
KRANNERT SCHOOL OF 
MANAGEMENT 
 
  Purdue University 
  West Lafayette, Indiana 

 

 
Testing for Multiple Structural Changes in Cointegrated 

Regression Models 
 

By 
 

Mohitosh Kejriwal 
Pierre Perron 

 

Paper No. 1216 
Date:  November 2008 

Institute for Research in the 
Behavioral, Economic, and 
Management Sciences 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7055052?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Testing for Multiple Structural Changes in
Cointegrated Regression Models∗

Mohitosh Kejriwal†

Purdue University

Pierre Perron‡

Boston University

August 30, 2007; Revised November 20, 2008

Abstract
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1 Introduction

Issues related to structural change have received a considerable amount of attention in the

statistics and econometrics literature. Andrews (1993) and Andrews and Ploberger (1994)

provide a comprehensive treatment of the problem of testing for structural change assuming

that the change point is unknown. Bai (1997) studies the least squares estimation of a single

change point in regressions involving stationary and/or trending regressors. He derives the

consistency, rate of convergence and the limiting distribution of the change point estimator

under general conditions on the regressors and the errors. Perron and Zhu (2005) analyze

the properties of parameter estimates in models where the trend function exhibits a slope

change at an unknown date and the errors can be either stationary, I(0), or have a unit

root, I(1), where here, and throughout the text, we refer to an I(0) process as one whose

partial sums satisfies a Functional Central Limit Theorem with a Brownian motion as the

limit random variable, and an I(1) as the partial sums of an I(0) series.

With integrated variables, the case of interest is when the variables are cointegrated.

Accounting for parameter shifts is crucial in cointegration analysis since it normally involves

long spans of data which are more likely to be affected by structural breaks. Bai, Lumsdaine

and Stock (1998) consider a single break in a multi-equations system. They show consis-

tency of the maximum likelihood estimates and obtain a limit distribution of the break date

estimate under a shrinking shifts scenario. Kejriwal and Perron (2008b) study the proper-

ties of the estimates of the break dates and parameters in a linear regression with multiple

structural changes involving I(1), I(0) and trending regressors.

With respect to testing, Hansen (1992b) develops tests of the null hypothesis of no change

in cointegrated models where all coefficients are allowed to change. An extension to partial

changes has been analyzed by Kuo (1998). The tests considered are the Sup and Mean LM

tests directed against an alternative of a one time change in parameters. Hao (1996) also

suggests the use of the exponential LM test. Seo (1998) considers the Sup, Mean and Exp

versions of the LM test within a cointegrated VAR setup. However, these test procedures

are based on the fully modified estimation method (Phillips and Hansen, 1990) which has

been shown to lead to tests with very poor finite sample properties (Carrion-i-Silvestre and

Sansó-i-Rosselló, 2006). The results in Quintos and Phillips (1993) also suggest that the

LM tests are likely to suffer from the problem of low power in finite samples. Moreover,

simulation experiments in Hansen (2000) show that the LM test is quite poorly behaved in

the presence of structural changes in the marginal distribution of the regressors. On the
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other hand, the Sup-Wald test is shown to be reasonably robust to such shifts. Hansen

(2003) considers multiple structural changes in a cointegrated system, though his analysis

is restricted to the case of known break dates. Finally, Qu (2007) proposes a procedure

to detect whether cointegration is present when the cointegrating vector changes at some

unknown possibly multiple dates.

The literature on testing for multiple structural changes is relatively sparse. It is, however,

practically important since single break tests can suffer from non-monotonic power when the

alternative involves more than one break. As stressed by Perron (2006), most tests may

exhibit non-monotonic power functions if the number of breaks present is greater than the

number explicitly accounted for in the construction of the tests. The aim of this paper is to

provide a comprehensive treatment of issues related to testing for multiple structural changes

occurring at unknown dates in cointegrated regression models. Our work builds on Bai and

Perron (1998) who undertake a similar treatment in a stationary context. Our framework is

general enough to allow both I(0) and I(1) variables in the regression. The assumptions about

the distribution of the error processes are mild enough to allow for general forms of serial

correlation. Moreover, we analyze both pure and partial structural change models. A partial

change model is useful in allowing potential savings in the number of degrees of freedom, an

issue particularly relevant for multiple changes. It is also important in empirical work since it

helps to isolate the variables which are responsible for the failure of the null hypothesis. We

derive the limiting distribution of the sup-Wald test under the null hypothesis of no structural

change against the alternative hypothesis of a given number of cointegrating regimes. We

also consider the double maximum tests proposed in Bai and Perron (1998). We provide

critical values for a wide variety of models that are relevant in practice. Our asymptotic

results have important implications for inference. We show that in models with both I(1)

and I(0) variables, inference is possible as long as the intercept is allowed to change across

regimes. Otherwise, the limiting distributions of the tests depend on nuisance parameters.

Finally, our simulation experiments show that with serially correlated errors, the commonly

used Sup, Mean and Exp-LM tests suffer from non-monotonic power problems. This is true

for cases with a single break as well as with multiple breaks. We propose a modified sup

Wald test that exhibits a power function which is monotonic with respect to the magnitude

of the break(s) while maintaining reasonable size properties.

The paper is organized as follows. Section 2 presents the model and assumptions. In

Section 3, we describe the testing problems and the test statistics used. Section 4 contains

the theoretical results of this paper about the limit distributions of the tests for a wide variety
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of cases. This is first done for models involving non-trending regressors, no serial correlation

in the errors and exogenous regressors. These restrictions are relaxed in Section 4.2, 5.1

and 5.2, respectively. Asymptotic critical values are presented in Section 4.3. Section 6

presents simulation experiments that address issues related to the size and power of the tests

including a comparison with the often used LM tests. Section 7 offers concluding remarks

and all technical derivations are included in a mathematical appendix.

2 The model and assumptions

Consider the following linear regression model with m breaks (m+ 1 regimes):

yt = cj + z0ftδf + z0btδbj + x0ftβf + x0btβbj + ut (t = Tj−1 + 1, ..., Tj) (1)

for j = 1, ...,m + 1, where T0 = 0, Tm+1 = T and T is the sample size. In this model, yt is

a scalar dependent I(1) variable, xft (pf × 1) and xbt (pb × 1) are vectors of I(0) variables
while zft (qf × 1) and zbt (qb × 1) are vectors of I(1) variables defined by: zft = zf,t−1 + ufzt,

zbt = zb,t−1 + ubzt, xft = μf + ufxt and xbt = μb + ubxt, where zf0 and zb0 are assumed, for

simplicity, to be either Op(1) random variables or fixed finite constants. For ease of reference,

the subscript b on the error term stands for “break” and the subscript f stands for “fixed”

(across regimes). The break points (T1, ..., Tm) are treated as unknown. This is a partial

structural change model in which the coefficients of only a subset of the regressors are subject

to change. When pf = qf = 0, we have a pure structural change model with all coefficients

allowed to change across regimes. It will be useful to express (1) in matrix form as:

Y = Gα+ W̄γ + U

where Y = (y1, ..., yT )
0, G = (Zf , Xf), Zf = (zf1, ..., zfT )

0, Xf = (xf1, ..., xfT )
0, U =

(u1, ..., uT )
0, W = (w1, ..., wT )

0, wt = (1, z0bt, x
0
bt)
0, γ = (δ0b1, β

0
b1, ..., δ

0
b,m+1, β

0
b,m+1)

0, α =

(δ0f , β
0
f)
0 and W̄ is the matrix which diagonally partitionsW at the m−partition (T1, ..., Tm),

that is, W̄ = diag(W1, ...,Wm+1) with Wi = (wTi−1+1, ..., wTi)
0 for i = 1, ...,m + 1. Kejriwal

and Perron (2008b) analyze the properties of the estimates of the break dates and the other

parameters of the model under general conditions on the regressors and the errors. In this

paper, the interest is in testing the null hypothesis of no structural change versus the alter-

native hypothesis of m changes as specified by the model (1). Hence, the data generating

process is assumed to be given by (1) with pb = qb = 0.

As a matter of notation, “
p→” denotes convergence in probability, “ d→” convergence in

distribution and “⇒” weak convergence in the space D[0, 1] under the Skorohod metric.
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Also, xt = (x0ft, x
0
bt)
0, uxt = (u

f 0
xt, u

b0
xt)

0, zt = (z0ft, z
0
bt)
0, μ = (μ0f , μ

0
b)
0 and λ = {λ1, ..., λm} is

the vector of break fractions defined by λi = Ti/T for i = 1, ...,m. We make the following

assumptions on ξt = (ut, u
f 0
zt, u

b0
zt, u

f 0
xt, u

b0
xt)

0, a vector of dimension n = qf + pf + qb + pb + 1.

Assumption A1: The vector ξt satisfies the following multivariate Functional Central Limit
Theorem (FCLT): T−1/2

P[Tr]
t=1 ξt ⇒ B(r), withB(r) = (B1(r), Bf

z (r)
0, Bb

z(r)
0, Bf

x(r)
0, Bb

x(r)
0)0 is

a n vector Brownian motion with symmetric covariance matrix

Ω =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ2 Ωf
1z Ωb

1z Ωf
1x Ωb

1x

Ωf
z1 Ωff

zz Ωfb
zz Ωfb

zx Ωff
zx

Ωb
z1 Ωbf

zz Ωbb
zz Ωbf

zx Ωbb
zx

Ωf
x1 Ωff

xz Ωfb
xz Ωff

xx Ωfb
xx

Ωb
x1 Ωbf

xz Ωbb
xz Ωbf

xx Ωbb
xx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1

qf

qb

pf

pb

= lim
T→∞

T−1E(STS0T ) = Σ+ Λ+ Λ0

where ST =
PT

t=1 ξt ,Σ = limT→∞ T−1
PT

t=1E(ξtξ
0
t) andΛ = limT→∞ T−1

PT−1
j=1

PT−j
t=1 E(ξtξ

0
t+j).

We also assume σ2 > 0 and p limT→∞ T−1
PT

t=1 u
2
t = limT→∞ T−1

PT
t=1E[u

2
t ] ≡ σ2u.

Assumption A2: The vector {xtut} satisfies Assumption A4 in Qu and Perron (2007) so
that T−1/2

P[Tr]
t=1 (u

f
xt, u

b
xt)ut ⇒ σQ∗1/2W ∗

x (r), where W
∗
x (r) = (W ∗

xf(r)
0,W ∗

xb(r)
0)0 is a (pf +

pb) vector of independent Wiener processes and

Q∗ =

⎡⎣ Qff∗
x Qfb∗

x

Qbf∗
x Qbb∗

x

⎤⎦
Assumption A3: For all t and s: a) E(uxtutzs) = 0; b) E(uxtutus) = 0; c) E(uxtutuxs) = 0.

Assumption A4: The matrix

⎛⎝Ωff
zz Ωfb

zz

Ωbf
zz Ωbb

zz

⎞⎠ is positive definite.

Assumption A5: T−1
P[Ts]

t=1 xtx
0
t

p→ sQ and, T−1
P[Ts]

t=1 uxtu
0
xt

p→ sQ∗, uniformly in s ∈
[0, 1], for some positive definite matrices Q and Q∗.

Assumption A1 requires that the errors satisfy a multivariate FCLT. The conditions for

this to hold are very general (see, e.g., Davidson, 1994). It can be shown to apply to a large

class of linear processes including those generated by all stationary and invertible ARMA

models. A2 guarantees that a FCLT also holds for the sequence {uxtut}. Assumption A3
restricts somewhat the class of models applicable but is quite mild. Sufficient conditions for

it to hold are: for (a) that the I(0) regressors are uncorrelated with the errors contempo-

raneously even conditional on the I(1) variables; for (b) that the autocovariance structure
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of the I(0) regressors be independent of the errors and, similarly, for (c) that the autoco-

variance structure of the errors be independent of the I(0) regressors. This assumption is

needed to guarantee thatW ∗
x (·) and B(·) are uncorrelated and, being Gaussian, are therefore

independent. Without this condition, the analysis would be much more complex. A4 rules

out cointegration among the I(1) regressors. A5 is standard for I(0) regressors but rules out

trending regressors, which we shall relax in Section 4.2.

Under the alternative hypothesis, the estimates of the parameters are obtained by min-

imizing the global sum of squared residuals. For each m-partition (T1, ..., Tm), denoted

{Tj}, the associated least squares estimates of α and γ are obtained by minimizing

SSRT (T1, ..., Tm) =
m+1P
i=1

TiP
t=Ti−1+1

[yt − ci − z0ftδf − x0ftβf − z0btδbi − x0btβbi]
2 (2)

Let α̂({Tj}) and γ̂({Tj}) be the resulting estimates. Substituting these into the objective
function and denoting the resulting sum of squared residuals as ST (T1, ..., Tm), the estimate

of the break points are (T̂1, ..., T̂m) = argmin T1,...,TmST (T1, ..., Tm), where the minimization is

taken over all partitions (T1, ..., Tm) such that Ti−Ti−1 ≥ T for some > 0. The estimates of

the regression coefficients are then α̂ = α̂({T̂j}) and γ̂ = γ̂({T̂j}). Such estimates can be ob-
tained using the algorithm of Bai and Perron (2003). Finally, consistent estimates of the ma-

trices Σ and Λ (and, hence, Ω) are Σ̂ = T−1
PT

t=1 ξ̂tξ̂
0
t and Λ̂ = T−1

PT−1
j=1 w(j/l)

PT−j
t=1 ξ̂tξ̂t+j,

where ξ̂t = (ût,∆z0ft,∆z0bt, (xft− x̄f)
0, (xbt − x̄b)

0)0 with ût the OLS residuals from regression

(1), x̄i = T−1
PT

t=1 xit (i = f, b) and w(j/l) is a kernel function that is continuous and even

with w(0) = 1 and
R∞
−∞w2(x)dx <∞. Also, l→∞ as T →∞ and l = o(T 1/2). Consistency

of these covariance matrix estimates has been shown in Hansen (1992c).

3 The testing problem and the test statistics

The data generating process (1) is the most general and in practice restricted versions may

be used. This gives rise to a variety of possible cases for the testing problems considered.

We classify them in two categories: a) models with only I(1) regressors; b) models with

both I(1) and I(0) regressors. This classification in two categories is useful since oftentimes

researchers are faced with only I(1) variables. For this category (a), the testing problems

considered are the following (for ease of reference, we list the relevant regression under the

alternative hypothesis):

Testing problems, Category (a), Models with I(1) variables only (pf = pb = 0, for

all cases): Let Ha
0 denotes the restrictions {cj = c, δbj = δb for all j = 1, ..,m+ 1}.
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1. Ha
0 (1) = {Ha

0 , qf = 0} versus Ha
1 (1) = {qf = 0} (yt = cj + z0btδbj + ut);

2. Ha
0 (2) = {Ha

0 , qb = 0} versus Ha
1 (2) = {qb = 0} (yt = cj + z0ftδf + ut);

3. Ha
0 (3) = {Ha

0 , qf = 0} versus Ha
1 (3) = {cj = c for all j = 1, ..,m + 1, qf = 0}

(yt = c+ z0btδbj + ut);

4. Ha
0 (4) = {Ha

0} versus Ha
1 (4) = {no restriction} (yt = cj + z0ftδf + z0btδbj + ut);

5. Ha
0 (5) = {Ha

0} versusHa
1 (5) = {cj = c for all j = 1, ..,m+1} (yt = c+z0ftδf+z

0
btδbj+ut).

Testing problems, Category (b), Models with both I(1) and I(0) variables: Let
Hb
0 denotes the restrictions {cj = c, δbj = δb, βbj = βb for all j = 1, ..,m+ 1}.

