of these

prices as functions of the parameters describing the market. Hence, the model can provide

empirically testable predictions of market behavior.

For instance, consider markets where sellers have a large customer base. The analysis

predicts high advertised prices when sellers can be prevented from trading above the

‘sticker price.’ Here, each single deal is negotiated and sellers offer large discounts only

if business is unusually slow (as car dealerships seem to do). On the other hand, the

model predicts low advertised prices in markets where consumers are not protected against

sudden sale-price hikes. Here, sales occur at a fixed (advertised) price with occasional

high-price sales when demand is unusually large (as motels seem to do).
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Appendix

Proof that v = v∗ implies vi = v∗i =
1
S

Suppose r = r∗ and v∗h > 0 but v
∗
i = v

∗
h for i = h. Suppose a buyer is at store i. Then,

B−1
n=1 fn(v

∗
i ;B−1) is the probability that store i is visited by at least one more customer.

Recall that pn is non-decreasing in n and that fn(v∗i ;B−1) falls in v∗i for n small and grows
for n large. Thus, as v∗i rises above v

∗
h we have that Ui falls as the probability of trading

at low prices (the probability that n is small) falls, while the probability of trading at high

prices (the probability that n is large) rises. Therefore if v∗i > v
∗
h then Ui < Uh. But then

setting v∗i = 0 is optimal. It follows that W (r
∗) = 0, which is not an equilibrium. Seller i

could improve his payoff by setting r < r∗. If v∗i < v
∗
h then Ui > Uh and this cannot be an

equilibrium either since it implies v∗i = 1 and v
∗
h = 0. This this contradicts our conjecture

v∗h > 0, made above. Thus, in a symmetric equilibrium vi = v
∗
i =

1
S for all i.

Proof of Lemma 3

Suppose that store i posts r ∈ [0, 1] and every other store posts r∗ ∈ [0, 1] (possibly
different than r). Given demand n, denote by pn and p∗n the sale prices at store i and in
any other store; sale prices satisfy (4).

Suppose every buyer selects the vector v∗, visiting store i with probability v∗i and any
other store with probability v∗. Now consider the representative buyer, whose strategy

vector is v. According to (10) this buyer is indifferent between stores i and any other

store if Ui = U that is if

B−1
n=0

fn(B−1,v∗i )(1−pn+1)
n+1 = B−1

n=0
fn(B−1,v∗)(1−p∗n+1)

n+1 . (27)

where we notice that

B−1

n=0

fn(B − 1, v)
n+ 1

=
B

n=1

fn(B, v)

Bv
=
1− (1− v)B

Bv
.

Using (8) we have v∗ as a function of v∗i so we define the function g : [0, 1] → R+
where

g(v∗i ) =
U

Ui
=

B−1
n=0

fn(B−1,v∗)(1−p∗n+1)
n+1

B−1
n=0

fn(B−1,v∗i )(1−pn+1)
n+1

. (28)

It follows from (10) that vi = 0 if g(v∗i ) > 1, vi ∈ [0, 1] if g(v∗i ) = 1 and vi = 1 if g(v∗i ) < 1.
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Now we examine some of the properties of g. To start, g (v∗i ) > 0. To see why notice
that ∂fn(B−1,v∗i )

∂v∗i
< 0 for n small and ∂fn(B−1,v∗i )

∂v∗i
> 0 for n large. Also, 1−pn+1

n+1 is a

strictly decreasing sequence, since pn is non-decreasing in n (from (4)). It follows that
∂Ui
∂v∗i

< 0 and ∂U
∂v∗ < 0, since less weight is given to low prices (low n) and more to high

prices (high n) as the probability that any other buyer visits that store rises. We also

have ∂U
∂v∗i

= ∂U
∂v∗

∂v∗
∂v∗i

> 0 since ∂v∗
∂v∗i

< 0 from (8). Therefore g (v∗i ) > 0.
Now consider the end points of g. When v∗i = 0 we have Ui = 1− p1 since (v∗i )0 (1−

v∗i )
B−1 = 1 for v∗i = 0. Since v

∗ = 1
S−1 (from (8)) then we can write

g(0) = 1
1−p1

B−1
n=0

fn(B−1, 1
S−1 )(1−p∗n+1)
n+1 .

When v∗i = 1 we have Ui =
1−pB
B (because (v∗i )

B−1 (1− v∗i )0 = 1) and U = 1− p∗1. Thus,

g(1) =
1−p∗1
1−pBB.

Note that
g(0) ≤ 1 if B−1

n=0

fn(B−1, 1
S−1 )

n+1 (1− p∗n+1) ≤ 1− p1
g(1) ≥ 1 if B(1− p∗1) ≥ 1− pB.

(29)

It should be obvious that since g (v∗i ) > 0, if g(0) ≤ 1 ≤ g(1) then by the intermediate
value theorem there is a unique v̂∗i such that

v̂∗i = {v∗i ∈ [0, 1] : g(v∗i ) = 1} .

Since g is a continuous function of r and r∗ then we let v̂∗i : [0, 1]
2 → [0, 1], a continuous

function. Since ∂pn
∂r ≥ 0 and ∂p∗n

∂r∗ ≥ 0 then we have ∂U
∂r∗ ≤ 0 ≤ ∂Ui

∂r so that
∂g(v̂∗i )
∂r∗ ≤ 0 ≤

∂g(v̂∗i )
∂r . Using g(v̂∗i ) = 1 and the implicit function theorem we get dv̂∗i

∂r∗ = −
∂g(v̂∗i )
∂r∗

∂g(v̂∗
i
)

∂v̂∗
i

≥ 0.

That is, v̂∗i is non-decreasing in r
∗. Similarly, dv̂

∗
i

∂r ≤ 0. In particular it should be clear

that v̂∗i = 0 when g(0) = 1 (since g(v
∗
i ) > 1 for all v

∗
i > 0), v̂

∗
i = 1 when g(1) = 1 (since

g(v∗i ) < 1 for all v
∗
i < 1) and v̂

∗
i ∈ (0, 1) when g(0) < 1 < g(1).

We now determine the fixed points in the buyer’s strategy.

Case 1. Sale prices are independent of posted prices

Here we have p∗n = pn for all n and all (r, r∗) . Clearly from (28) we have g(v∗i ) = 1
if and only if v∗i = v∗ = 1

S . Moreover, g(0) < 1 < g(1) since p1 ≤ pn ≤ pB for any

1 < n < B. Since vi ∈ [0, 1] when g( 1S ) = 1, then it follows that vi = v∗i = v∗ = 1
S is a

fixed point to the strategy of buyers.

Case 2. Sale prices are a function of posted prices
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Now suppose p∗n = pn for some n and some (r, r∗) .
In this case, (4) tells us that the sale price is a non-decreasing function of the posted

price, in general, and it is strictly decreasing for some n ≥ 1 and some posted prices.

Of course this depends on the pricing convention adopted and n, as discussed in section

3.2 (see Table 1). In particular, we have to realize that ∂pn
∂r = 1 for some n ≥ 1 and

some r ∈ [0, 1] and ∂p∗n
∂r∗ = 1 for some n ≥ 1 and some r∗ ∈ [0, 1]. It follows that we have

∂U
∂r < 0 or

∂U
∂r∗ < 0 for some (r, r

∗) ∈ [0, 1]2. The immediate implication is that (29) is not
satisfied for all (r, r∗); that is, g(0) > 1 or g(1) < 1 for some (r, r∗) ∈ [0, 1]2. Thus, we
must examine the behavior of g(0) and g(1).

Consider g(0). We note that g(0) < 1 for all r = r∗ since in this case 1− p1 = 1− p∗1.
Since ∂p1

∂r ≥ 0 it easily follows that g(0) < 1 also for r < r∗. Notice that, for some pricing
convention used and for some r∗, there can may or may not be an r > r∗ such that
g(0) > 1 (for example under fixed prices, we have pn = r and p∗n = r∗ so r ≈ 1 implies
g(0) > 1). Thus consider two cases, given r∗ and a pricing convention: (i) g(r) = 1 for

some r ∈ (r∗, 1] and (ii) g(r) < 1 for all r ∈ [0, 1].

• Case (i): In this case we let α0(r∗) ∈ (r∗, 1] denote the value of r such that g(0) = 1;
since ∂(1−p1)

∂r ≤ 0 and ∂p∗n
∂r∗ ≥ 0 it follows that α0(r∗) is unique, α0(r∗) ≥ 0, and

g(0) ≥ 1 for all r ≥ α0(r
∗). Also, since g (v∗i ) > 0 then if r ≥ α0(r

∗) we have
g(v∗i ) ≥ 1 for all v∗i ∈ [0, 1].