1. Hb
0(1) = {Hb

0, pf = qb = 0} versus Hb
1(1) = {cj = c for all j = 1, ..,m+1, pf = qb = 0}

(yt = c+ z0ftδf + x0btβbj + ut);

2. Hb
0(2) = {Hb

0, pb = qf = 0} versus Hb
1(2) = {cj = c for all j = 1, ..,m+1, pb = qf = 0}

(yt = c+ z0btδbj + x0ftβf + ut);

3. Hb
0(3) = {Hb

0, pf = qf = 0} versus Hb
1(3) = {cj = c for all j = 1, ..,m+1, pf = qf = 0}

(yt = c+ z0btδbj + x0btβbj + ut);

4. Hb
0(4) = {Hb

0, pf = qf = 0} versusHb
1(4) = {pf = qf = 0} (yt = cj+z

0
btδbj+x

0
btβbj+ut);

5. Hb
0(5) = {Hb

0, pb = qb = 0} versus Hb
1(5) = {pb = qb = 0} (yt = cj+z0ftδf +x0ftβf +ut);

6. Hb
0(6) = {Hb

0, pb = qf = 0} versus Hb
1(6) = {pb = qf = 0} (yt = cj+z0btδbj+x0ftβf+ut);

7. Hb
0(7) = {Hb

0, pf = qb = 0} versus Hb
1(7) = {pf = qb = 0} (yt = cj+z0ftδf+x0btβbj+ut);

8. Hb
0(8) = {Hb

0, qf = 0} versus Hb
1(8) = {qf = 0} (yt = cj + z0btδbj + x0ftβf + x0btβbj + ut);

9. Hb
0(9) = {Hb

0, qb = 0} versus Hb
1(9) = {qb = 0} (yt = cj + z0ftδf + x0ftβf + x0btβbj + ut);

10. Hb
0(10) = {Hb

0} versus Hb
1(10) = {no restriction} (yt = cj + z0ftδf + z0btδbj + x0ftβf +

x0btβbj + ut);

11. Hb
0(11) = {Hb

0} versus Hb
1(10) = {cj = c for all j = 1, ..,m + 1} (yt = c + z0ftδf +

z0btδbj + x0ftβf + x0btβbj + ut).
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We now give a brief description of each of the models in the two categories. First consider

Category (a). Case 1 is a pure structural change model which allows for a change in the

intercept as well. Case 2 is a partial change model in which only the intercept is allowed to

change. Case 3 is again a partial change model where the intercept is not allowed to change.

Cases 4 and 5 are block partial models in which a subset of the I(1) coefficients is allowed

to change. In Category (b), Cases 1 to 3 are partial change models where the intercept is

not allowed to change across regimes. Case 4 is a pure change model where all I(1) and

I(0) coefficients as well as the intercept are allowed to change. Case 5 is a partial change

model, which involves only an intercept shift. Case 6 is a partial change model where the

I(0) coefficients are not allowed to change. Similarly, Case 7 is a partial change model where

the I(1) coefficients are not allowed to change. Cases 8-11 are block partial models in which

a subset of coefficients of at least one type of regressor is not allowed to change.

We consider three types of tests. The first applies when the alternative hypothesis involves

a fixed valuem = k of changes. We consider theWald test, scaled by the number of regressors

whose coefficient are allowed to change, defined by

FT (λ, k) = (
T − (k + 1)(qb + pb)− (pf + qf)

k
)
γ̂0R0(R(W̄ 0MGW̄ )

−1R0)−1Rγ̂
SSRk

(3)

where R is the conventional matrix such that (Rγ)0 = (γ01 − γ02, ..., γ
0
k − γ0k+1) and MG =

I−G(G0G)−1G0. Here SSRk is the sum of squared residuals under the alternative hypothesis.

As in Bai and Perron (1998), we define the following set for some arbitrary small positive

number , Λk = {λ : |λi+1 − λi| ≥ , λ 1 ≥ , λ k ≤ 1− }. The sup-Wald test is then defined
as sup-FT (k) = supλ∈ΛkFT (λ, k). Since, in the current cases, the estimates λ̂ = {λ̂1, ..., λ̂k}
with λ̂i = T̂i/T (for i = 1, ..., k) obtained by minimizing the global sum of squared residuals

correspond to those that maximize the test FT (λ, k), we have sup-FT (k) = FT (λ̂, k).

The second procedure applies when the alternative hypothesis involves an unknown num-

ber of changes between 1 and some upper boundM . As in Bai and Perron (1998), we consider

a double maximum test based on the maximum of the individual tests for the null of no break

versus m breaks (m = 1, ...,M), defined by UDmaxFT (M) = max1≤m≤M supλ∈ΛmFT (λ,m).

This test is arguably the most useful to apply when trying to determine if structural changes

are present. Simulations presented in Bai and Perron (2006) show that with multiple changes,

the power of tests for a single break can be quite low in finite samples, especially for cer-

tain types of multiple changes; e.g., two breaks with identical first and third regimes. Also

tests for a particular number of changes may have non-monotonic power when the number

of changes is greater than specified. Finally, in their simulations they found the power of

7



UDmax to be nearly as high as that of the sup-FT test based on the true number of changes.

The third testing procedure is a sequential one based on the estimates of the break dates

obtained from a global minimization of sum of squared residuals, as in Bai and Perron (1998).

Consider a model with k breaks, with estimates denoted by (T̂1, ..., T̂k), which are obtained

by a global minimization of the sum of squared residuals. The procedure to test the null

hypothesis of k breaks versus the alternative hypothesis of k + 1 breaks is to perform a one

break test for each of the (k + 1) segments defined by the partition (T̂1, ..., T̂k) and to assess

whether the maximum of the tests is significant. More precisely, the test is defined by

SEQT (k + 1|k) = max
1≤j≤k+1

sup
τ∈Λj,ε

T{SSRT (T̂1, ..., T̂k)−SSRT (T̂1, ...T̂j−1, τ , T̂j, ..., T̂k)}/SSRk+1

where Λj,ε = {τ ; T̂j−1 + (T̂j − T̂j−1)ε ≤ τ ≤ T̂j − (T̂j − T̂j−1)ε}. Note that this is different
from a purely sequential procedure since for each value of k the break dates are re-estimated

to get those that correspond to the global minimizers of the sum of squared residuals.

4 The asymptotic distributions of the tests

With integrated regressors, an important issue that arises is the correlation between the

regressors and the errors. We first consider the case where all I(1) regressors are strictly

exogenous. Later, we deal with the case of endogenous regressors and show that if the

regression is augmented with leads and lags of the the first differences of the I(1) regressors,

the limiting distribution of the tests is the same as that obtained when all I(1) regressors

are strictly exogenous. Hence, for now, we assume Ωf
1z = Ωb

1z = 0, which will be relaxed in

Section 5.2. We also start with the following assumption that imposes serially uncorrelated

errors in the cointegrating regression to be relaxed in Section 5.1:

Assumption A6: Let ξ∗t = (u
f 0
zt, u

b0
zt, u

f 0
xt, u

b0
xt)

0, the errors {ut} form an array of martingale

differences relative to {Ft} = σ-field{ξ∗t−s, ut−1−s; s > 0}.

4.1 The main theoretical results

As a matter of notation, we define the following functionals, where W1 = σ−1B1:

h(G, a, b) = (
R b
a
GdW1)

0(
R b
a
GG0)−1(

R b
a
GdW1),

f(G) = (
k+1P
i=1

R λi
λi−1

GdW1)
0(
k+1P
i=1

R λi
λi−1

GG0)−1(
k+1P
i=1

R λi
λi−1

GdW1),
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g(G, a, b) = (aG(b) − bG(a))0(aG(b) − bG(a))/ba(b − a) and G(a,b)(r) = G(r) − (λb −
λa−1)−1

R λb
λa−1

G. Also, by convention λ0 = 0 and λk+1 = 1. The limit distributions of

the tests when only I(1) variables are involved are stated in the following Theorem.

Theorem 1 Assume A1-A6 and Ωf
1z = Ωb

1z = 0. For the testing problems in Category (a),

the limit distribution of supλ∈ΛkFT (λ, k) is supλ∈Λk F (λ, k)/k with F (λ, k) defined as follows

for the various cases. For Case (1),

F (λ, k) =
kP
i=1

[h(W b(1,i)
z , 0, λi)−h(W b(1,i+1)

z , 0, λi+1)+h(W b(i+1,i+1)
z , λi, λi+1)+ g(W1, λi, λi+1)]

For Case (2), F (λ, k) = f(W
f(i,i)
z )−h(W f(1,k+1)

z , 0, 1)+
Pk

i=1 g(W1, λi, λi+1), where W f
z (r) =

(Ωff
zz )

−1/2Bf
z (r). For Case (3),

F (λ, k) = f(P b
zi)− h(W b(1,k+1)

z , 0, 1)−W1(1)
2 +

k+1P
i=1

h(W b
z , λi−1, λi)

where P b
zi(r) = 1− (

R λi
λi−1

W b0
z )(
R λi
λi−1

W b
zW

b0
z )
−1W b

z (r), for r ∈ [λi−1, λi]. For Case (4),

F (λ, k) = f(WM(i,i)
z )− h(W fb(1,k+1)

z , 0, 1) +
k+1P
i=1

h(W b(i,i)
z , λi−1, λi) +

kP
i=1

g(W1, λi, λi+1)

with W fb
z (r) = (W

f
z (r),W

b
z (r)), and where

WM(i,i)
z (r) =W f(i,i)

z (r)− R λi
λi−1

W f(i,i)
z W b(i,i)0

z (
R λi
λi−1

W b(i,i)
z W b(i,i)0

z )−1W b(i,i)
z (r).

For Case (5), F (λ, k) = f(Pzi)− h(W
fb(1,k+1)
z , 0, 1)−W1(1)

2 +
Pk+1

i=1 h(W
b
z , λi−1, λi), where

Pzi(r)
0 = (P b

zi(r)
0, P fb

zi (r)
0) with P fb

zi (r) =W f
z (r)− (

R λi
λi−1

W f
z W

b0
z )(
R λi
λi−1

W b
zW

b0
z )
−1W b

z (r).

Theorem 1 shows that it is possible to make inference in models involving I(1) variables

using the sup-Wald test. Also, the limiting distributions are different depending on whether

the intercept and/or the I(1) coefficients are allowed to change. Note that for Cases 2, 4

and 5 the limit distributions depend on the number of I(1) coefficients that are not allowed

to change. This is different from a stationary framework where the limit distribution is

independent of the number of regressors whose coefficients are not allowed to change. We

now consider the limit distributions of the test for the various cases in Category (b) where

both I(1) and I(0) regressors are present.

Theorem 2 Assume A1-A6 and Ωf
1z = Ωb

1z = 0 and let W ∗
xb(1) = (W ∗0

xb,W1)
0. For cases

in Category (b), the limiting distributions of supλ∈ΛkFT (λ, k) under the null hypothesis

9



are given by supλ∈Λk F (λ, k)/k with F (λ, k) defined as follows. For case (1), F (λ, k) =Pk
i=1 g(W

∗
xb, λi, λi+1). For Case (2), the limit distribution is the same as for Case (3) in

Category (a). For Case (3),

F (λ, k) = f(P b
zi)− h(W b(1,k+1)

z , 0, 1)−W1(1)
2 +

k+1P
i=1

h(W b
z , λi−1, λi) +

kP
i=1

g(W ∗
xb, λi, λi+1).

For Cases (4) and (8),

F (λ, k) =
kP
i=1

[h(W b(1,i)
z , 0, λi)−h(W b(1,i+1)

z , 0, λi+1)+h(W
b(i+1,i+1)
z , λi, λi+1)+g(W

∗
xb(1), λi, λi+1)]

For Cases (5) and (6), the limit distributions are the same as for Cases (2) and (1), respec-

tively, in Category (a). For Case (7) and (9),

F (λ, k) = f(W f(i,i)
z )− h(W f(1,k+1)

z , 0, 1) +
kP
i=1

g(W ∗
xb(1), λi, λi+1).

For Case (10),

F (λ, k) = f(WM(i,i)
z )− h(W fb(1,k+1)

z , 0, 1) +
k+1P
i=1

h(W b(i,i)
z , λi−1, λi) +

kP
i=1

g(W ∗
xb(1), λi, λi+1).

And, for Case (11),

F (λ, k) = f(Pzi)− h(W fb(1,k+1)
z , 0, 1)−W1(1)

2 +
k+1P
i=1

h(W b
z , λi−1, λi) +

kP
i=1

g(W ∗
xb, λi, λi+1).

The practical implications of Theorem 2 are as follows. As shown in Case (1), if the

intercept and the I(1) variables are held fixed and only the coefficients on the I(0) variables

are allowed to change, the same limit distribution as in Bai and Perron (1998) applies.

However, this equivalence with the case of stationary regressors only holds if the constant

is not allowed to change. As shown in Case (7), the limit distribution is different when the

intercept is allowed to change and depends on the number of I(1) variables present. The

effect of allowing the intercept to change or not can also be seen by comparing Cases (3)

and (4). The limit distributions are different and, as expected, both depend on the number

of I(1) and I(0) variables whose coefficients are allowed to change. A similar feature also

applies when the regression involves I(1) and I(0) variables whose coefficients are not allowed

to change, as shown in Cases (10) and (11). Comparing these with Cases (3) and (4) again

shows that having I(1) variables whose coefficients are not allowed to change alters the limit

distributions. Finally, comparing Cases (a-1) and (b-6), (a-2) and (b-5), (a-3) and (b-2),

(b-4) and (b-8), and (b-7) and (b-9), shows that including I(0) regressors whose coefficients

are not allowed to change does not alter the limit distribution.
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Remark 1 For Case (4) in Category (b), the limit distribution of supλ∈ΛkFT (λ, k) is:

sup
(λ 1,...,λ k)∈Λk

{
kP
i=1

(S∗(λi, λi+1)0V (λi, λi+1)−1S∗(λi, λi+1))

+
kP
i=1

(λiW
∗
xb(λi+1)− λi+1W

∗
xb(λi))

0(λiW ∗
xb(λi+1)− λi+1W

∗
xb(λi))

λi+1λi(λi+1 − λi)
}

with S∗(λi, λi+1) = S(λi)−M(λi)M(λi+1)−1S(λi+1), V (λi, λi+1) =M(λi)−M(λi)M(λi+1)−1M(λi),
S(λi) =

R λi
0

Z∗dW1, M(λi) =
R λi
0

Z∗Z∗0 and Z∗ = (1,W b0
z )

0. The first summation corre-

sponds to the distribution in Case 1 of Category (a), while the second corresponds to the

pb I(0) regressors whose coefficients are allowed to change.

With these theoretical results for the sup-FT (λ, k), we can obtain the limit distribution

of the UDmax and SEQT (k + 1|k) tests. These are stated in the following Corollary.

Corollary 1 Under A1-A6 and Ωf
1z = Ωb

1z = 0, for a particular testing problem denote the

limit distribution of the test supλ∈ΛkFT (λ, k) by supλ∈ΛkF (λ, k)/k, then: a) UDmaxFT (M) =

max1≤m≤M supλ∈ΛmFT (λ,m) ⇒ max1≤m≤M supλ∈ΛmF (λ,m)/m, b) limT→∞ P (SEQT (k +

1|k) ≤ x) = Gε(x)
k+1, with Gε(x) the distribution function of supλ∈Λ1ε F (λ, 1).

4.2 Trends in regressors

Suppose now that the I(1) regressors have a trending non-stochastic component, i.e., are

generated by z∗ft = ρf t + zft and z∗bt = ρbt + zbt with qb > 1 and ρb 6= 0. The limiting

distributions of the tests are then different from the non-trending case. The derivation of the

required modifications follow the treatment of Hansen (1992a). Consider a qb×(qb−1)matrix
ρ∗b which spans the null space of ρb and let C2 = [C12, C22] = (ρb(ρ

0
bρb)

−1, ρ∗b(ρ
∗0
b Ω

bb
zzρ

∗
b)
−1/2).

Note that C 0
2z
∗
bt = (C

0
12zbt + t, C 0

22zbt)
0. With W̄2T = diag

¡
T, Iqb−1T

1/2
¢
, we have

W̄−1
2T C

0
2zb[Tr] =

⎛⎝ T−1C 0
12zb[Tr] + T−1[Tr]

T−1/2C 0
22zb[Tr]

⎞⎠⇒
⎛⎝ r

W b
z(−1)(r)

⎞⎠ ≡ Jb
z(r) (4)

where W b
z(−1)(r) is a (qb − 1) dimensional vector of independent Wiener processes (a linear

combination of W b
z (r)). Note that when qb = 1, W b

z(−1)(r) = r. It then follows that

T−1W̄−1
2T C

0
2

[Tr]P
t=1

z∗btz
∗0
btC2W̄

−1
2T ⇒ R r

0
Jb
zJ

b0
z (5)

T−1/2W̄−1
2T C

0
2

[Tr]P
t=1

z∗btut ⇒ σ
R r
0
Jb
zdW1 (6)
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Note that (4) through (6) also hold for z∗ft with W b
z(−1)(r) replaced by W f

z(−1)(r), a (qf −
1) dimensional vector of independent Wiener processes (a linear combination of W f

z (r)).

Here also, when qf = 1, W f
z(−1)(r) = r. Therefore, with trending regressors, the limiting

distributions of the tests are not the same as that without trends. However, we can obtain

them by simply replacing W f
z and W b

x by J
f
z and Jb

z , respectively.

4.3 Asymptotic critical values

Since the asymptotic distributions are non-standard, critical values are obtained through

simulations. These are provided for models with and without trends in regressors. We

approximate the Wiener processes by partial sums of i.i.d. Normal random variables with

N = 500 steps. The number of replications is 2000. For each replication, the supremum of

F (λ, k) with respect to (λ1, ..., λk) over the set Λk is obtained via a dynamic programming

algorithm (see Bai and Perron, 2003, for details). The I(0) regressors are simulated as inde-

pendent sequences of i.i.d. N(0, 1) random variables, and the I(1) regressors as independent

random walks with i.i.d. N(0, 1) errors (also independent of the I(0) regressors). The values

of the trimming used are = .05, .10, .15, .20 and .25. Critical values are presented for up

to 9 breaks and 4 regressors. The maximum number of breaks allowed is 8 when = 0.10, 5

when = 0.15, 3 when = 0.20 and 2 when = 0.25. For the UDmax test, M is set to 5 or

the maximum number of breaks possible. For models involving both I(1) and I(0) variables,

critical values are provided for all possible permutations up to 2 regressors of each type. For

the limit distributions of the tests when the regressors contain trends and for the sequential

tests, the critical values are tabulated for = .15, .20 and .25. Given the large number of

results, we present critical values only for = 0.15 in Tables 1 through 4. For other trimming

values, tables of critical values are available on the authors’ website.

5 Extensions

We now extend the analysis of the previous Section to the cases where we can have either a)

serially correlated errors in the cointegrating regression; b) endogenous regressors. We show

that simple modifications yield tests with the same limit distributions as stated above.

5.1 Serially correlated errors: a modified sup-Wald test

With serially correlated errors, we use the following robust version of the scaled F test

F ∗T (λ, k) =
(T − (k + 1)(qb + pb)− (qf + pf))

k
γ̂0R0(RTV̂ (γ̂)R0)−1Rγ̂ (7)
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where V̂ (γ̂) is an estimate of the covariance matrix of γ̂ that is robust to serial correlation

and heteroskedasticity; see Bai and Perron (1998) for details. Note that when testing for the

stability of coefficients associated with I(1) variables, whether I(0) variables are included

or not, we can simply apply the following transformation to the test in (3): F ∗T (λ; k) =¡
σ̂2u/σ̂

2
¢
FT (λ, k), where σ̂2u = T−1

PT
t=1 û

2
t and σ̂2 is a consistent estimate of σ2. Since

the break fractions are consistent even with serially correlated errors, we can first take the

supremum of the original F test to obtain the break points. The robust version of the test is

then obtained by evaluating F ∗T (λ; k) at these estimated break dates, i.e., the test considered

is supλ∈Λk F ∗T (λ, k) = F ∗T (λ̂, k) where λ̂ = (λ̂1, ..., λ̂k) are the estimates of the break fractions

obtained by minimizing the global sum of squared residuals (2).

A problem with the Sup-Wald test is that with persistent errors, the size distortions

can be substantial. The reason for this is the estimation of the long run variance using

residuals under the alternative hypothesis. On the other hand, Vogelsang (1999) shows

through simulation experiments that the estimation of the long run variance under the null

hypothesis leads to the problem of non-monotonic power in finite samples. In a related paper,

Crainiceanu and Vogelsang (2007) show that commonly used data dependent bandwidths

for the estimation of the long run variance (based on the misspecified null model) are too

large under the alternative hypothesis. This in turn leads to a decrease in power as the

magnitude of the change increases. As a solution to this size-power trade-off, we use a new

estimator of the long run variance constructed using a hybrid method that involves residuals

computed under both the null and alternative hypotheses. In particular, the data dependent

bandwidth is selected based on the residuals obtained under the alternative hypothesis. With

this particular value of the bandwidth, the estimate is computed using residuals obtained

under the null hypothesis of no structural change. Specifically, the proposed estimator is

σ̂2 = T−1
TP
t=1

eu2t + 2T−1 T−1P
j=1

w(j/ĥ)
TP

t=j+1

euteut−j (8)

where eut are the residuals obtained imposing the null hypothesis. The kernel function w(·)
is the Quadratic Spectral and the estimate of the bandwidth is, following Andrews (1991),

given by ĥ = 1.3221(â(2)T )1/5 where â(2) = [4ρ̂2/(1− ρ̂)4] and ρ̂ =
PT

t=2 ûtût−1/
PT

t=2 û
2
t−1,

with ût the residuals from the model estimated under the alternative hypotheses. As we

later demonstrate, the sup-Wald test based on this estimator is able to bypass the problem

of non-monotonic power while maintaining an exact size close to the nominal size. For more

details on the merits of this approach, see Kejriwal (2008).
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5.2 Endogenous I(1) regressors

Generally, the assumption of strict exogeneity is too restrictive and the test statistics devel-

oped in the previous section are not robust to the problem of endogenous regressors. In this

section, we use the linear leads and lags estimator (dynamic OLS) as proposed by Saikkonen

(1991) and Stock and Watson (1993) and prove that the limiting distributions of the tests

based on this estimator are the same as those obtained with the static regression under strict

exogeneity. The modified regression is given by

yt = ĉi + z0ftδ̂f + x0ftβ̂f + z0btδ̂bi + x0btβ̂bi +
TP

j=− T

∆z0t−jΠ̂j + v̂∗t (9)

where zt = (z0ft, z
0
bt)
0. Note that the number of leads and lags of∆zt need not be the same. We

specify the same value for simplicity. Alternatively, one can interpret T as the maximum

of the number of leads and lags. In order to prove our results, we need a few additional

assumptions, which are the same that are required to show the consistency of the estimate

of the cointegrating vector in the case of a model with no structural change.

Assumption A7: Let ζt = (ut, u
f 0
zt, u

b0
zt)

0 and ζzt = (u
f 0
zt, u

b0
zt)

0. The spectral density matrix

fζζ(w) is bounded away from zero so that fζζ(w) ≥ αIn (n = qf + qb + 1) for w ∈ [0, π]
where α > 0. Also, the covariance function of ζt is absolutely summable, i.e., denoting

E(ζtζ
0
t+k) = Γ(k), we require that

P∞
k=−∞ ||Γ(k)|| <∞ where || · || is the standard Euclidean

norm. Denoting the fourth order cumulants of ζt by κijkl(m1,m2,m3), it is assumed thatP
m1

P
m2

P
m3
|κijkl(m1,m2,m3)| <∞ (where the summations run from −∞ to +∞).

Assumption A7 states the same conditions used by Saikkonen (1991) and allows to

represent the error ut as follows: ut =
P∞

j=−∞ ζ 0zt−jΠj + vt, with
P∞

k=−∞ ||Πj|| < ∞
and where vt is a stationary process such that E(ζztvt+k) = 0, for all k, and fvv(w) =

fuu(w)− fuζz(w)fζzζz(w)
−1fζzu(w). The DGP under the null hypothesis is then

yt = c+ z0ftδf + x0ftβf +
TP

j=− T

∆z0t−jΠj + v∗t

where v∗t = vt+
P

|j|> T
ζ 0z,t−jΠj ≡ vt+ et. The last requirements pertain to the possible rate

of increase of T as T increases. Following Kejriwal and Perron (2008a), these are given by:

Assumption A8: As T →∞, T →∞, 2
T/T → 0 and T

P
|j|> T

||Πj||→ 0.

Note that A8 allows the use of information criteria such as the AIC or BIC. Since there

can be serial correlation in the errors vt, we need to apply a correction for its presence.

Hence, we consider the statistic supλ∈Λk FD
T (λ, k) = FD

T (λ̂, k) where λ̂ = (λ̂1, ..., λ̂k) are the
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estimates of the break fractions obtained by minimizing the global sum of squared residuals

(2), and FD
T (λ, k) = T−1(SSRk/σ̂

2
v)FT (λ, k) with FT (λ, k) as defined in (3). We consider

an estimate σ̂2v based on a weighted sum of the sample autocovariances of ev∗t , the residuals
obtained imposing the null, as defined by (8) with ev∗t instead of eut (and using the unrestricted
residuals to obtain the bandwidth as discussed in the previous section). The relevant result

is stated in the following Proposition.

Theorem 3 Under A1-A5 and A7-A8, for all testing problems the limit distributions of the
test supλ∈Λk F

D
T (λ, k), based on regression (9), are the same as those that apply to the test

supλ∈Λk FT (λ, k) under the added assumption of A6 and strict exogeneity with Ω
f
1z = Ωb

1z = 0.

6 Simulation experiments

We now present the results of simulation experiments that pertain to the size and power of

the tests, including a comparison with the often used LM tests. Hansen’s (2000) method

based on a “fixed regressors bootstrap” is also a possible avenue to provide valid large sample

inference in some of the models considered. In theory, an advantage of his method is that

it remains valid in the presence of changes in the marginal distributions of the regressors.

We conducted extensive simulations and found that the Wald tests considered here are very

robust to changes in the drift of the I(1) regressors and changes in the variance of the

innovations driving them (as in the stationary case as reported by Hansen, 2000). Our

asymptotic results provide tests with exact sizes close to nominal size, as we shall show.

6.1 The size of the tests

We start with the case where the DGP exhibits no structural change and hence analyze the

size of the tests. The sample sizes considered are T = 120 and T = 240. The value of the

trimming is set to .20. The maximum number of breaks (M) considered is 3. Depending

on whether we correct for serial correlation and/or endogeneity, we have the following four

specifications: (i) S_Corr=0, C_Corr=0: no correction for serial correlation or endogeneity;

(ii) S_Corr=1, C_Corr=0: correction for serial correlation but not for endogeneity; (iii)

S_Corr=0, C_Corr=1: correction for endogeneity but not for serial correlation; and (iv)

S_Corr=1, C_Corr=1: correction for both endogeneity and serial correlation. To correct

for serial correlation, we use the method discussed in Section 5.1. To correct for endogeneity,

we use the dynamic OLS estimator, discussed in Section 5.2, with T = 2. The various DGPs

considered include the following basic components: yt = zt + ut with zt = zt−1 + ηt, where
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ηt ∼ i.i.d. N(0, 1). The DGPs considered are, where et ∼ i.i.d. N(0, 1) and Cov(ηt, et) =

0: DGP-1 (i.i.d. errors, exogenous regressor): ut = et; DGP-2 (AR(1) errors, exogenous

regressor): ut = ρut−1+et; DGP-3 (MA(1) errors, exogenous regressor): ut = et−θet−1; DGP-
4 (i.i.d. errors, endogenous regressor): ut = 0.8ηt + et; DGP-5 (MA(1) errors, endogenous

regressor): ut = 0.5vt + ηt, vt = et − 0.5et−1.
For each DGP, we consider the case where the regressors are {1, zt} and both the intercept

and the cointegrating coefficient are allowed to change across regimes. In all experiments,

1000 replications are used. All rejection frequencies are calculated at the nominal 5% level.

Table 5 reports the empirical size, with T = 120 and 240 and ρ = θ = 0.5. Consider first

the base case represented by DGP-1 where the regressor is strictly exogenous and the errors

are i.i.d.. With S_Corr=0, C_Corr=0, the size is adequate for all the tests irrespective of

the specification used. For DGP-2 with AR(1) errors, all tests show substantial distortions

when we do not correct for serial correlation. However, using our proposed long run variance

estimator, the size distortions are no longer present and the tests become somewhat conser-

vative. With MA(1) errors (DGP-3), the tests have zero size when no correction for serial

correlation is made. Again, the size is accurate once we use S_Corr=1. With endogeneity

but no serial correlation (DGP-4), we see that all the tests have good size for S_Corr=0,

C_Corr=1. Otherwise, size distortions up to 20% may occur. This shows that the correction

for endogeneity based on the dynamic OLS estimator is quite effective. When both serial

correlation and endogeneity are present (DGP-5), the tests have adequate size when we use

S_Corr=1, C_Corr=1, although some mild distortions persist when testing for multiple

breaks. When T = 240, for the DGP-5 and S_Corr=1, C_Corr=1, the rejection frequencies

are reduced and even the multiple break tests become conservative.

We also considered the case where the regressors are {1, zt, xt}, with xt ∼ i.i.d. N(1, 1),

Cov(xt, ut) = Cov(xt, ηt) = 0, and the model allows the intercept and the cointegrating

coefficient to change across regimes but the coefficient of xt is held fixed. The results were

similar to those in Table 5. Hence, including an irrelevant I(0) regressor does not lead to

any size inaccuracies over and above the case when they are not included.

6.2 A power comparison with the LM type tests

In this section, we analyze the power of the sup-Wald test and compare it with the sup,

mean and exp-LM tests proposed in Hansen (1992b) and Hao (1996). Vogelsang (1999) and

Crainiceanu and Vogelsang (2007) show that the power function of a wide variety of tests for

a shift in the mean of a dynamic time series is non-monotonic with respect to the magnitude
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of the break. One cause is the behavior of the estimate of the error variance in the presence

of a shift in mean. In particular, they find that if the error variance is estimated under the

null hypothesis, non-monotonic power can result. We show that the LM type tests suffer

from the same problem in the cointegration setup and in certain cases, the power can go to

zero as the magnitude of the break increases. Since the main issue pertains to the presence of

serial correlation in the errors, we consider the case where the regressor is strictly exogenous

and the trimming is set at = 0.15 (we also performed simulation of the power of our tests

with a DGP involving endogenous regressors and, actually, the power is enhanced relative

to the exogenous regressor case). For the case with one break, the DGP is yt = zt + ut,

if t ≤ [T/2] and yt = (1 + δ)zt + ut, if t > [T/2], where ηt ∼ i.i.d. N(0, 1), Cov(ut, ηt) = 0.

The sample size is T = 240. We consider DGP 2 (AR(1) errors) and 3 (MA(1) errors). The

specification S_Corr=1, C_Corr=0 is used. We analyze the pure structural change model

in which both the intercept and the cointegrating coefficient are allowed to change. The

power functions are plotted in Figure 1. Consider first the case with AR(1) errors. The non-

monotonicity of the power function of the LM tests is evident even at moderate values of δ.

For very small values of δ, the power of the mean LM test is slightly higher than the modified

Wald test. This is due to the fact that the mean LM test is particularly suited to detect

small changes (see Andrews and Ploberger, 1994). Surprisingly, however, the mean LM test

performs better than the exp-LM test even for large changes. The sup-LM test is dominated

by all tests irrespective of the sample size and the degree of persistence. With MA(1) errors,

the picture is quite different. All tests have higher power compared to the autoregressive

case although non-monotonicity is still evident for the LM tests. The performance of the

LM tests is quite similar and no clear ranking emerges between them.

Next, we consider the case where the DGP involves 2 breaks and 3 regimes, specified by

yt = zt+ut, if t ≤ [T/3], yt = (1+ δ)zt+ut if [T/3] < t ≤ [2T/3] and yt = zt+ut if [2T/3] <

t ≤ T , where zt = zt−1+ηt, zt = zt−1+ηt, ηt ∼ i.i.d. N(0, 1) and Cov(ut, ηt) = 0. The power

functions are plotted in Figure 2. Consider first the case with AR(1) errors. Given that

single break tests have difficulty in detecting such parameter changes, it is not surprising

that all tests exhibit non-monotonic power. The modified sup-Wald test dominates all the

LM tests regardless of the sample size and the extent of persistence. With MA(1) errors,

again all tests display non-monotonicity although the power function of the modified Wald

test is much higher than that of the LM tests. What is quite remarkable is the fact that the

UDmax test has, in all cases, a monotonic power function that is much higher than any of

the other tests. This provides clear evidence to its usefulness.
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Finally, it is useful to comment on what happens when the regression is spurious, i.e.,

there is no cointegration. Hansen (1992b) showed that the LM test designed to detect a

martingale specification in the intercept, in the spirit of Nyblom’s (1989) test, can be viewed

as a test for the null of cointegration against the alternative of no cointegration. Although

the sup-Wald test is not specifically targeted for the alternative of random variation in the

intercept, it still has power against spurious regressions (i.e., no cointegration). This means

that it will also reject when no structural change is present and there is no cointegration

(the errors are I(1)). However, we can use the following approach to determine if the data

suggest structural changes in a cointegrating relationship or a spurious regression. Suppose

that one is willing to put an upper bound M (say 5) on the number of breaks. Then if

the system is cointegrated with less than M breaks, the sequential testing procedure can be

used to consistently estimate the number of breaks. On the other hand, if the regression

is spurious, the number of breaks selected will always (in large samples) be the maximum

number of breaks allowed. Thus, selecting the maximum allowable number of breaks can be

indicative of the presence of I(1) errors. The same is true when information criteria are used

to select the number of breaks. We verified via simulations that this is indeed the case.