• Case (ii): Of course, g(0) < 1 may hold for all r given some r∗ and some pricing
convention; for example, if pn = min(qn, r) and r∗ = qB then g(0) < 1 since p∗n = qn
so that 1− p1 = 1−min(q1, r) ≥ 1− q1 > B−1

n=0

fn(B−1, 1
S−1 )

n+1 (1− qn+1). In this case,
α0(r

∗) does not exist. Therefore, for notational convenience we define a variable
K > 1 and say g(0) ≥ 1 for all r ≥ K; this is equivalent to stating that g(0) < 1

for all r since r ∈ [0, 1]. Thus, let ᾱ(r∗) = α0(r
∗) if there exists some r ∈ [0, 1] such

that g(0) = 1, and we let ᾱ(r∗) = K otherwise.

Consider g(1). Notice that g(1) > 1 when r = r∗ (since p∗1 ≤ pB and B ≥ 2); since
∂pB
∂r ≥ 0 this implies g(1) > 1 for r ≥ r∗. Of course, we may have g(1) < 1 for r < r∗,
given some pricing convention and some r∗.

• If g(1) = 1 for some r ∈ [0, 1] then, by an argument similar to the above, it follows
that there exists an α1(r

∗) ∈ [0, r∗) with α1(r
∗) ≥ 0, such that if r ≤ α1(r

∗) then
g(1) ≤ 1. Since g (v∗i ) > 0 then if such an α1(r

∗) exists and r ≤ α1(r
∗), then we

have g(1) ≤ 1 for all v∗i ∈ [0, 1]. Notice that α1(r∗) < α0(r
∗).
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• If g(1) > 1 for every r ∈ [0, 1] then α1(r
∗) does not exist; for example, let pn =

min(qn, r) and r∗ = qB in which case B(1 − min(q1, r)) ≥ B(1 − q1) > 1 − qB. In
these instances, for convenience we say that say g(1) ≤ 1 for all r ≤ −K; this is
equivalent to stating that g(1) > 1 for all r since r ≥ 0. Thus, let α(r∗) = α1(r

∗) if
there exists some r ∈ [0, 1] such that g(1) = 1, and we let α(r∗) = −K otherwise.

Notice that α(r∗) < ᾱ(r∗) so (α(r∗), ᾱ(r∗)) is nonempty. We also emphasize that the
set A = (α(r∗), ᾱ(r∗)) ∩ [0, 1] ⊆ [0, 1]. That is the bounds α(r∗) and ᾱ(r∗) may not be
binding. Thus let r∗ = max (0,α(r∗)) be the smallest element in A and r̄∗ = min (ᾱ(r∗), 1)
be the highest element in A. We then can then partition the unit interval as follows

[0, 1] = [0, r∗) [r∗, r̄∗] (r̄∗, 1],

and note that [0, r∗) = ∅ if α(r∗) = −K (since r∗ = 0) and (r̄∗, 1] = ∅ if ᾱ(r∗) = K (when

r̄∗ = 1) while [0, 1] ⊇ [r∗, r̄∗] = ∅ always. Since α0(r∗),α1(r∗) ≥ 0 then ∂r̄∗
∂r∗ ,

∂r∗
∂r∗ ≥ 0.

Observe that r∗ ∈ [r∗, r̄∗]. This is because if r∗ > 0 then r∗ = max (0,α(r∗)) =
α1(r

∗) < r∗. If r̄∗ < 1 then we have r̄∗ = min (ᾱ(r∗), 1) = α0(r
∗) > r∗. If r∗ = 0 then

r∗ ≤ r∗ ∈ [0, 1] and if r̄∗ = 1 then r̄∗ ≥ r∗ ∈ [0, 1]. Thus r∗ ∈ [r∗, r̄∗].
Now, recall that if r ∈ [r∗, r̄∗] then g(0) ≤ 1 ≤ g(1). In that case we have Ui = U for

v∗i = v̂
∗
i ∈ [0, 1]. Thus, we summarize the discussion above as follows:

if r ∈

⎧⎪⎪⎨⎪⎪⎩
[0, r∗)
[r∗, r̄∗]
(r̄∗, 1]

then Ui

⎧⎪⎪⎨⎪⎪⎩
> U for v∗i ∈ [0, 1]
= U for v∗i = v̂

∗
i , Ui > U for v

∗
i ∈ [0, v̂∗i ), else Ui < U

< U for v∗i ∈ [0, 1].

Recall that [0, r∗) and (r̄∗, 1] can be empty sets, as well as [0, v̂∗i ) if v̂
∗
i = 0 and (v̂

∗
i , 1] if

v̂∗i = 1.
Now consider the representative buyer’s best response correspondence vi from (10):

if r ∈

⎧⎪⎪⎨⎪⎪⎩
[0, r∗)
[r∗, r̄∗]
(r̄∗, 1]

then vi

⎧⎪⎪⎨⎪⎪⎩
= 1 for v∗i ∈ [0, 1]
= [0, 1] if v∗i = v̂

∗
i , vi = 1 if v

∗
i ∈ [0, v̂∗i ), else vi = 0

= 0 for v∗i ∈ [0, 1].

Hence, the symmetric equilibrium strategy vi = v∗i is such that for any i we have

v∗i = v(r, r
∗) =

⎧⎪⎪⎨⎪⎪⎩
1 if r ∈ [0, r∗)
v̂∗i if r ∈ [r∗, r̄∗]
0 if r ∈ (r̄∗, 1].
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Observe that v : [0, 1] × [0, 1] → [0, 1] is a continuous function. It is easy to determine

from (27) and (8) that vi = v∗i =
1
S only when r = r

∗. Since dv̂∗i
∂r ≤ 0 ≤

dv̂∗i
∂r∗ then we have

vi = v
∗
i

⎧⎪⎪⎨⎪⎪⎩
≥ 1

S ≥ v∗ if r < r∗

= v∗ = 1
S if r = r∗

≤ 1
S ≤ v∗ if r > r∗.

Proof of Lemma 4

Consider first the case θ = θN . It is obvious that any r = r∗ ∈ [0, 1] is a symmetric
equilibrium since pn and p∗n are independent of posted prices.

Now consider any case where θ = θN . This implies
∂pn
∂r > 0 for some n and some

r ∈ [0, 1], from (4).

Consider (11) for seller i so that we have

W (r, r∗) =
B

n=0

fn(B, v
∗
i )pn

where v∗i satisfies (15) and pn satisfies (4). We have earlier established that fn(B, v
∗
i )

is continuous in r and r∗ (since v∗i is continuous) and pn is continuous in r. Thus, W :

[0, 1] × [0, 1] → [0, 1] is continuous in both arguments (being a linear combination of

continuous functions). It lays in the compact set [0, 1] since B
n=0 fn(B, v

∗
i ) = 1 and

pn ∈ [0, 1].
Recall the definition of the value function Ŵ (r) and of the correspondence of maxi-

mizers µ(r∗). By Berge’s Maximum Theorem it follows that Ŵ (r) is continuous and the

“argmax” correspondence µ is upper hemicontinuous with compact values. By Theorems

14.11 and 14.12 in Aliprantis et al. we also have that µ has a closed graph. We can then

apply Kakutani’s fixed point theorem to determine that the set of fixed points of µ is

compact and non-empty.

Now observe from Lemmas 3 and 4 that v̂∗i = 0 is possible only if r = r̄∗ (when
g(0) = 1 is possible) while v̂∗i = 1 is possible only if r = r

∗ (when g(1) = 1 is possible). In
all other instances v̂∗i ∈ (0, 1). In particular, in a symmetric equilibrium r = r∗ so v∗i =

1
S

according to (15) and (8).

Proof of Theorem 5

Lemmas 7 and 8 jointly establish existence of a symmetric equilibrium. Here we

characterize the solution r∗ and discuss its uniqueness.
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We start by using (7) and (9) to rearrange Ui and U as

Ui =
1
Bv∗i

B
n=1 fn (v

∗
i , B) (1− pn) and U = 1

Bv∗
B
n=1 fn (v

∗, B) (1− p∗n) . (30)

since

Ui =
B−1

n=0

fn(B − 1, v∗i )(1− pn+1)
n+ 1

=
1

Bv∗i

B

n=1

fn (v
∗
i , B) (1− pn) .

Since p0 = 0 we can use Ui to rearrange (11) as

W = B
n=1 fn (v

∗
i , B) pn =

B
n=1 fn (v

∗
i , B)−Bv∗iUi = 1− (1− v∗i )B −Bv∗iUi.

Since v∗i must satisfy Ui = U then we can substitute for Ui by using (30) so we get

W = B
n=1 fn (v

∗
i , B)− v∗i

v∗
B
n=1 fn (v

∗, B) (1− p∗n) . (31)

For notational simplicity, we let fn(v) = fn (v,B) ≡ B
n v

n (1− v)B−n so that
∂fn(v)
∂v = fn(v)

n−Bv
v(1−v) .