7 Conclusion

We presented a comprehensive treatment of issues related to testing in cointegrated regression

models with multiple structural changes. We analyzed models with I(1) variables only as well

as models which incorporate both I(0) and I(1) regressors. The breaks are allowed to occur

either in the intercept, the cointegrating coefficients, the parameters of the I(0) regressors

or any combination of these. Our simulation experiments show that the commonly used LM

tests are plagued with the problem of non-monotonic power in finite samples. The sup-Wald

test however is able to avoid such non-monotonicity while maintaining adequate size. Our

asymptotic results allow us to devise a sequential procedure to select the number of breaks.

Finally, we provide the asymptotic critical values of our tests for a wide range of models that

are expected to be useful in practice. The simulation experiments demonstrate the favorable

properties of our test and the proposed long run variance estimator. It is important to note

that the idea of constructing the estimate of the long run variance using information under

both the null and alternative hypothesis is quite general and is applicable even in regression

models which do not involve structural change.
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Appendix
We use k.k to denote the Euclidean norm, i.e., kxk = (

Pp
i=1 x

2
i )
1/2 for x Rp. For a

matrix A, we use the vector-induced norm, i.e., kAk = supx6=0 kAxk / kxk. We have kAk ≤
[tr(A0A)]1/2. Also, for a projection matrix P , kPAk ≤ kAk. We use the notation eAi,j =
A(i,j) − Ā(i,j), where A(i,j) is the matrix of observations from regime i to regime j (both
inclusive), i.e., A(i,j) = (aTi−1+1, ..., aTj)

0 while Ā(i,j) is the matrix (conformable to Ai,j) of
means, i.e., Ā(i,j) = (āi,j, ..., āi,j)

0 where āi,j = (Tj − Ti−1)−1
PTj

t=Ti−1+1 at. Also, we use
A∗(i,j) = A(i,j) − Ā(i,j), where Ā(i,j) is the matrix (conformable to A(i,j)) of sample averages,

i.e., Ā(i,j) = (x̄, ..., x̄)0, where x̄ = T−1
PT

t=1 xt. Let 1(i,j) be a (Tj − Ti−1)× 1 vector of ones.
To ease notation, we will write eA(i,i) as eAi, A∗(i,i) as A

∗
i , Ā(i,i) as Āi, Ā(i,i) as Āi and 1(i,j) as

1i, (W1,W
f
z ,W

b
z ,W

f
x ,W

b
x) are independent Wiener processes with dimensions corresponding

to those of (B1, Bf
z , B

b
z, B

f
x , B

b
x). We also use the notation Wz = (W

f 0
z ,W b0

z )
0. We start with

a Lemma about the weak convergence of various sample moments whose proof is standard
given the results in Qu and Perron (2007).

Lemma A.1 Under A1-A5, the following weak convergence results hold (for i = 1, ...,m +

1): a) T−3/2
P[Tλi]

t=1 zft ⇒
R λi
0

Bf
z , T

−3/2P[Tλi]
t=1 zbt ⇒

R λi
0

Bb
z, T

−1/2P[Tλi]
t=1 ufxt ⇒ Bf

x(λi),
T−1/2

P[Tλi]
t=1 ubxt ⇒ Bb

x(λi), T
−1/2P[Tλi]

t=1 ut ⇒ B1(λi); b) T−2
P[Tλi]

t=1 zftz
0
ft ⇒

R λi
0

Bf
zB

f 0
z ,

T−2
P[Tλi]

t=1 zbtz
0
bt ⇒

R λi
0

Bb
zB

b0
z ; c) T

−1P[Tλi]
t=1 zftut ⇒

R λi
0

Bf
z dB1+λi(Σ

f
z1+Λ

f
z1), T

−1P[Tλi]
t=1 zbtut ⇒R λi

0
Bb
zdB1+λi(Σ

b
z1+Λ

b
z1); d) T

−1P[Tλi]
t=1 zftu

f 0
xt ⇒

R λi
0

Bf
z dB

f 0
x +λi(Σ

ff
zx+Λ

ff
zx), T

−1P[Tλi]
t=1 zftu

b0
xt ⇒R λi

0
Bf
z dB

b0
x+λi(Σ

fb
zx+Λ

fb
zx), T

−1P[Tλi]
t=1 zbtu

f 0
xt ⇒

R λi
0

Bb
zdB

f 0
x +λi(Σ

bf
zx+Λ

bf
zx), T

−1P[Tλi]
t=1 zbtu

b0
xt ⇒R λi

0
Bb
zdB

b0
x + λi(Σ

bb
zx + Λbb

zx).

The next Lemma will also be useful in subsequent developments.

Lemma A.2 Let X̄i(Ti−Ti−1)×p) = (x̄i, ..., x̄i)
0, x̄i = (Ti−Ti−1)−1

PTi
t=Ti−1+1 xt and μ

i
((Ti−Ti−1)×p) =

(μ, ..., μ)0. Then under A1-A4, we have for i = 1, ...,m + 1: (i) μi − X̄i
p−→ 0; (ii)

T−1/2(Xi − X̄i)
0Ui = T−1/2(Xi − μi)0Ui + op(1); (iii) T−1(Xi − X̄i)

0(Xi − X̄i) = T−1(Xi −
μi)0(Xi − μi) + op(1); (iv) T−3/2Z 0i(Xi − X̄i) = T−3/2Z 0i(Xi − μi) + op(1).

Proof of Lemma A.2: Part (i) follows trivially. To prove (ii), note that T−1/2(Xi−X̄i)
0Ui =

T−1/2(Xi−μi)0Ui+T
−1/2(μi−X̄i)

0Ui.We have T−1/2(μi−X̄i)
0Ui = (μ−x̄i)T−1/2

PTi
t=Ti−1+1 ut =

op(1), using part (i). For (iii), note that

T−1(Xi − X̄i)
0(Xi − X̄i) = T−1(Xi − μi)0(Xi − μi) + T−1(Xi − μi)0(μi − X̄i)

+T−1(μi − X̄i)
0(Xi − μi) + T−1(μi − X̄i)

0(μi − X̄i)

Now T−1(Xi − μi)0(μi − X̄i) = T−1
PTi

t=Ti−1+1(xt − μ)(μ − x̄i)
0 = −(λi − λi−1)(μ − x̄i)(μ −

x̄i)
0 = op(1). Similarly, T−1(μi − X̄i)

0(Xi − μi) = op(1). Finally, T−1(μi − X̄i)
0(μi −

X̄i) = (λi − λi−1)(μ − x̄i)(μ − x̄i)
0 = op(1). To prove (iv), note that T−3/2Z 0i(μ

i − X̄i) =
T−3/2(

PTi
t=Ti−1+1 zt)(μ− x̄i) = op(1) and the result follows immediately.
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Proof of Theorem 1: We only consider Cases (1) and (4). The details for the other cases
can be found in the working paper version. We have

FT (λ, k) =
SSR0 − SSRk

k(T − (k + 1)(qb + pb)− qf − pf)−1SSRk

where SSR0 and SSRk are the sum of squared residuals under the null and alternative
hypotheses, respectively. In all cases, we have k(T−(k+1)(qb+pb)−qf−pf)−1SSRk

p→ kσ2.
Case 1: The regression under H1 is yt = ci + z0btδbi + ut and for SSR0 we have

SSR0 = (Y ∗(1,k+1) − Z∗b(1,k+1)eδb)0(Y ∗(1,k+1) − Z∗b(1,k+1)eδb)
= (Z∗b(1,k+1)(δb − eδb) + U∗(1,k+1))

0(Z∗b(1,k+1)(δb − eδb) + U∗(1,k+1))

= U∗0(1,k+1)U
∗
(1,k+1) − (Z∗0b(1,k+1)U∗(1,k+1))0(Z∗0b(1,k+1)Z∗b(1,k+1))−1(Z∗0b(1,k+1)U∗(1,k+1))(A.1)

SSRk =
k+1P
i=1

(eYi − eZbiδ̂bi)
0(eYi − eZbiδ̂bi) =

k+1P
i=1

( eZbi(δb − δ̂bi) + eUi)
0( eZbi(δb − δ̂bi) + eUi)

=
k+1P
i=1

{−( eZ 0bi eUi)
0( eZ 0bi eZbi)

−1( eZ 0bi eUi) + eU 0
i
eUi}

Therefore,

SSR0 − SSRk ⇒−σ2(
R 1
0
W b(1,k+1)

z dW1)
0(
R 1
0
W b(1,k+1)

z W b(1,k+1)0
z )−1(

R 1
0
W b(1,k+1)

z dW1)

+σ2
k+1P
i=1

{(R λi
λi−1

W b(i,i)
z dW1)

0(
R λi
λi−1

W b(i,i)
z W b(i,i)0

z )−1(
R λi
λi−1

W b(i,i)
z dW1)}

+σ2
kP
i=1

(λiW1(λi+1)− λi+1W1(λi))
2

λi+1λi(λi+1 − λi)

and the result stated follows. Case 4: The regression under the alternative hypothesis is
yt = ci + z0ftδf + z0btδbi + ut. Let Z∗(1,k+1) = (Z

∗
f(1,k+1), Z

∗
b(1,k+1)) and eδ = (eδ0f ,eδ0b)0. We have

SSR0 = (Y ∗(1,k+1) − Z∗(1,k+1)eδ)0(Y ∗(1,k+1) − Z∗(1,k+1)eδ)
= −(Z∗0(1,k+1)U∗(1,k+1))0(Z∗0(1,k+1)Z∗(1,k+1))−1(Z∗0(1,k+1)U∗(1,k+1)) + U∗0(1,k+1)U

∗
(1,k+1)

SSRk =
k+1P
i=1

(eYi − eZfiδ̂f − eZbiδ̂bi)
0(eYi − eZfiδ̂f − eZbiδ̂bi)

=
k+1P
i=1

( eZfi(δf − δ̂f) + eZbi(δb − δ̂bi) + eUi)
0( eZfi(δf − δ̂f) + eZbi(δb − δ̂bi) + eUi)

After considerable algebra, we can show that

SSRk = −(
k+1P
i=1

eZ 01iMbi
eUi)

0(
k+1P
i=1

eZ 01iMbi
eZ1i)−1(k+1P

i=1

eZ 01iMbi
eUi)

−
k+1P
i=1

( eZ 0bi eUi)
0( eZ 0bi eZbi)

−1( eZ 0bi eUi) +
k+1P
i=1

(eU 0
i
eUi)

A-2



where Mbi = Ii− eZbi( eZ 0bi eZbi)
−1 eZ 0bi and Ii the (Ti−Ti−1)× (Ti−Ti−1) identity matrix. Thus,

SSR0 − SSRk = −(Z∗0(1,k+1)U∗(1,k+1))0(Z∗0(1,k+1)Z∗(1,k+1))−1(Z∗0(1,k+1)U∗(1,k+1))

+(
k+1P
i=1

eZ 0fiMbi
eUi)

0(
k+1P
i=1

eZ 0fiMbi
eZfi)

−1(
k+1P
i=1

eZ 0fiMbi
eUi)

+
k+1P
i=1

( eZ 0bi eUi)
0( eZ 0bi eZbi)

−1( eZ 0bi eUi) + U∗0(1,k+1)U
∗
(1,k+1) −

k+1P
i=1

(eU 0
i
eUi)

and, with Bfb
z (r) = (B

f
z (r)

0,Bb
z(r)

0)0,

SSR0 − SSRk ⇒ −(R 1
0
Bfb(1,k+1)
z dB1)

0(
R 1
0
Bfb(1,k+1)
z Bfb(1,k+1)0

z )−1(
R 1
0
Bfb(1,k+1)
z dB1)

+(
k+1P
i=1

R λi
λi−1

BM(i,i)
z dB1)

0(
k+1P
i=1

R λi
λi−1

BM(i,i)
z BM(i,i)0

z )−1(
k+1P
i=1

R λi
λi−1

BM(i,i)
z dB1)

+
k+1P
i=1

(
R λi
λi−1

Bb(i,i)
z dB1)

0(
R λi
λi−1

Bb(i,i)
z Bb(i,i)0

z )−1(
R λi
λi−1

Bb(i,i)
z dB1)

+
kP
i=1

(λiB1(λi+1)− λi+1B1(λi))
0(λiB1(λi+1)− λi+1B1(λi))

λi+1λi(λi+1 − λi)

where B
M(i,i)
z (r) = B

f(i,i)
z (r) − R λi

λi−1
B

f(i,i)
z B

b(i,i)0
z (

R λi
λi−1

B
b(i,i)
z B

b(i,i)0
z )−1Bb(i,i)

z (r). Note that

each element of BM(i,i)
z (r) is the residual from the projection of the corresponding element

of Bf(i,i)
z (r) onto the space spanned by {Bb(i,i)

zj }qbj=1 for a given realization of these stochastic
processes. We also have BM(i,i)

z (r) = (Ωff
zz )

1/2W
M(i,i)
z (r), so that

kFT (λ, k) ⇒ −(R 1
0
W fb(1,k+1)

z dW1)
0(
R 1
0
W fb(1,k+1)

z W fb(1,k+1)0
z )−1(

R 1
0
W fb(1,k+1)

z dW1)

+(
k+1P
i=1

R λi
λi−1

WM(i,i)
z dW1)

0(
k+1P
i=1

R λi
λi−1

WM(i,i)
z WM(i,i)0

z )−1(
k+1P
i=1

R λi
λi−1

WM(i,i)
z dW1)

+
k+1P
i=1

(
R λi
λi−1

W b(i,i)
z dW1)

0(
R λi
λi−1

W b(i,i)
z W b(i,i)0

z )−1(
R λi
λi−1

W b(i,i)
z dW1)

+
kP
i=1

(λiW1(λi+1)− λi+1W1(λi))
0(λiW1(λi+1)− λi+1W1(λi))

λi+1λi(λi+1 − λi)

Proof of Theorem 2. We give the details only for cases 4 to 6. Case 4. The regression
under H1 is yt = ci + z0btδbi + x0btβbi + ut. We have,

SSR0 = [Y
∗
(1,k+1) − Z∗b(1,k+1)eδb −X∗

b(1,k+1)
eβb]0[Y ∗(1,k+1) − Z∗b(1,k+1)eδb −X∗

b(1,k+1)
eβb]

By Lemmas A.1 and A.2, T−3/2Z∗0b(1,k+1)X
∗
b(1,k+1) = op(1). Thus,

SSR0 = [Z∗b(1,k+1)(δb − eδb) +X∗
b(1,k+1)(βb − eβb) + U∗(1,k+1)]

0 ×
[Z∗b(1,k+1)(δb − eδb) +X∗

b(1,k+1)(βb − eβb) + U∗(1,k+1)]

= (δb − eδb)0Z∗0b(1,k+1)Z∗b(1,k+1)(δb − eδb) + 2(δb − eδb)0Z∗0b(1,k+1)U∗(1,k+1) + U∗0(1,k+1)U
∗
(1,k+1)

+(βb − eβb)0X∗0
b(1,k+1)X

∗
b(1,k+1)(βb − eβb) + 2(βb − eβb)0X∗0

b(1,k+1)U
∗
(1,k+1) + op(1)
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= −(T−1U∗0(1,k+1)Z∗b(1,k+1))(T−2Z∗0b(1,k+1)Z∗b(1,k+1))−1(T−1Z∗0b(1,k+1)U∗(1,k+1))
−(T−1/2U∗0(1,k+1)X∗

b(1,k+1))(T
−1X∗0

b(1,k+1)X
∗
b(1,k+1))

−1(T−1/2X∗0
b(1,k+1)U

∗
(1,k+1))

+U∗0(1,k+1)U
∗
(1,k+1) + op(1)

We have SSRk =
Pk+1

i=1 [
eYi − eXbiβ̂bi − eZbiδ̂bi]

0[eYi − eXbiβ̂bi − eZbiδ̂bi]. Using Lemmas A.1-A.2,
T−3/2 eZ 0bi eXbi = op(1) and under H0, eYi = eXbiβb + eZbiδb + eUi, so that

SSRk =
k+1P
i=1

[ eXbi(βb − β̂bi) + eZbi(δb − δ̂bi) + eUi]
0[ eXbi(βb − β̂bi) + eZbi(δb − δ̂bi) + eUi]

=
k+1P
i=1

[−(T−1 eU 0
i
eZbi)(T

−2 eZ 0bi eZbi)
−1(T−1 eZ 0bi eUi)

−(T−1/2 eU 0
i
eXbi)(T

−1 eX 0
bi
eXbi)

−1(T−1/2 eX 0
bi
eUi) + eU 0

i
eUi] + op(1)

Therefore,

kFT (λ, k) ⇒ −(R 1
0
W b(1,k+1)

z dW1)
0(
R 1
0
W b(1,k+1)

z W b(1,k+1)0
z )−1(

R 1
0
W b(1,k+1)

z dW1)

−W ∗
xb(1)

0W ∗
xb(1)−W1(1)

2 +
k+1P
i=1

©
(λi − λi−1)−1(W1(λi)−W1(λi−1))2

ª
+

k+1P
i=1

(λi − λi−1)−1(W ∗
xb(λi)−W ∗

xb(λi−1))
0(W ∗

xb(λi)−W ∗
xb(λi−1)

+
k+1P
i=1

[(
R λi
λi−1

W b(i,i)
z dW1)

0(
R λi
λi−1

W b(i,i)
z W b(i,i)0

z )−1(
R λi
λi−1

W b(i,i)
z dW1)]

which reduces to the expression stated in the Theorem. Case 5: The model under H1 is
yt = ci+z0ftδf +x0ftβf +ut. We have SSRk =

Pk+1
i=1 [

eYi− eXfiβ̂f − eZfiδ̂f ]
0[eYi− eXfiβ̂f − eZfiδ̂f ].