Recall that seller i chooses r taking as given r∗. This influences v∗i and v
∗ via the

equality Ui = U , as indicated in (15). That is we have ∂W
∂r = ∂W

∂v∗i
∂v∗i
∂r . We know from

Lemma 3 that ∂v∗i
∂r ≤ 0 and we know that v∗i |r=r∗ = 1

S . Thus we can characterize the

equilibrium r∗ by studying ∂W
∂v∗i

for v∗i ∈ [0, 1]. In particular, we note that if a unique
equilibrium exists, then it must be that ∂W

∂v∗i r=r∗
= 0.

From (31) above, recalling that v∗ = 1−v∗i
S−1 , then we have

∂W
∂v∗i

= B
n=1 fn (v

∗
i )

n−Bv∗i
v∗i (1−v∗i ) −

1
(v∗)2

B
n=1 fn (v

∗) 1−p
∗
n

S−1

+
v∗i
v∗

B
n=1 fn (v

∗) (n−Bv
∗)

v∗(1−v∗)
1−p∗n
S−1 .

(32)

In equilibrium r = r∗ and v∗i = v∗ = 1
S . We can then evaluate (32) at r = r∗, which

means also imposing v∗i = v
∗ = 1

S . Specifically, define

∆ (r∗) = ∂W
∂v∗i v∗i=

1
S
,r=r∗

=
B
n=1Mnp∗n−A

S−1

where ∆ : [0, 1]→ R exploits the following definitions: fn ≡ fn 1
S

Mn = S
2fn 1− n−λ

S−1
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and
B
n=1Mn = S

2 1− f0 − f1
S > A = S2 (1− f0 − f1) > 0. (33)

We obtain the above, when v = 1
S , using

B
n=1 fn = 1 − S−1

S

B
and B

n=1 fn
n−Bv
v(1−v) =

B S−1
S

B−1
. We also define

ω =
B
n=1Mnqn −A
S − 1 .

We now study the behavior of ∆ (r∗) on [0, 1] under every pricing convention, denoting
∆ (r∗) = ∂∆(r∗)

∂r∗ . Notice that in equilibrium we must have ∆ (r∗) = 0 so that using the

expression above in equilibrium we must have

B
n=1 fnpn = 1− f0 − f1 +

B
n=1 fn(n−λ)pn

S−1 (34)

Since p0 = 0 we can write E[n] =
B
n=1 fnn = λ = Bv and

B
n=1 fn(n− λ)pn =

B
n=1 fnnpn − λ B

n=1 fnpn = E[np]−E[n]E[p] =cov[n, p]

where p ∈ P ∪ {0} is a random variable represented profits. Thus, in equilibrium we need

E [p] = 1− f0 − f1 + cov[n,p]
S−1 . (35)

1) Case θ = θX

Here we have p∗n = r∗ for all n = 1, 2, ..B. Notice from (15) and (30) that
∂v∗i
∂r r=r∗

< 0

always. Thus the set of maxima must satisfy ∆(r∗) = 0, i.e. ∂W
∂v∗i r=r∗

= 0. We have

∆ (r∗) = r∗ B
n=1Mn−A
S−1 . (36)

Notice that ∆ (r∗) =
B
n=1Mn

S−1 > 0 from (33). Also, ∆ (0) = −A
S−1 < 0 and ∆ (1) =

B
n=1Mn−A
S−1 > 0 from (33). Therefore, the Intermediate Value Theorem establishes there

exists a unique rX ∈ (0, 1) such that if r∗ = rX then ∆ (r∗) = 0. Solving (36) we obtain

rX = A
B
n=1Mn

It follows that r = r∗ = rX is the unique maximum of W, hence the unique equilibrium.

2) Case θ = θF

Here p∗n = max(qn, r∗). Thus, from (15) and (30) we have ∂v∗i
∂r r=r∗

< 0 only if r∗ ≥
q1 and

∂v∗i
∂r r=r∗

= ∆ (r∗) = 0 when r∗ ∈ [0, q1). Thus, we have

∂W

∂r r=r∗
=

⎧⎨⎩ 0 if r∗ ∈ [0, q1)
∆(r∗) ∂v∗i

∂r r=r∗
if r∗ ∈ [q1, 1]

35



It follows that we must concentrate on studying ∆(r∗) on [q1, 1]. Obviously, if ∆(r∗) > 0
on that set, then we have ∂W

∂r r=r∗ < 0 for all r∗ ∈ [q1, 1] so we have r∗ ∈ [0, q1) is
the equilibrium set. To have a unique interior equilibrium we need ∆(r∗) = 0 for some

r∗ ∈ (q1, 1). Thus study ∆ on the set [q1, 1], where ∆ is continuous but not continuously

differentiable.

Recall that we have defined qB+1 = 1. Thus, suppose r∗ = rj ∈ [qj , qj+1) ⊂ [q1, 1] for
some j = 1, 2, ...B. Then we have

∆ (rj) =
rj

j
n=1Mn+

B
n=jMnqn−qjMj−A
S−1 (37)

⇒ ∆ (rj) =
j
n=1Mn

S−1 for rj ∈ [qj , qj+1).
Call the expression in square brackets Qn (which might be negative or positive). Observe

that {Qn} is a decreasing sequence with Q1 > 0 always and QB < 0 if B > S. Recall also
that rj < qn for n ≥ j + 1. Thus when B ≤ S, we have Mn ≥ 0 for all n and therefore
∆ (rj) > 0 for rj ∈ [qj , qj+1) and ∆ (rj) < ∆ (rj+1) if B ≤ S. Therefore, ∆ (r∗) is strictly
increasing in r∗ ∈ [q1, 1] if B ≤ S.

If B > S then there exists some 1 < n̄ < B such that Mn ≥ 0 for n ≤ n̄ and Mn < 0

for n > n̄. Since from (33) we have B
n=1Mn > 0, then j

n=1Mn >
B
n=1Mn > 0 for

all j < B because Mn ≥ 0 for n small and Mn < 0 for n large. Thus ∆ (rj) > 0 for

rj ∈ [qj , qj+1) for all j, if B > S . Now, observe that B > S then we have∆ (rj) < ∆ (rj+1)
since Mn ≥ 0 for n ≤ n̄ and Mn < 0 for n > n̄. Thus we have

∆ (r∗) =
0 if r∗ ∈ [0, q1)

j
n=1Mn

S−1 > 0 if r∗ ∈ [qj , qj+1) for all j = 1, 2..., B − 1

We see that ∆ is continuous and from (33)

∆ (1) =
B
n=1Mn−A
S−1 > 0

Since ∆ (r∗) = 0 for 0 ≤ r∗ < q1 then ∆(r∗) = ∆ (q1) for 0 ≤ r∗ < q1 where

∆ (q1) =
B
n=1Mnqn−A

S−1 .

Since ∆(r∗) is a continuous increasing function on [q1, 1], then if ∆ (q1) < 0 we have
that there exists a unique rF ∈ (q1, 1) associated to a unique j = 1, 2, ..., B such that if

r∗ = rF ∈ [qj , qj+1) then ∆ (r∗) = 0. Using (37) we obtain

rF =
A− B

n=jMnqn+Mjqj
j
n=1Mn

.
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We note that

∆ (q1) < 0⇔ ω < 0.

Thus, if ω < 0 then ∆ (q1) < 0 and there exists a unique equilibrium r∗ = rF . If ω ≥ 0
then we have ∆ (r∗) > 0 for all r∗ ∈ (q1, 1] and ∆ (q1) ≥ 0 hence we have a continuum of

equilibria r∗ ∈ [0, q1].
3) Case θ = θC

Here we have p∗n = min(qn, r∗). Thus, from (15) and (30) we have ∂v∗i
∂r r=r∗

< 0 only

if r∗ ∈ [0, qB) and ∂v∗i
∂r r=r∗

= ∆ (r∗) = 0 when r∗ ∈ [qB, 1]. Thus, we have

∂W

∂r r=r∗
=

⎧⎨⎩ ∆(r∗) ∂v∗i
∂r r=r∗

if r∗ ∈ [0, qB)
0 if r∗ ∈ [qB, 1].

It follows that we must concentrate on studying ∆(r∗) on [0, qB). Obviously, if ∆(r∗) < 0
on that set then ∂W

∂r r=r∗ > 0 for all r
∗ ∈ [0, qB) so we have r∗ ∈ [qB, 1] is the equilibrium

set. To have a unique interior equilibrium we need ∆(r∗) = 0 for some r∗ ∈ (0, qB). Thus
study ∆ on the set [0, qB) where ∆ is continuous but not continuously differentiable.