Under H0, eYi = eXfiβf + eZfiδf + eUi, so that

SSRk =
k+1P
i=1

[ eXfi(βf − β̂f) + eZfi(δf − δ̂f) + eUi]
0[ eXfi(βf − β̂f) + eZfi(δf − δ̂f) + eUi]

Furthermore, T (δ̂f − δf) = (T
−2Pk+1

i=1
eZ 0fi eZfi)

−1(T−1
Pk+1

i=1
eZ 0fi eUi) + op(1) and

T 1/2(β̂f − βf) = (T
−1 k+1P

i=1

eX 0
fi
eXfi)

−1(T−1/2
k+1P
i=1

eX 0
fi
eUi) + op(1).

Hence, after some algebra,

SSRk = −(T−1
k+1P
i=1

eU 0
i
eZfi)(T

−2 k+1P
i=1

eZ 0fi eZfi)
−1(T−1

k+1P
i=1

eZ 0fi eUi)

−(T−1/2
k+1P
i=1

eU 0
i
eXfi)(T

−1 k+1P
i=1

eX 0
fi
eXfi)

−1(T−1/2
k+1P
i=1

eX 0
fi
eUi) +

k+1P
i=1

eU 0
i
eUi + op(1)
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and

kFT (λ, k) ⇒ −(R 1
0
W f(1,k+1)

z dW1)
0(
R 1
0
W f(1,k+1)

z W f(1,k+1)0
z )−1(

R 1
0
W f(1,k+1)

z dW1)

+(
k+1P
i=1

R λi
λi−1

W f(i,i)
z dW1)

0(
k+1P
i=1

R λi
λi−1

W f(i,i)
z W f(i,i)0

z )−1(
k+1P
i=1

R λi
λi−1

W f(i,i)
z dW1)

+
kP
i=1

(λiW1(λi+1)− λi+1W1(λi))
2

λi+1λi(λi+1 − λi)

Case 6: The model under H1 is yt = ci + z0btδbi + x0ftβf + ut. In this case, SSRk =Pk+1
i=1 [

eYi − eXfiβ̂f − eZbiδ̂bi]
0[eYi − eXfiβ̂f − eZbiδ̂bi]. Under H0, eYi = eXfiβf + eZbiδb + eUi, so that

SSRk =
k+1P
i=1

[ eXfi(βf − β̂f) + eZbi(δb − δ̂bi) + eUi]
0[ eXfi(βf − β̂f) + eZbi(δb − δ̂bi) + eUi]

We also have T (δ̂bi − δb) = (T
−2 eZ 0bi eZbi)

−1T−1 eZ 0bi eUi + op(1) and

T 1/2(β̂f − βf) = (T
−1 k+1P

i=1

eX 0
fi
eXfi)

−1(T−1/2
k+1P
i=1

eX 0
fi
eUi) + op(1).

Hence,

SSRk = −
k+1P
i=1

(T−1 eU 0
i
eZbi)(T

−2 eZ 0bi eZbi)
−1(T−1 eZ 0bi eUi)

−(T−1/2
k+1P
i=1

eU 0
i
eX 0
fi)(

k+1P
i=1

T−1 eX 0
fi
eXfi)

−1(T−1/2
k+1P
i=1

eX 0
fi
eUi) +

k+1P
i=1

eU 0
i
eUi

so that

kFT (λ, k) ⇒
k+1P
i=1

[−(R λi+1
0

W b(1,i+1)
z dW1)

0(
R λi+1
0

W b(1,i+1)
z W b(1,i+1)0

z )−1(
R λi+1
0

W b(1,i+1)
z dW1)

+(
R λi
0
W b(1,i)

z dW1)
0(
R λi
0
W b(1,i)

z W b(1,i)0
z )−1(

R λi
0
W b(1,i)

z dW1)

+(
R λi+1
λi

W b(i+1,i+1)
z dW1)

0(
R λi+1
λi

W b(i+!,i+1)
z W b(i+1,i+1)0

z )−1(
R λi+1
λi

W b(i+1,i+1)
z dW1)]

+
kP
i=1

(λiW1(λi+1)− λi+1W1(λi))
2

λi+1λi(λi+1 − λi)

Proof of Theorem 3: We provide a proof for the testing problem (2) in Category (a), a
pure structural change model with only I(1) regressors and a constant. The proofs for the
other cases are very similar. We first let eBT = T−1/2

P[Tr]
j=1
eζj,where eζt = (vt, ub0zt)0. Under

the stated conditions, eBT ⇒ eB ≡ (B1.z, Bb
z) as T → ∞, where Bb

1.z = B1 − Ωb
1z(Ω

bb
zz)

−1Bb
z.

Note that Bb
1.z is independent of B

b
z. Thus, eB denotes a vector Brownian motion with block

diagonal covariance matrix eΩ = diag((σb1.z)
2,Ωbb

zz), where (σ
b
1.z)

2 = σ2−Ωb
1z(Ω

bb
zz)

−1Ωb
z1. The

relevant regression under the alternative hypothesis is

yt = ci + z0btδ̂bi +
TP

j=− T

∆z0b,t−jΠ̂j + v̂∗t

A-5



As a matter of notation, let η∗bt = (∆z0bt− T
, ...,∆z0bt+ T

)0, η∗b = (η
∗
b1, ..., η

∗
bT )

0, E = (e1, ..., eT )0,
V = (v1, ..., vT )

0, and Π = (Π0− T
, ...,Π0

T
)0. Also, define Mη = IT − η∗b(η

0∗
b η
∗
b)
−1η0∗b , zt =

(1, zbt)
0, Z = (z1, ..., zT )0, Zi = (zTi−1+1, ..., zTi), Z̄ = diag(Z1, ..., Zk+1), δ = (c, δ

0
b)
0 and the

[(k + 1)(qb + 1)× 1] vector δ̄ = (δ, δ, ..., δ). The vectors of estimates under the null and the
alternative are eδ and δ̂, respectively. The vector of residuals is ev∗ =MηY −MηZ̄eδ under the
null and v̂∗ =MηY −MηZ̄δ̂ under the alternative. We have ev∗ = v̂∗ +MηZ̄(δ̂ − eδ), so that

SSR0 − SSRk = ev∗0ev∗ − v̂∗0v̂∗ = (δ̂ − eδ)0Z̄ 0MηZ̄(δ̂ − eδ)
= (δ̂ − eδ)0Z̄ 0Z̄(δ̂ − eδ)− (δ̂ − eδ)0Z̄ 0η∗b(η0∗b η∗b)−1η0∗b Z̄(δ̂ − eδ)

Now note that

||(δ̂−eδ)0Z̄ 0η∗b(η0∗b η∗b)−1η0∗b Z̄(δ̂−eδ)|| ≤ ||(δ̂−eδ)0DT ||||D−1
T Z̄ 0η∗b ||||(η0∗b η∗b)−1||||η0∗b Z̄D−1

T ||DT (δ̂−eδ)||
where the [(k + 1)× (qb + 1)] diagonal matrix DT = diag(T 1/2, T, T, ..., T, ..., T 1/2, T, ..., T ).

We have ||DT (δ̂ − eδ)|| = Op(1), ||(η0∗b η∗b)−1|| = Op(T
−1), ||D−1

T Z̄ 0η∗b || = Op(l
1/2
T ), since

||T−1PT
t=1 Zbtη

∗0
bt|| = Op(l

1/2
T ), ||T−1/2PT

t=1 η
∗0
bt|| = Op(l

1/2
T ) (Saikkonen, 1991, Kejriwal and

Perron, 2008a). Hence, ||(δ̂ − eδ)0Z̄ 0η∗b(η0∗b η∗b)−1η0∗b Z̄(δ̂ − eδ)|| = Op(lT/T ) = op(1). Next,

(δ̂ − eδ)0Z̄ 0Z̄(δ̂ − eδ) = − (Z 0V )0 (Z 0Z)−1 Z 0V +
k+1P
i=1

(Z 0iVi)
0(Z 0iZi)

−1(Z 0iVi) + op(1)

= −(Z∗0b(1,k+1)V ∗(1,k+1))0(Z∗0b(1,k+1)Z∗b(1,k+1))−1(Z∗0b(1,k+1)V ∗(1,k+1))

+V ∗0(1,k+1)V
∗
(1,k+1) +

k+1P
i=1

{( eZ 0bieVi)0( eZ 0bi eZbi)
−1( eZ 0bieVi)− eV 0

i
eVi}+ op(1)

Therefore,

SSR0 − SSRk ⇒−(
R 1
0
Bb(1,k+1)
z dBb

1.z)
0(
R 1
0
Bb(1,k+1)
z Bb(1,k+1)0

z )−1(
R 1
0
Bb(1,k+1)
z dBb

1.z)

+
k+1P
i=1

{(R λi
λi−1

Bb(i,i)
z dBb

1.z)
0(
R λi
λi−1

Bb(i,i)
z Bb(i,i)0

z )−1(
R λi
λi−1

Bb(i,i)
z dBb

1.z)}

+
kP
i=1

(λiB
b
1.z(λi+1)− λi+1B

b
1.z(λi))

2

λi+1λi(λi+1 − λi)

Since Bb
1.z and Bz are independent, Bb

1.z = σb1.zW1 and Bb
z = (Ω

b
zz)

1/2W b
z , so that

SSR0 − SSRk ⇒ −(σb1.z)2(
R 1
0
W b(1,k+1)

z dW1)
0(
R 1
0
W b(1,k+1)

z W b(1,k+1)0
z )−1(

R 1
0
W b(1,k+1)

z dW1)

+(σb1.z)
2
k+1P
i=1

{(R λi
λi−1

W b(i,i)
z dW1)

0(
R λi
λi−1

W b(i,i)
z W b(i,i)0

z )−1(
R λi
λi−1

W b(i,i)
z dW1)}

+(σb1.z)
2

kP
i=1

(λiW1(λi+1)− λi+1W1(λi))
2

λi+1λi(λi+1 − λi)

It can be shown, using arguments as in Kejriwal and Perron (2008a) that σ̂v is a consistent
estimate of σb1.z under the stated conditions (the proof is quite tedious and omitted). This
proves the theorem.
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Table 1.a: Asymptotic Critical Values for Category (a) Case 1, = .15.

(The entries are quantiles x such that P (supF (λ, k)/k ≤ x) = α)

Non Trending Case
Number of Breaks, k

qb α 1 2 3 4 5 UDmax
1 .90 10.34 8.85 7.66 6.66 5.30 10.53

.95 12.11 9.96 8.60 7.36 5.90 12.25
.975 13.85 11.41 9.40 7.99 6.42 13.91
.99 17.03 12.41 10.40 8.71 7.08 17.40

2 .90 12.36 11.01 9.60 8.45 6.96 12.64
.95 14.30 12.11 10.41 9.19 7.64 14.47
.975 15.72 13.37 11.26 9.75 8.15 15.90
.99 17.67 14.73 12.21 10.77 8.82 17.67

3 .90 14.88 12.84 11.49 10.19 8.53 15.09
.95 16.66 14.11 12.38 10.94 9.12 16.71
.975 18.32 15.24 13.01 11.52 9.61 18.35
.99 20.78 16.29 14.36 12.37 10.23 20.78

4 .90 16.87 14.72 13.20 11.75 9.90 17.05
.95 19.08 15.90 14.15 12.68 10.72 19.16
.975 20.81 17.15 15.21 13.38 11.43 20.89
.99 22.59 18.85 16.44 14.25 11.98 22.59

Trending Case
Number of Breaks, k

1 2 3 4 5 UDmax
11.18 9.25 8.09 6.95 5.53 11.33
13.03 10.39 8.94 7.60 6.12 13.07
15.08 11.49 9.66 8.28 6.67 15.13
16.86 12.73 10.82 8.95 7.32 16.86
11.88 10.31 9.00 7.98 6.62 12.13
13.63 11.34 9.94 8.68 7.31 13.99
15.51 12.57 10.86 9.37 7.92 15.53
17.31 14.63 12.10 10.51 8.73 17.31
14.39 12.14 10.79 9.61 8.22 14.65
16.50 13.22 11.66 10.33 8.92 16.61
18.08 14.45 12.54 11.04 9.44 18.24
20.28 15.55 13.80 12.02 10.10 20.28
16.27 13.80 12.41 11.17 9.62 16.46
18.36 15.08 13.38 12.07 10.28 18.46
20.52 17.01 14.33 12.98 10.93 20.52
23.12 18.71 15.77 13.87 11.72 23.12

Table 1.b: Asymptotic Critical Values for Category (a) Case 2, = .15.

(The entries are quantiles x such that P (supF (λ, k)/k ≤ x) = α)

Non Trending Case
Number of Breaks, k

qf α 1 2 3 4 5 UDmax
1 .90 7.52 6.38 5.37 4.54 3.49 7.79

.95 9.26 7.30 6.21 5.19 3.98 9.38
.975 10.63 8.25 6.98 5.67 4.40 10.87
.99 12.57 10.01 7.77 6.42 4.88 12.60

2 .90 8.48 6.70 5.66 4.77 3.63 8.66
.95 10.13 7.66 6.43 5.36 4.10 10.25
.975 11.69 8.85 7.34 5.99 4.62 11.82
.99 13.66 10.20 8.09 6.91 5.35 13.66

3 .90 8.47 6.51 5.59 4.77 3.58 8.74
.95 10.08 7.61 6.26 5.49 4.07 10.26
.975 11.27 8.51 7.21 6.12 4.49 11.43
.99 12.88 9.95 7.88 6.70 5.13 12.93

4 .90 8.56 6.59 5.71 4.87 3.81 8.85
.95 10.07 7.66 6.52 5.55 4.30 10.17
.975 11.69 8.61 7.10 6.09 4.70 11.69
.99 13.88 9.64 7.83 6.58 5.33 13.88

Trending Case
Number of Breaks, k

1 2 3 4 5 UDmax
8.67 6.84 6.07 5.31 4.01 8.90
10.29 7.89 6.85 5.97 4.49 10.44
12.18 8.99 7.57 6.66 5.02 12.18
14.21 10.19 8.45 7.10 5.62 14.27
8.32 6.49 5.65 4.98 3.84 8.60
10.06 7.45 6.42 5.67 4.36 10.11
11.47 8.59 7.21 6.29 5.02 11.52
13.21 9.86 8.29 7.01 5.49 13.30
8.40 6.53 5.64 5.03 3.91 8.66
10.08 7.48 6.35 5.65 4.35 10.10
11.68 8.55 6.90 6.15 4.83 11.68
13.72 9.53 7.51 6.72 5.34 13.72
8.57 6.49 5.69 4.94 3.85 8.69
10.22 7.34 6.51 5.59 4.46 10.36
11.90 8.33 7.22 6.26 4.88 11.95
14.53 9.68 8.33 6.97 5.53 14.53



Table 1.c: Asymptotic Critical Values for Category (a) Case 3, = .15.

(The entries are quantiles x such that P (supF (λ, k)/k ≤ x) = α)

Non Trending Case
Number of Breaks, k

qb α 1 2 3 4 5 UDmax
1 .90 7.90 6.37 5.36 4.49 3.46 8.21

.95 9.50 7.36 6.08 5.01 3.90 9.75
.975 10.83 8.44 6.75 5.66 4.34 10.93
.99 12.34 9.73 7.82 6.31 4.96 12.34

2 .90 10.59 9.13 7.94 6.81 5.43 10.83
.95 12.49 10.36 8.72 7.52 5.94 12.69
.975 14.33 11.31 9.56 8.13 6.45 14.40
.99 16.56 12.78 10.45 8.94 7.03 16.56

3 .90 12.74 10.98 9.71 8.56 6.98 12.94
.95 14.53 12.18 10.62 9.30 7.49 14.61
.975 16.14 13.24 11.43 9.96 8.17 16.14
.99 17.97 14.64 12.58 10.87 8.83 17.97

4 .90 14.85 12.81 11.44 10.13 8.44 14.95
.95 16.77 14.00 12.35 10.82 9.12 16.99
.975 18.77 15.27 13.17 11.50 9.71 18.79
.99 20.76 16.15 14.43 12.28 10.35 20.87

Trending Case
Number of Breaks, k

1 2 3 4 5 UDmax
7.21 5.34 4.54 3.81 3.02 7.43
8.98 6.32 5.29 4.42 3.54 9.07
10.74 7.54 5.97 4.97 3.89 10.74
13.10 8.76 7.38 5.86 4.58 13.10
10.33 8.90 7.70 6.68 5.35 10.61
12.01 9.93 8.57 7.28 5.91 12.08
13.48 10.80 9.32 7.89 6.27 13.51
15.61 11.97 10.10 8.55 6.85 15.62
13.15 11.11 9.77 8.57 7.04 13.23
14.85 12.22 10.82 9.32 7.61 14.97
16.32 13.20 11.57 10.02 8.17 16.32
18.70 14.76 12.15 10.60 8.76 18.70
15.21 13.05 11.57 10.24 8.50 15.33
17.23 14.09 12.54 11.03 9.29 17.31
19.10 15.22 13.12 11.81 9.82 19.10
21.14 16.73 14.24 12.60 10.57 21.14

Table 1.d: Asymptotic Critical Values for Category (a) Case 4, = .15.

(The entries are quantiles x such that P (supF (λ, k)/k ≤ x) = α)

Non Trending Case
Number of Breaks, k

qf , qb α 1 2 3 4 5 UDmax
1,1 .90 10.19 8.77 7.74 6.60 5.26 10.53

.95 12.03 9.78 8.53 7.18 5.81 12.30
.975 14.05 11.03 9.28 7.92 6.30 14.07
.99 16.02 12.33 10.33 8.67 6.99 16.09

1,2 .90 12.89 11.03 9.70 8.60 7.02 13.16
.95 14.88 12.27 10.76 9.38 7.68 14.97
.975 16.72 13.67 11.63 10.03 8.48 16.75
.99 18.48 14.72 12.48 10.89 9.06 18.48

2,1 .90 10.99 9.08 7.91 6.82 5.46 11.15
.95 13.04 10.09 8.71 7.43 6.02 13.06
.975 14.80 10.84 9.46 8.01 6.60 14.80
.99 16.46 12.08 10.43 8.87 7.04 16.46

2,2 .90 12.87 11.04 9.71 8.58 7.12 13.07
.95 14.81 12.25 10.75 9.44 7.74 15.01
.975 16.74 13.48 11.57 10.15 8.34 16.74
.99 19.36 14.78 12.29 10.83 8.78 19.36

Trending Case
Number of Breaks, k

1 2 3 4 5 UDmax
10.81 9.18 7.99 6.89 5.48 10.98
12.27 10.30 8.87 7.61 6.09 12.34
14.43 11.39 9.54 8.28 6.72 14.45
16.65 12.56 10.45 9.02 7.14 16.65
12.57 10.62 9.17 8.17 6.80 12.76
14.19 11.69 10.12 8.93 7.43 14.27
15.86 12.73 10.78 9.51 7.85 15.89
17.89 13.79 11.76 10.18 8.39 18.16
11.33 9.36 8.07 7.04 5.66 11.45
13.18 10.46 9.09 7.73 6.21 13.26
15.22 11.55 9.80 8.33 6.71 15.22
17.85 12.48 10.49 9.08 7.32 17.85
12.58 10.41 9.15 8.15 6.78 12.78
14.65 11.78 10.04 8.85 7.48 14.72
15.95 12.92 10.94 9.57 8.04 16.12
17.94 13.91 11.83 10.32 8.91 18.08



Table 1.e: Asymptotic Critical Values for Category (a) Case 5, = .15.

(The entries are quantiles x such that P (supF (λ, k)/k ≤ x) = α)

Non Trending Case
Number of Breaks, k

qf , pb α 1 2 3 4 5 UDmax
1,1 .90 7.97 6.43 5.34 4.52 3.48 8.17

.95 9.46 7.48 6.11 5.14 3.98 9.62
.975 11.36 8.49 6.88 5.76 4.52 11.47
.99 13.44 9.89 7.70 6.56 4.96 13.47

1,2 .90 10.80 8.91 7.79 6.73 5.39 11.04
.95 12.41 9.96 8.57 7.31 5.89 12.47
.975 13.63 11.01 9.49 8.03 6.40 13.68
.99 15.97 12.20 10.46 8.70 7.03 16.10

2,1 .90 7.89 6.47 5.46 4.63 3.55 8.10
.95 9.54 7.47 6.18 5.18 3.99 9.68
.975 10.96 8.44 6.83 5.68 4.43 11.20
.99 12.44 9.39 7.50 6.31 4.91 12.44

2,2 .90 10.83 8.89 7.83 6.74 5.41 10.98
.95 12.76 10.11 8.55 7.31 5.96 12.76
.975 14.26 10.90 9.28 7.93 6.50 14.26
.99 15.56 11.83 10.21 8.63 6.98 15.56

Trending Case
Number of Breaks, k

1 2 3 4 5 UDmax
9.06 6.84 5.72 4.77 3.70 9.23
10.43 7.75 6.36 5.30 4.14 10.47
11.82 8.61 7.14 5.97 4.54 11.87
14.03 9.54 8.09 6.60 5.06 14.03
10.23 8.06 6.95 6.10 4.99 10.47
11.83 9.19 7.70 6.87 5.67 11.93
13.85 10.27 8.63 7.47 6.25 14.01
15.75 11.42 9.61 8.22 6.94 16.04
8.82 6.91 5.90 4.96 3.83 8.96
10.84 7.87 6.72 5.52 4.39 11.01
13.05 8.84 7.33 6.02 4.76 13.05
15.58 10.50 8.35 6.91 5.31 15.58
10.16 8.16 7.18 6.23 5.11 10.36
11.88 9.30 8.03 6.84 5.64 12.02
13.26 10.32 8.79 7.59 6.21 13.40
14.91 11.58 9.80 8.19 6.77 15.03

Table 2.a: Asymptotic Critical Values for Category (b) Case 3, = .15.

(The entries are quantiles x such that P (supF (λ, k)/k ≤ x) = α)

Non Trending Case
Number of Breaks, k

qb, pb α 1 2 3 4 5 UDmax
1,1 .90 10.08 8.61 7.30 6.38 5.15 10.40

.95 11.94 9.42 8.28 6.93 5.74 12.11
.975 13.40 10.70 9.35 7.97 6.18 13.58
.99 14.96 12.30 10.70 8.94 6.85 15.11

1,2 .90 12.24 10.80 9.53 8.37 6.82 12.53
.95 14.53 11.94 10.38 9.28 7.51 14.79
.975 15.91 13.22 11.40 9.89 8.28 16.14
.99 19.33 14.92 12.70 11.03 8.91 19.33

2,1 .90 12.87 11.04 9.96 8.63 7.14 13.05
.95 14.55 12.21 10.73 9.38 7.74 14.90
.975 16.74 13.25 11.59 10.21 8.42 16.91
.99 19.05 14.74 12.88 11.08 8.94 19.05

2,2 .90 14.77 12.94 11.56 10.25 8.54 14.97
.95 16.30 14.07 12.42 11.10 9.02 16.80
.975 17.92 15.06 13.75 11.77 9.77 18.13
.99 19.89 17.19 14.60 12.84 10.73 19.89

Trending Case
Number of Breaks, k

1 2 3 4 5 UDmax
10.88 8.76 7.62 6.66 5.37 10.99
12.44 10.17 8.61 7.28 5.94 12.44
14.93 11.15 9.48 8.03 6.38 14.93
16.90 12.12 10.58 8.82 7.24 16.90
12.88 11.03 9.61 8.39 6.82 12.97
14.90 12.32 10.62 9.20 7.41 14.97
16.60 13.44 11.59 10.16 8.27 16.60
19.60 15.02 12.95 11.32 9.09 19.60
13.15 11.23 9.93 8.64 7.15 13.32
15.04 12.42 10.76 9.51 7.78 15.10
16.72 13.74 11.98 10.23 8.38 16.73
19.49 14.63 12.61 11.14 9.06 19.49
14.86 13.05 11.73 10.31 8.58 14.99
16.89 14.23 12.79 11.19 9.27 17.02
18.46 15.80 13.82 12.52 10.24 18.50
21.17 17.41 15.24 13.17 10.87 21.17



Table 2.b: Asymptotic Critical Values for Category (b) Cases 4 and 8, = .15.

(The entries are quantiles x such that P (supF (λ, k)/k ≤ x) = α)

Non Trending Case
Number of Breaks, k

qb, pb α 1 2 3 4 5 UDmax
1,1 .90 11.69 9.88 8.63 7.52 6.27 11.99

.95 13.24 10.96 9.62 8.29 6.87 13.43
.975 14.78 12.10 10.54 8.99 7.56 14.87
.99 17.28 13.40 11.53 9.75 8.11 17.39

1,2 .90 12.88 11.06 9.55 8.53 7.52 13.26
.95 15.10 12.13 10.53 9.42 8.16 15.25
.975 17.51 13.04 11.30 9.98 8.71 17.60
.99 19.10 14.68 12.35 11.07 9.51 19.10

2,1 .90 13.85 12.05 10.48 9.35 7.99 14.23
.95 15.91 13.45 11.50 10.23 8.64 16.07
.975 17.68 14.60 12.44 11.06 9.30 18.06
.99 19.89 16.02 13.80 11.88 10.14 20.03

2,2 .90 14.82 13.09 11.64 10.40 9.04 15.24
.95 17.02 14.49 12.51 11.19 9.73 17.33
.975 19.59 15.57 13.39 11.85 10.29 19.59
.99 21.66 17.07 14.35 12.81 10.85 21.66

Trending Case
Number of Breaks, k

1 2 3 4 5 UDmax
11.98 10.29 8.96 7.83 6.63 12.27
13.74 11.64 9.92 8.66 7.28 14.06
15.86 12.85 10.87 9.30 7.87 15.91
17.99 14.27 11.87 10.20 8.44 17.99
13.24 11.17 9.79 8.85 7.69 13.51
15.16 12.19 10.85 9.61 8.29 15.20
16.89 13.33 11.59 10.48 8.87 16.89
18.95 14.43 12.79 11.23 9.90 18.95
13.42 11.33 10.06 9.00 7.73 13.64
15.42 12.76 11.03 9.86 8.44 15.47
17.50 13.95 12.05 10.58 8.97 17.50
19.61 15.23 13.05 11.38 9.59 19.61
14.91 12.50 11.14 10.06 8.83 15.28
17.17 14.02 12.23 10.91 9.59 17.22
19.48 15.41 13.18 11.57 10.23 19.48
21.46 16.50 14.18 12.60 10.82 21.46

Table 2.c: Asymptotic Critical Values for Category (b) Cases 7 and 9, = .15.

(The entries are quantiles x such that P (supF (λ, k)/k ≤ x) = α)

Non Trending Case
Number of Breaks, k

qf , pb α 1 2 3 4 5 UDmax
1,1 .90 8.72 7.48 6.23 5.41 4.52 9.12

.95 10.65 8.59 6.97 6.13 5.06 10.87
.975 12.13 9.61 7.92 6.68 5.50 12.39
.99 14.37 10.75 9.10 7.76 6.32 14.95

1,2 .90 9.95 8.17 7.17 6.50 5.63 10.31
.95 11.58 9.54 8.25 7.23 6.25 11.93
.975 12.99 10.74 9.23 7.83 6.85 13.68
.99 15.66 12.19 10.30 8.65 7.71 15.68

2,1 .90 9.03 7.51 6.45 5.70 4.66 9.49
.95 10.70 8.77 7.34 6.32 5.22 10.85
.975 11.98 9.77 7.98 6.98 5.70 12.30
.99 15.29 10.80 8.95 7.71 6.32 15.29

2,2 .90 10.58 8.52 7.36 6.64 5.78 10.88
.95 12.32 9.72 8.23 7.45 6.39 12.53
.975 14.09 11.05 9.36 8.23 6.95 14.22
.99 16.23 12.04 10.43 9.13 7.67 16.23

Trending Case
Number of Breaks, k

1 2 3 4 5 UDmax
8.38 6.72 5.82 5.15 4.29 8.64
10.16 7.93 6.82 5.76 4.73 10.34
11.95 9.18 7.52 6.32 5.34 11.99
13.88 10.40 8.26 6.99 6.09 13.88
9.35 7.38 6.58 5.93 5.31 9.62
10.98 8.60 7.32 6.61 5.92 11.07
12.76 9.59 8.24 7.35 6.48 12.83
15.22 10.92 9.55 8.20 7.16 15.22
8.96 6.80 5.94 5.19 4.41 9.08
10.56 7.90 6.84 5.85 5.00 10.73
12.50 8.99 7.48 6.53 5.46 12.55
14.98 9.87 8.53 7.08 6.03 14.98
9.82 7.95 7.00 6.31 5.50 10.33
11.82 9.26 7.88 7.09 6.20 12.09
13.76 10.64 8.79 7.87 6.85 13.99
15.75 12.06 10.23 8.68 7.70 16.09



Table 2.d: Asymptotic Critical Values for Category (b) Case 10, = .15.