Recall that we have defined q0 = 0. Thus, suppose r∗ = rj−1 ∈ [qj−1, qj) ⊂ [0, qB) for
some j = 1, ...B. Then

∆ (rj−1) =
j
n=1Mnqn−Mjqj+rj−1 B

n=jMn−A
S−1 (38)

⇒ ∆ (rj−1) =
B
n=jMn

S−1 for rj−1 ∈ [qj−1, qj).

We always have ∆ (0) = − A
S−1 < 0 and ∆(r

∗) = ∆ (qB) for qB ≤ r∗ ≤ 1 (since ∆ (r∗) = 0
on [qB, 1]) where

∆ (qB) =
B
n=1Mnqn−A

S−1 .

we notice that ∆ (qB) > 0 ⇔ ω > 0. Thus, define rC ∈ (0, qB) associated to a unique
j = 1, 2, ..., B such that if r∗ = rC ∈ [qj−1, qj) then ∆ (r∗) = 0. Using (38) we obtain

rC =
A− j

n=1Mnqn+Mjqj
B
n=jMn

.

Now consider the slope of ∆. If B ≤ S we have Mn ≥ 0 for all n and therefore

∆ (r∗) ≥ 0 for all r∗ ∈ [0, qB). Since ∆ (qB) > 0 since ω > 0 in this case, then we have
that r∗ = rC is the unique equilibrium, by the intermediate value theorem.

If B > S then Mn ≥ 0 for n small and Mn < 0 for n large. In particular we have

∆ (rB−1) = MB
S−1 < 0 and ∆ (r0) =

B
n=1Mn

S−1 > 0 (due to (33)). Hence, ∆ (r∗) is a hump-
shaped continuous function on [0, qB). Thus, there exists some value 1 < n ≤ B − 1 such
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that ∆ (r∗) decreases for r∗ ≥ qn and increases otherwise. Here we may have three cases.
If ω > 0 then ∆ (qB) > 0 hence we again have r∗ = rC as the unique equilibrium. In this
case ∂W

∂r r=r∗ = 0 at r
∗ = rC and W decreases when moving away from rC . If ω ≤ 0 then

∆ (qB) ≤ 0. In this case we may have two sub-cases:

• A first sub-case is ∆(r∗) < 0 for all r∗ ∈ [0, qB). Here ∂W
∂r r=r∗ > 0 for all r

∗ ∈ [0, qB)
so we have a continuum of equilibria on [qB, 1]

• The second sub-case is ∆(r∗) < 0 for all r∗ ∈ [0, qj) ∪ [qj+k, qB) for some 1 ≤ j <
k ≤ B − 1 and ∆(r∗) > 0 for all r∗ ∈ [qj+1, qj+k−1). Here, ∆(r∗) = 0 for two

elements r∗j ∈ [qj , qj+1) and r∗j+k−1 ∈ [qj+k−1, qj+k) respectively. Here ∂W
∂r r=r∗ > 0

for r∗ ∈ [r∗j+k−1, qB) so r∗j+k−1 must be a minimum, and ∂W
∂r r=r∗ < 0 for r

∗ = r∗j
so r∗j and [qB, 1] must be both local maxima. Obviously W |r∗=r∗j < W |r∗=qB since
in both case v∗i =

1
S . It follows that we have a continuum of equilibria on [qB, 1].

Finally, we prove that (i) rF = rX if and only if rX ≥ qB and (ii) rC = rX if rX ≤ q1
and rC > rX if rX > q1. To do so, define Y ≡ B

n=1Mn.Then:

(i) If rF = rX = A
Y , then clearly j = B. Hence, rF ≥ qB and so rX ≥ qB. Now prove

rX ≥ qB ⇒ rF = rX . Let rX ≥ qB. For any j ≤ B − 1 we have rF > qj+1; since

this contradicts the definition rF < qj+1 then it must be that rF = rX . To prove it,

notice that

rF < qj+1 ⇔ A− B
n=j+1Mnqn

Y− j
n=1Mn

< qj+1 ⇔ rX < qj+1 +
B
n=j+1

Mn(qn−qj+1)
Y ≡ Gj+1

We have Gj+1 > Gj since

qj+1 +
B
n=j+1Mn

qn−qj+1
Y > qj +

B
n=j

Mn(qn−qj)
Y ⇔ 1 >

B
n=j+1Mn

Y

for B
n=j+1Mn < 0 or B

n=j+1Mn > 0, since Y > B
n=j+1Mn > 0. Now, for

j = B − 1 we have rX < qB, which is not true.. So rF < qj+1 does not hold for any
j ≤ B − 1, when rX ≥ qB. Hence, rF = rX . Notice that rF < rX is not generally

true for rX < qB. To prove it let rX ∈ [qB−1, qB) and let λ be large. Then when
j = B − 1 we have qB > rF > rX ≥ qB−1 since −MBqB > −rXMB.