(The entries are quantiles x such that P (sup F (λ, k)/k ≤ x) = α)

Non Trending Case
Number of Breaks, k

qf , qb, pb α 1 2 3 4 5 UDmax
1,1,1 .90 11.83 10.06 8.74 7.79 6.47 12.04

.95 13.95 11.26 9.76 8.47 7.15 14.02
.975 15.76 12.31 10.61 9.30 7.76 15.79
.99 17.98 13.55 11.36 9.85 8.56 17.98

1,1,2 .90 12.87 10.93 9.59 8.68 7.52 13.22
.95 15.07 12.24 10.78 9.46 8.28 15.20
.975 16.68 13.17 11.62 10.23 8.94 17.10
.99 19.17 14.71 12.61 11.03 9.64 19.26

1,2,1 .90 14.06 12.05 10.51 9.48 8.05 14.30
.95 15.99 13.20 11.61 10.23 8.77 15.99
.975 17.72 14.58 12.38 11.02 9.36 17.78
.99 19.77 16.16 13.80 12.00 10.09 19.77

1,2,2 .90 15.06 12.97 11.51 10.40 9.05 15.47
.95 17.60 14.32 12.47 11.19 9.62 17.79
.975 19.42 15.75 13.55 12.09 10.37 19.57
.99 22.29 17.48 14.77 13.10 11.18 22.29

2,1,1 .90 12.06 10.02 8.85 7.81 6.55 12.29
.95 13.80 11.36 9.70 8.57 7.21 13.92
.975 16.14 12.50 10.57 9.28 7.77 16.16
.99 18.68 14.40 11.75 10.21 8.50 18.76

2,1,2 .90 13.13 10.91 9.72 8.72 7.50 13.49
.95 15.23 12.41 10.68 9.53 8.24 15.46
.975 17.23 13.51 11.56 10.13 8.92 17.36
.99 19.37 15.19 12.63 11.23 9.49 19.37

2,2,1 .90 14.50 12.16 10.69 9.58 8.06 14.72
.95 16.78 13.46 11.88 10.35 8.74 16.80
.975 18.50 14.64 12.76 11.11 9.37 18.50
.99 20.83 16.28 13.77 11.82 9.92 20.83

2,2,2 .90 15.29 13.03 11.64 10.49 9.09 15.70
.95 17.00 14.47 12.88 11.42 9.75 17.22
.975 18.87 15.49 13.72 12.12 10.43 19.08
.99 22.03 16.89 14.50 12.96 11.20 22.03

Trending Case
Number of Breaks, k

1 2 3 4 5 UDmax
12.30 10.39 9.18 8.10 6.61 12.68
14.55 11.71 10.14 8.97 7.32 14.66
16.70 12.97 11.17 9.73 7.97 16.70
18.68 14.61 12.38 10.45 8.61 18.68
13.45 11.50 10.17 8.88 7.75 13.83
15.70 12.78 11.14 9.78 8.38 15.72
18.41 14.04 11.86 10.55 8.97 18.41
20.75 15.09 12.98 11.23 9.71 20.75
13.80 11.59 10.44 9.08 7.83 14.05
15.79 12.99 11.44 9.83 8.56 15.95
17.60 14.03 12.25 10.51 9.05 17.67
20.69 15.52 13.13 11.66 9.77 20.69
14.61 12.22 11.07 10.17 8.95 15.10
16.75 13.64 12.17 10.96 9.63 16.98
18.67 15.03 13.34 12.00 10.37 18.88
20.94 16.52 14.94 13.02 11.27 20.96
12.39 10.56 9.10 8.06 6.66 12.71
14.37 11.87 10.17 8.75 7.31 14.76
16.04 13.33 11.18 9.65 7.82 16.36
19.23 14.56 12.18 10.48 8.67 19.23
13.56 11.44 10.16 9.06 7.85 13.78
15.74 12.62 11.05 9.71 8.43 15.79
17.56 13.76 11.97 10.47 8.85 17.62
20.26 15.23 12.82 11.26 9.56 20.26
13.78 11.55 10.22 9.25 7.99 14.05
15.64 12.81 11.18 9.98 8.62 15.81
17.22 14.22 12.07 10.67 9.21 17.24
19.20 15.48 13.49 11.61 10.04 19.20
14.82 12.52 11.15 10.17 8.92 15.23
16.86 13.94 12.33 11.07 9.70 17.06
18.99 15.48 13.30 11.79 10.27 19.24
21.22 16.91 14.75 12.67 11.18 21.22



Table 2.e: Asymptotic Critical Values for Category (b) Case 11, = .15.

(The entries are quantiles x such that P (sup F (λ, k)/k ≤ x) = α)

Non Trending Case
Number of Breaks, k

qf , qb, pb α 1 2 3 4 5 UDmax
1,1,1 .90 10.72 8.86 7.68 6.64 5.44 10.86

.95 12.44 10.02 8.51 7.37 6.06 12.57
.975 14.10 10.97 9.62 8.27 6.55 14.19
.99 16.41 12.74 10.78 8.98 7.28 16.57

1,1,2 .90 12.34 10.73 9.36 8.26 6.62 12.57
.95 14.20 11.88 10.32 8.96 7.46 14.49
.975 16.06 12.70 11.00 9.87 8.11 16.23
.99 17.71 13.73 12.02 10.61 8.82 17.71

1,2,1 .90 12.93 11.05 9.78 8.72 7.06 13.04
.95 15.38 12.46 10.99 9.59 7.82 15.51
.975 17.33 13.87 11.94 10.22 8.43 17.43
.99 19.61 15.57 12.91 11.40 9.22 19.61

1,2,2 .90 14.75 12.83 11.46 10.18 8.59 14.95
.95 17.39 13.96 12.36 11.04 9.28 17.39
.975 18.82 15.12 13.12 11.55 9.75 19.01
.99 21.70 16.41 14.47 12.44 10.59 21.70

2,1,1 .90 10.77 8.88 7.78 6.87 5.29 11.05
.95 12.43 10.31 8.71 7.51 5.96 12.65
.975 13.65 11.33 9.74 8.30 6.40 13.77
.99 16.69 13.49 11.27 9.05 7.18 16.81

2,1,2 .90 12.52 10.70 9.64 8.48 7.03 12.78
.95 14.51 12.04 10.65 9.38 7.71 14.60
.975 16.21 13.01 11.37 10.04 8.29 16.21
.99 18.75 14.38 12.24 10.99 9.10 18.75

2,2,1 .90 13.12 11.25 10.02 8.81 7.21 13.63
.95 15.53 12.68 11.01 9.47 7.78 15.69
.975 17.63 13.78 11.80 10.19 8.45 18.24
.99 20.25 15.55 12.93 11.29 9.40 20.25

2,2,2 .90 14.58 12.90 11.68 10.29 8.70 14.71
.95 16.33 14.08 12.51 11.17 9.22 16.40
.975 18.37 14.66 13.32 11.97 10.06 18.46
.99 21.47 16.24 14.27 13.18 10.57 21.47

Trending Case
Number of Breaks, k

1 2‘ 3 4 5 UDmax
10.62 9.04 7.85 6.83 5.47 10.85
12.25 10.12 8.71 7.44 6.06 12.30
14.05 10.96 9.48 8.10 6.67 14.05
15.82 12.20 10.36 8.98 7.37 15.82
12.77 10.83 9.64 8.41 6.91 12.94
14.27 11.97 10.61 9.09 7.51 14.28
15.58 13.03 11.36 9.64 8.10 15.58
18.04 13.89 11.95 10.49 8.61 18.04
13.37 11.14 9.92 8.62 7.05 13.47
15.18 12.37 10.82 9.55 7.57 15.38
16.67 13.74 11.88 10.20 8.29 16.69
18.56 15.92 12.79 11.23 9.09 18.56
14.92 12.93 11.59 10.49 8.69 15.12
16.97 13.99 12.78 11.35 9.44 16.98
18.56 15.31 13.75 12.06 10.23 18.65
22.02 16.66 14.56 12.88 11.00 22.02
11.41 9.36 8.15 7.02 5.52 11.49
13.22 10.43 9.01 7.83 6.09 13.47
15.53 11.59 10.04 8.37 6.63 15.64
17.99 13.38 10.48 9.10 7.18 17.99
13.04 11.12 9.83 8.62 7.20 13.18
15.05 12.34 10.89 9.51 7.85 15.17
16.91 13.68 11.95 10.51 8.64 17.15
18.72 15.19 13.05 11.41 9.33 18.72
14.01 11.40 10.21 8.88 7.46 14.07
15.93 12.61 11.04 9.71 7.98 16.03
17.34 13.85 11.81 10.32 8.59 17.34
19.27 14.83 12.94 11.08 9.13 19.27
14.65 12.91 11.56 10.29 8.64 14.95
16.84 13.97 12.40 11.13 9.44 16.87
18.21 15.16 13.28 11.98 9.98 18.21
20.29 15.90 14.59 12.81 10.82 20.29



Table 3.a: Asymptotic Critical Values of the Sequential Test SEQT (k + 1|k) for
Category (a) Case 1, = .15.

Non Trending Case
k

qb α 1 2 3 4 5
1 .90 12.00 12.94 13.74 14.53 15.23

.95 13.78 15.25 16.38 17.02 17.70
.975 16.38 17.70 18.24 18.53 19.18
.99 18.53 19.33 19.92 20.50 21.34

2 .90 14.26 15.02 15.64 16.02 16.51
.95 15.65 16.61 17.12 17.66 17.85
.975 17.12 17.85 18.22 19.04 19.27
.99 19.04 19.35 19.90 19.99 20.01

3 .90 16.64 17.57 18.28 18.86 19.53
.95 18.30 19.58 20.21 20.77 21.45
.975 20.21 21.45 22.67 23.36 23.48
.99 23.36 23.52 24.13 24.43 25.16

4 .90 18.96 19.91 20.68 21.13 21.51
.95 20.80 21.59 22.36 22.58 23.12
.975 22.36 23.12 24.10 25.73 26.11
.99 25.73 27.01 27.43 27.47 27.75

Trending Case
k

1 2 3 4 5
12.94 13.99 14.93 15.50 15.73
15.01 15.85 16.53 16.86 17.04
16.53 17.04 17.17 17.43 18.04
17.43 18.58 19.11 19.22 19.54
13.57 14.78 15.40 15.87 16.12
15.51 16.18 17.08 17.31 17.50
17.08 17.50 19.27 19.62 19.70
19.62 19.79 21.52 22.58 22.75
16.38 17.30 17.92 18.40 18.62
17.99 18.74 19.77 20.28 20.89
19.77 20.89 21.56 22.11 22.28
22.11 22.37 22.83 23.98 24.54
18.29 19.54 20.43 20.97 21.32
20.51 21.81 22.40 23.12 23.78
22.40 23.78 25.10 25.75 25.84
25.75 26.36 26.66 26.86 27.71

Table 3.b: Asymptotic Critical Values of the Sequential Test SEQT (k + 1|k) for
Category (a) Case 2, = .15.

Non Trending Case
k

qf α 1 2 3 4 5
1 .90 9.14 10.09 10.61 11.04 11.45

.95 10.63 11.54 12.09 12.57 12.86
.975 12.09 12.86 13.25 14.01 14.19
.99 14.01 14.33 14.80 15.33 16.43

2 .90 10.06 11.18 11.68 12.21 12.52
.95 11.69 12.62 13.33 13.66 14.07
.975 13.33 14.07 14.61 15.22 15.31
.99 15.22 15.40 16.51 17.02 18.13

3 .90 9.97 10.74 11.25 11.73 12.17
.95 11.27 12.18 12.60 12.88 12.94
.975 12.60 12.94 13.24 14.33 14.49
.99 14.33 15.14 15.32 15.56 16.12

4 .90 10.01 10.81 11.55 12.09 12.37
.95 11.59 12.40 12.80 13.88 14.23
.975 12.80 14.23 15.59 15.74 16.03
.99 15.74 16.10 16.61 16.93 17.05

Trending Case
k

1 2 3 4 5
10.22 11.21 12.02 12.33 12.75
12.15 12.77 13.48 14.21 14.32
13.48 14.32 14.66 15.41 15.72
15.41 15.96 16.23 16.48 16.62
9.92 10.73 11.41 11.79 12.18
11.41 12.18 12.80 13.21 13.69
12.80 13.69 14.19 14.68 14.94
14.68 15.00 15.96 16.37 17.09
9.95 11.05 11.64 11.92 12.76
11.66 12.77 13.26 13.72 14.15
13.26 14.15 14.70 14.83 15.71
14.83 15.86 16.59 16.66 16.91
10.19 11.19 11.79 12.67 13.05
11.90 13.08 13.68 14.53 15.03
13.68 15.03 15.62 16.08 16.70
16.08 16.80 17.48 17.48 17.80



Table 3.c: Asymptotic Critical Values of the Sequential Test SEQT (k + 1|k) for
Category (a) Case 3, = .15.

Non Trending Case
k

qb α 1 2 3 4 5
1 .90 9.46 10.27 10.63 11.03 11.31

.95 10.68 11.37 11.80 12.34 12.65
.975 11.80 12.65 12.97 13.12 13.50
.99 13.12 15.33 16.54 16.68 16.83

2 .90 12.43 13.59 14.14 14.85 15.33
.95 14.29 15.42 15.87 16.56 17.02
.975 15.87 17.02 17.41 17.50 18.09
.99 17.50 19.35 19.50 20.73 21.08

3 .90 14.48 15.51 16.11 16.53 16.72
.95 16.12 16.78 17.66 17.97 18.14
.975 17.66 18.14 18.85 19.45 20.30
.99 19.45 20.34 21.65 21.66 22.84

4 .90 16.74 17.81 18.75 19.22 19.53
.95 18.77 19.73 20.53 20.76 21.10
.975 20.53 21.10 22.15 22.50 23.20
.99 22.50 23.24 23.36 23.53 23.95

Trending Case
k

1 2 3 4 5
8.84 10.09 10.69 11.13 11.80
10.73 11.87 12.58 13.10 13.83
12.58 13.83 14.73 15.04 15.30
15.04 15.37 15.74 16.31 16.71
11.92 12.90 13.42 13.77 14.38
13.44 14.39 15.05 15.61 15.94
15.05 15.94 16.33 16.59 16.85
16.59 17.64 18.14 18.15 18.71
14.83 15.61 16.24 17.15 17.47
16.26 17.48 17.97 18.70 19.01
17.97 19.01 19.79 20.11 20.22
20.11 20.64 21.23 21.27 21.39
17.17 18.19 19.08 19.46 19.84
19.10 19.93 20.62 21.14 21.51
20.62 21.51 21.85 22.31 22.58
22.31 22.61 24.20 24.99 25.19

Table 3.d: Asymptotic Critical Values of the Sequential Test SEQT (k + 1|k) for
Category (a) Case 4, = .15.

Non Trending Case
k

qf , qb α 1 2 3 4 5
1,1 .90 11.98 13.02 14.03 14.73 14.94

.95 14.05 14.94 15.48 16.02 16.50
.975 15.48 16.50 17.10 17.57 17.92
.99 17.57 18.68 20.20 20.26 20.63

1,2 .90 14.77 15.85 16.63 17.17 17.35
.95 16.64 17.36 18.10 18.48 18.70
.975 18.10 18.70 19.48 20.38 20.61
.99 20.38 21.05 21.57 22.36 22.54

2,1 .90 12.87 13.78 14.72 15.06 15.47
.95 14.77 15.55 16.14 16.46 16.70
.975 16.14 16.70 16.99 17.19 18.20
.99 17.19 18.36 18.55 18.58 18.91

2,2 .90 14.70 15.67 16.70 17.04 17.56
.95 16.71 17.65 18.63 19.36 19.49
.975 18.63 19.49 20.02 20.55 21.07
.99 20.55 21.38 22.89 23.16 24.18

Trending Case
k

1 2 3 4 5
12.20 13.51 14.26 14.63 15.21
14.30 15.25 16.28 16.65 17.05
16.28 17.05 17.85 18.17 18.46
18.17 18.54 20.88 22.23 22.35
14.09 15.20 15.77 16.04 16.38
15.82 16.44 17.19 17.89 18.19
17.19 18.19 18.76 19.21 19.61
19.21 19.69 20.34 20.48 20.66
13.11 14.03 15.14 15.73 16.22
15.22 16.45 17.21 17.85 18.15
17.21 18.15 18.79 18.96 19.01
18.96 19.48 20.33 20.49 20.86
14.48 15.40 15.93 16.37 16.70
15.93 16.72 17.56 17.94 18.10
17.56 18.10 18.78 19.01 19.64
19.01 20.34 21.05 21.28 21.30



Table 3.e: Asymptotic Critical Values of the Sequential Test SEQT (k + 1|k) for
Category (a) Case 5, = .15.

Non Trending Case
k

qf , pb α 1 2 3 4 5
1,1 .90 9.40 10.30 11.14 11.80 12.42

.95 11.24 12.45 13.00 13.44 13.52
.975 13.00 13.52 14.23 14.75 15.12
.99 14.75 15.19 15.85 16.30 16.40

1,2 .90 12.29 13.11 13.49 14.09 14.51
.95 13.52 14.61 15.70 15.97 16.56
.975 15.70 16.56 16.96 17.72 18.29
.99 17.72 18.41 19.13 19.21 20.07

2,1 .90 9.49 10.38 10.88 11.34 11.65
.95 10.95 11.74 12.27 12.44 13.07
.975 12.27 13.07 13.58 14.31 15.40
.99 14.31 15.57 15.78 15.79 15.96

2,2 .90 12.64 13.53 14.14 14.59 14.73
.95 14.19 14.74 15.34 15.56 16.55
.975 15.34 16.55 16.69 17.53 17.82
.99 17.53 18.04 18.21 18.49 19.00

Trending Case
k

1 2 3 4 5
10.39 11.15 11.69 12.10 12.40
11.70 12.44 13.17 14.03 14.10
13.17 14.10 14.76 14.98 15.17
14.98 15.52 15.87 15.89 16.16
11.80 12.78 13.80 14.39 14.92
13.81 14.94 15.43 15.75 16.24
15.43 16.24 16.43 16.67 16.98
16.67 17.67 18.06 18.48 19.13
10.76 12.02 12.82 13.44 13.86
12.95 13.88 15.17 15.58 15.97
15.17 15.97 16.42 16.65 17.37
16.65 17.63 18.64 18.75 19.30
11.79 12.66 13.15 13.57 14.15
13.18 14.25 14.77 14.91 15.27
14.77 15.27 15.95 16.76 17.14
16.76 17.18 17.59 19.83 19.89

Table 4.a: Asymptotic Critical Values of the Sequential Test SEQT (k + 1|k) for
Category (b) Case 3, = .15.

Non Trending Case
k

qb, pb α 1 2 3 4 5
1,1 .90 11.93 12.95 13.38 13.62 14.18

.95 13.40 14.18 14.59 14.96 15.02
.975 14.59 15.11 15.99 16.54 17.22
.99 16.54 17.54 17.54 17.93 17.93

1,2 .90 14.47 15.21 15.83 16.47 17.36
.95 15.91 17.36 18.19 19.33 19.34
.975 18.19 19.49 20.39 20.48 21.15
.99 20.48 21.52 21.52 23.28 23.28

2,1 .90 14.54 15.95 16.68 17.07 17.24
.95 16.74 17.24 17.40 19.05 19.15
.975 17.40 19.44 20.71 21.24 21.81
.99 21.24 22.01 22.01 23.54 23.54
.90 16.28 17.34 17.90 18.13 18.64
.95 17.92 18.64 19.05 19.89 20.30
.975 19.05 20.33 20.46 21.40 21.80
.99 21.40 23.39 23.39 23.64 23.64

Trending Case
k

1 2 3 4 5
12.47 13.83 14.82 15.19 15.58
14.93 15.58 16.44 16.90 17.19
16.44 17.43 17.70 18.61 18.88
18.61 18.98 18.98 19.20 19.20
14.81 15.68 16.46 17.21 18.30
16.60 18.30 19.07 19.60 19.65
19.07 19.93 21.46 21.96 22.00
21.96 23.85 23.85 24.68 24.68
14.99 15.99 16.61 17.22 17.43
16.72 17.43 18.24 19.49 19.56
18.24 19.59 21.89 22.00 24.38
22.00 24.84 24.84 26.36 26.36
16.89 17.75 18.42 19.03 19.60
18.46 19.60 20.28 21.17 21.21
20.28 21.45 21.60 21.90 21.94
21.90 22.58 22.58 24.08 24.08



Table 4.b: Asymptotic Critical Values of the Sequential Test SEQT (k + 1|k) for
Category (b) Cases 4 and 8, = .15.

Non Trending Case
k

qb, pb α 1 2 3 4 5
1,1 .90 13.18 13.92 14.70 15.08 15.79

.95 14.72 15.82 16.60 17.28 17.61
.975 16.60 17.61 19.20 19.43 19.85
.99 19.43 20.02 21.38 21.43 22.10

1,2 .90 15.06 16.32 17.39 17.83 18.22
.95 17.44 18.25 18.65 19.10 19.96
.975 18.65 19.96 20.06 20.37 20.69
.99 20.37 20.73 21.96 23.13 23.22

2,1 .90 15.82 16.69 17.59 18.15 18.39
.95 17.68 18.63 19.37 19.89 20.39
.975 19.37 20.39 21.48 22.63 22.84
.99 22.63 23.82 24.73 25.40 25.62

2,2 .90 16.95 18.69 19.46 20.06 20.44
.95 19.48 20.44 21.33 21.66 21.97
.975 21.33 21.97 22.39 23.52 24.03
.99 23.52 24.11 24.75 25.05 25.12

Trending Case
k

1 2 3 4 5
13.72 15.14 15.72 16.44 16.75
15.73 16.83 17.54 17.99 18.17
17.54 18.17 19.27 19.97 20.53
19.97 21.13 22.77 23.42 23.98
15.09 16.21 16.85 17.33 17.85
16.86 17.87 18.81 18.95 19.28
18.81 19.28 19.66 21.10 21.43
21.10 21.61 22.74 23.70 24.12
15.21 16.54 17.44 17.98 18.46
17.49 18.49 19.26 19.61 20.27
19.26 20.27 20.76 21.69 22.03
21.69 22.37 22.94 24.08 24.08
17.12 18.56 19.40 19.92 20.75
19.45 20.42 21.16 21.46 22.33
21.16 21.86 22.89 23.41 23.85
23.41 23.85 25.06 25.94 26.32

Table 4.c: Asymptotic Critical Values of the Sequential Test SEQT (k + 1|k) for
Category (b) Cases 7 and 9, = .15.

Non Trending Case
k

qf , pb α 1 2 3 4 5
1,1 .90 10.56 11.68 12.06 12.70 13.25

.95 12.08 13.26 14.04 14.37 14.95
.975 14.04 14.95 15.11 15.68 16.31
.99 15.68 17.70 18.33 19.01 20.20

1,2 .90 11.52 12.51 12.96 13.57 14.28
.95 12.98 14.45 15.30 15.66 15.93
.975 15.30 15.93 16.30 16.85 16.95
.99 16.85 17.36 17.77 18.54 19.60

2,1 .90 10.65 11.45 11.95 12.68 13.14
.95 11.97 13.47 14.57 15.29 15.85
.975 14.57 15.85 16.64 17.43 17.92
.99 17.43 18.13 18.71 19.52 19.64

2,2 .90 12.22 13.22 14.03 14.56 14.93
.95 14.03 15.05 15.56 16.23 16.54
.975 15.56 16.54 17.38 17.82 18.18
.99 17.82 18.46 19.61 19.65 20.18

Trending Case
k

1 2 3 4 5
10.14 11.07 11.81 12.31 12.90
11.85 13.01 13.57 13.88 13.99
13.57 13.99 14.63 15.19 15.95
15.19 16.15 16.24 16.25 16.34
10.95 11.83 12.70 12.92 13.89
12.70 13.89 14.90 15.22 16.00
14.90 16.00 16.68 17.33 17.48
17.33 17.91 18.29 18.71 19.21
10.49 11.45 12.34 12.86 13.34
12.36 13.69 14.55 14.98 15.07
14.55 15.07 15.29 15.72 15.86
15.72 15.96 16.44 16.48 17.43
11.76 12.88 13.46 14.31 14.75
13.51 14.97 15.19 15.75 16.10
15.19 16.10 16.45 17.06 17.27
17.06 17.40 18.55 19.65 20.08



Table 4.d: Asymptotic Critical Values of the Sequential Test SEQT (k + 1|k) for
Category (b) Case 10, = .15.

Non Trending Case
k

qf , qb, pb α 1 2 3 4 5
1,1,1 .90 13.72 15.13 16.24 16.68 17.11

.95 15.75 16.74 17.98 18.34 18.44
.975 17.42 18.34 19.12 19.85 20.15
.99 19.12 20.15 21.12 21.21 21.21

1,1,2 .90 14.85 15.95 17.30 17.86 18.46
.95 16.64 18.01 19.17 19.55 19.72
.975 18.69 19.55 21.44 21.63 22.04
.99 21.44 22.04 23.51 24.20 24.20

1,2,1 .90 15.94 16.98 17.99 18.30 18.46
.95 17.69 18.31 19.77 20.07 20.32
.975 19.01 20.07 20.93 21.42 21.81
.99 20.93 21.81 22.83 22.88 22.88

1,2,2 .90 17.43 18.53 19.99 20.17 20.75
.95 19.42 20.21 22.29 22.49 22.57
.975 21.40 22.49 23.20 24.51 24.63
.99 23.20 24.63 25.82 26.26 26.26

2,1,1 .90 13.75 14.86 16.55 17.03 18.10
.95 16.09 17.16 18.68 18.90 20.00
.975 18.12 18.90 20.85 21.25 22.27
.99 20.85 22.09 22.93 23.14 23.14

2,1,2 .90 15.22 16.26 17.60 18.14 18.99
.95 17.14 18.23 19.37 20.03 20.79
.975 19.03 20.03 21.76 22.33 23.09
.99 21.76 22.83 23.18 23.46 23.46

2,2,1 .90 16.70 17.48 18.82 19.34 20.49
.95 18.34 19.38 20.83 21.46 21.70
.975 20.52 21.46 22.00 23.35 23.69
.99 22.00 23.59 24.22 25.41 25.41

2,2,2 .90 16.93 18.15 19.27 19.87 20.73
.95 18.87 19.92 22.03 22.30 22.85
.975 21.29 22.30 23.24 23.62 23.70
.99 23.24 23.64 24.24 24.36 24.36

Trending Case
k

1 2 3 4 5
14.32 15.97 16.59 17.08 17.31
16.60 17.35 18.07 18.68 18.99
18.07 18.99 19.73 20.26 20.71
20.26 21.24 22.52 22.55 22.81
15.58 16.90 18.31 18.92 19.14
18.39 19.14 19.98 20.75 21.50
19.98 21.50 21.94 22.54 22.86
22.54 23.07 23.18 23.35 23.85
15.72 17.04 17.59 17.75 18.16
17.59 18.47 19.63 20.69 21.06
19.63 21.06 21.76 22.59 22.70
22.59 22.83 23.91 24.31 24.81
16.70 17.70 18.60 19.20 19.82
18.63 19.83 20.60 20.94 21.27
20.60 21.27 21.71 23.06 23.19
23.06 23.23 23.52 23.54 25.67
14.31 15.26 15.96 16.71 17.40
16.00 17.60 18.26 19.23 19.96
18.26 19.96 21.00 22.20 22.30
22.20 22.61 24.61 24.76 25.10
15.68 16.62 17.43 17.99 18.50
17.52 18.50 19.57 20.26 20.44
19.57 20.44 21.28 21.79 22.42
21.79 22.50 22.82 23.61 23.91
15.54 16.36 17.08 17.44 17.96
17.11 18.01 18.62 19.20 19.60
18.62 19.60 20.74 21.16 22.04
21.16 22.35 22.92 23.90 24.39
16.76 17.94 18.93 19.82 20.09
18.97 20.11 20.59 21.22 21.83
20.59 21.83 22.31 22.75 23.49
22.75 23.58 25.33 25.76 26.04



Table 4.e: Asymptotic Critical Values of the Sequential Test SEQT (k + 1|k) for
Category (b) Case 11, = .15.

Non Trending Case
k

qf , qb, pb α 1 2 3 4 5
1,1,1 .90 12.42 13.24 14.08 14.40 15.10

.95 14.10 15.10 15.60 16.41 16.57
.975 15.60 16.61 17.46 17.79 18.58
.99 17.79 18.90 18.90 21.38 21.38

1,1,2 .90 14.17 15.46 16.06 16.53 17.09
.95 16.06 17.09 17.34 17.71 18.06
.975 17.34 18.09 18.57 19.03 19.08
.99 19.03 19.51 19.51 20.33 20.33

1,2,1 .90 15.38 16.40 17.29 17.98 18.29
.95 17.33 18.29 19.09 19.61 20.04
.975 19.09 20.57 21.29 21.64 21.85
.99 21.64 22.22 22.22 23.43 23.43

1,2,2 .90 17.28 18.20 18.80 19.30 19.92
.95 18.82 19.92 21.25 21.70 22.15
.975 21.25 22.28 22.80 24.44 25.09
.99 24.44 25.23 25.23 25.95 25.95

2,1,1 .90 12.43 13.03 13.57 14.25 14.98
.95 13.65 14.98 15.88 16.69 16.82
.975 15.88 16.94 18.74 18.83 19.15
.99 18.83 20.20 20.20 22.79 22.79

2,1,2 .90 14.42 15.34 16.01 16.89 17.49
.95 16.21 17.49 18.53 18.75 19.26
.975 18.53 19.42 19.84 20.11 20.60
99 20.11 21.74 21.74 22.13 22.13

2,2,1 .90 15.45 16.28 17.60 18.68 19.01
.95 17.63 19.01 19.81 20.25 20.42
.975 19.81 20.44 21.19 21.62 21.68
.99 21.62 22.46 22.46 22.67 22.67

2,2,2 .90 16.27 17.06 17.98 19.43 19.91
.95 18.37 19.91 20.55 21.47 21.70
.975 20.55 22.16 22.79 22.90 23.80
.99 22.90 23.94 23.94 24.12 24.12

Trending Case
k

1 2 3 4 5
12.21 13.08 14.02 14.74 14.94
14.05 14.94 15.08 15.82 16.06
15.08 16.42 16.52 16.54 17.87
16.54 19.39 19.39 20.59 20.59
14.20 15.10 15.55 16.07 16.49
15.58 16.49 17.32 18.04 18.24
17.32 18.65 19.02 19.12 19.69
19.12 19.70 19.70 20.43 20.43
15.18 16.23 16.61 16.99 17.36
16.67 17.36 17.69 18.56 19.40
17.69 19.66 20.44 21.68 23.43
21.68 23.63 23.63 25.79 25.79
16.87 17.73 18.45 18.83 19.78
18.56 19.78 21.03 22.02 22.23
21.03 22.69 23.56 23.72 23.98
23.72 24.03 24.03 25.78 25.78
13.21 14.44 15.52 16.04 16.63
15.53 16.63 17.42 17.99 18.08
17.42 18.86 19.27 19.34 20.07
19.34 20.08 20.08 21.03 21.03
14.97 15.91 16.90 17.29 17.71
16.91 17.71 17.90 18.72 19.44
17.90 19.53 20.62 20.91 21.98
20.91 22.55 22.55 23.93 23.93
15.90 16.74 17.34 17.58 17.96
17.34 17.96 18.11 19.27 19.52
18.11 19.54 19.59 20.30 20.53
20.30 20.69 20.69 20.81 20.81
16.75 17.86 18.20 18.51 19.06
18.21 19.06 19.74 20.29 20.30
19.74 20.53 20.90 21.29 21.94
21.29 23.17 23.17 23.65 23.65



Table 5: Empirical Size.
T = 120

Specification Test\DGP 1 2 3 4 5
SupF ∗T (1) .04 .55 .00 .15 .20
SupF ∗T (2) .05 .73 .00 .19 .27

S_Corr=0,C_Corr=0 SupF ∗T (3) .04 .75 .00 .20 .27
UDmax .04 .65 .00 .16 .21
SupF ∗T (1) .04 .03 .02 .14 .25
SupF ∗T (2) .03 .02 .05 .13 .29

S_Corr=1,C_Corr=0 SupF ∗T (3) .02 .01 .05 .12 .29
UDmax .04 .03 .03 .14 .26
SupF ∗T (1) .06 .58 .00 .05 .00
SupF ∗T (2) .07 .76 .00 .07 .00

S_Corr=0,C_Corr=1 SupF ∗T (3) .06 .77 .00 .06 .00
UDmax .06 .67 .00 .05 .00
SupF ∗T (1) .05 .04 .03 .04 .04
SupF ∗T (2) .03 .02 .06 .03 .07

S_Corr=1,C_Corr=1 SupF ∗T (3) .03 .02 .07 .02 .07
UDmax .05 .04 .04 .04 .05

T = 240
1 2 3 4 5
.04 .63 .00 .14 .19
.04 .82 .00 .20 .31
.04 .85 .00 .22 .33
.05 .72 .00 .16 .21
.03 .03 .02 .12 .28
.03 .02 .02 .17 .43
.02 .00 .02 .18 .45
.03 .02 .02 .14 .32
.05 .64 .00 .05 .00
.05 .82 .00 .05 .00
.05 .86 .00 .05 .00
.05 .73 .00 .05 .00
.04 .04 .01 .04 .01
.03 .02 .02 .04 .03
.02 .01 .02 .04 .03
.04 .04 .01 .05 .02
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Figure 1: Power Functions: The Case with One Break
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Figure 2: Power Functions: The Case with Two Breaks