(ii) If rC = rX , then clearly h = 1, which implies rC ≤ q1, hence rX ≤ q1. The converse is
easily seen true. To prove that if rX > q1 then rC > rX , we just have to show that
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rC > rX for h = 2 (since rC can only increase as h grows above 2). Let rX > q1.

Notice that

rC =
A− h−1

n=1Mnqn

Y − h−1
n=1Mn

> rX =
A

Y
⇔

h−1

n=1

Mnqn <
A

Y

h−1

n=1

Mn

For h = 2 we have rC > rX as M1q1 <
A
YM1 ⇒ q1 < rX (recall that M1 > 0).

Proof of Lemma 6

Let n = 1, 2, ..., B. Recall that in a symmetric equilibrium the probability of having

n customers,Pr[n, n = 0] is independent of the commitment technology as is given by

(17). Thus the distribution of buyers at any store is independent of θ. When θ = θF

then we have pn ≥ qn for all n, while pn = qn for all n when θ = θN . It follows that

p̄N ≤ p̄F . When θ = θC then pn ≤ qn for all n and so p̄C ≤ p̄N ≤ p̄F . Clearly p̄X = rX .
Since rX − rC and rX − rF may be positive or negative for rX ∈ (q1, qB) we do not
have a clear relationship between p̄X and average sale prices under weaker commitment

technologies. However, if rX is close to rC and rF , then it is clear that p̄C ≤ p̄X ≤ p̄F
since (i) pn ≥ rF ≈ rX with positive probability, when θ = θF and (ii) pn ≤ rC ≈ rX

with positive probability, when θ = θC .

Proof of Lemma 7

Fix λ ∈ R+ and let B = λS and let S → ∞ (alternatively let S = B/λ and let

B → ∞). We see that limS→∞cov(xi, xj) = 0, i.e. xi and xj are independent random

variables. This implies that as the size of the market grows unbounded, we can focus only

on the marginal probabilities, that is the probability that any given seller is visited by n

buyers. In this case, this marginal probability distribution is bin(B, 1/S). As S →∞ the

binomial distribution converges to a Poisson with parameter λ (see Hoel et al., chapter

3). Thus, (17) implies (25) as the market grows large while keeping λ constant.

Proof of Lemma 8

If we set B = Sλ and let S →∞ we have

limS→∞ Mn
S2

= limS→∞ fn(B, 1S ) 1− n−λ
S−1 = e−λλn

n!

limS→∞ A
S2

= limS→∞ 1− 1− 1
S

λS − λ 1− 1
S

λS−1
= 1− e−λ − e−λλ
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Then, from (16) we obtain (26). It is immediate that drXdλ > 0. To demonstrate the other

claims let fn 1
S = fn. Then, use (35) and notice that cov(n, p) > 0 (for n = 0 we

have p0 = 0 and pn > 0 otherwise) and it is minimized when pn = r for all n. Also,

cov[n, p] < ∞ since E[np] < ∞. When B = Sλ then limS→∞
cov(n,p)
S−1 = 0. Thus, an

approximate solution for r in a large economy must solve B
n=1 fnpn = 1− f0 − f1. This

leads to the expressions in (26). For instance, if pn = rX for all n, then

rX = 1− f1
1− f0 = 1−

λ

eλ − 1 .

If rF = rX (i.e. if rX < qB) then we have

rF
j
n=1 fn +

B
n=j+1 fnqn = 1− f0 − f1

for some 1 ≤ j ≤ B−1. Since B
n=j+1 fnqn >

B
n=j+1 fnrF and 1−f0−f1 = rX j

n=1 fn+
B
n=j+1 fnrX , then rF < rX . Similarly, rC > rX if rX > q1.

Finally, to demonstrate that rF and rC are increasing in λ notice that in equilibrium

we must have E [p] = 1− f0− f1. It is obvious that 1− f0− f1 grows in λ more than E[p]
if r is constant (as p ∈ (0, 1)). Thus r must increase in λ.
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