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Abstract

This paper considers issues related to testing for multiple structural changes in
cointegrated systems. We derive the limiting distribution of the Sup-Wald test under
mild conditions on the errors and regressors for a variety of testing problems. We
show that even if the coefficients of the integrated regressors are held fixed but the
intercept is allowed to change, the limit distributions are not the same as would prevail
in a stationary framework. Including stationary regressors whose coefficients are not
allowed to change does not affect the limiting distribution of the tests under the null
hypothesis. We also propose a procedure that allows one to test the null hypothesis
of, say, k changes, versus the alternative hypothesis of k£ 4+ 1 changes. This sequential
procedure is useful in that it permits consistent estimation of the number of breaks
present. We show via simulations that our tests maintain the correct size in finite
samples and are much more powerful than the commonly used LM tests, which suffer
from important problems of non-monotonic power in the presence of serial correlation
in the errors.
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1 Introduction

Issues related to structural change have received a considerable amount of attention in the
statistics and econometrics literature. Andrews (1993) and Andrews and Ploberger (1994)
provide a comprehensive treatment of the problem of testing for structural change assuming
that the change point is unknown. Bai (1997) studies the least squares estimation of a single
change point in regressions involving stationary and/or trending regressors. He derives the
consistency, rate of convergence and the limiting distribution of the change point estimator
under general conditions on the regressors and the errors. Perron and Zhu (2005) analyze
the properties of parameter estimates in models where the trend function exhibits a slope
change at an unknown date and the errors can be either stationary, I(0), or have a unit
root, I(1), where here, and throughout the text, we refer to an /(0) process as one whose
partial sums satisfies a Functional Central Limit Theorem with a Brownian motion as the
limit random variable, and an /(1) as the partial sums of an /(0) series.

With integrated variables, the case of interest is when the variables are cointegrated.
Accounting for parameter shifts is crucial in cointegration analysis since it normally involves
long spans of data which are more likely to be affected by structural breaks. Bai, Lumsdaine
and Stock (1998) consider a single break in a multi-equations system. They show consis-
tency of the maximum likelihood estimates and obtain a limit distribution of the break date
estimate under a shrinking shifts scenario. Kejriwal and Perron (2008b) study the proper-
ties of the estimates of the break dates and parameters in a linear regression with multiple
structural changes involving I(1), I(0) and trending regressors.

With respect to testing, Hansen (1992b) develops tests of the null hypothesis of no change
in cointegrated models where all coefficients are allowed to change. An extension to partial
changes has been analyzed by Kuo (1998). The tests considered are the Sup and Mean LM
tests directed against an alternative of a one time change in parameters. Hao (1996) also
suggests the use of the exponential LM test. Seo (1998) considers the Sup, Mean and Exp
versions of the LM test within a cointegrated VAR setup. However, these test procedures
are based on the fully modified estimation method (Phillips and Hansen, 1990) which has
been shown to lead to tests with very poor finite sample properties (Carrion-i-Silvestre and
Sansé-i-Rossells, 2006). The results in Quintos and Phillips (1993) also suggest that the
LM tests are likely to suffer from the problem of low power in finite samples. Moreover,
simulation experiments in Hansen (2000) show that the LM test is quite poorly behaved in

the presence of structural changes in the marginal distribution of the regressors. On the



other hand, the Sup-Wald test is shown to be reasonably robust to such shifts. Hansen
(2003) considers multiple structural changes in a cointegrated system, though his analysis
is restricted to the case of known break dates. Finally, Qu (2007) proposes a procedure
to detect whether cointegration is present when the cointegrating vector changes at some
unknown possibly multiple dates.

The literature on testing for multiple structural changes is relatively sparse. It is, however,
practically important since single break tests can suffer from non-monotonic power when the
alternative involves more than one break. As stressed by Perron (2006), most tests may
exhibit non-monotonic power functions if the number of breaks present is greater than the
number explicitly accounted for in the construction of the tests. The aim of this paper is to
provide a comprehensive treatment of issues related to testing for multiple structural changes
occurring at unknown dates in cointegrated regression models. Our work builds on Bai and
Perron (1998) who undertake a similar treatment in a stationary context. Our framework is
general enough to allow both I(0) and I(1) variables in the regression. The assumptions about
the distribution of the error processes are mild enough to allow for general forms of serial
correlation. Moreover, we analyze both pure and partial structural change models. A partial
change model is useful in allowing potential savings in the number of degrees of freedom, an
issue particularly relevant for multiple changes. It is also important in empirical work since it
helps to isolate the variables which are responsible for the failure of the null hypothesis. We
derive the limiting distribution of the sup-Wald test under the null hypothesis of no structural
change against the alternative hypothesis of a given number of cointegrating regimes. We
also consider the double maximum tests proposed in Bai and Perron (1998). We provide
critical values for a wide variety of models that are relevant in practice. Our asymptotic
results have important implications for inference. We show that in models with both I(1)
and I(0) variables, inference is possible as long as the intercept is allowed to change across
regimes. Otherwise, the limiting distributions of the tests depend on nuisance parameters.
Finally, our simulation experiments show that with serially correlated errors, the commonly
used Sup, Mean and Exp-LM tests suffer from non-monotonic power problems. This is true
for cases with a single break as well as with multiple breaks. We propose a modified sup
Wald test that exhibits a power function which is monotonic with respect to the magnitude
of the break(s) while maintaining reasonable size properties.

The paper is organized as follows. Section 2 presents the model and assumptions. In
Section 3, we describe the testing problems and the test statistics used. Section 4 contains

the theoretical results of this paper about the limit distributions of the tests for a wide variety



of cases. This is first done for models involving non-trending regressors, no serial correlation
in the errors and exogenous regressors. These restrictions are relaxed in Section 4.2, 5.1
and 5.2, respectively. Asymptotic critical values are presented in Section 4.3. Section 6
presents simulation experiments that address issues related to the size and power of the tests
including a comparison with the often used LM tests. Section 7 offers concluding remarks

and all technical derivations are included in a mathematical appendix.

2 The model and assumptions

Consider the following linear regression model with m breaks (m + 1 regimes):
Yo = Cj+ 2l 4 200 + TpBy + ay By Fue (t=Tja+1,...T) (1)

for j =1,....m+ 1, where Ty, =0, T,,,.1 = T and T is the sample size. In this model, y; is
a scalar dependent (1) variable, z¢ (pf x 1) and @y (py X 1) are vectors of 1(0) variables
while z; (qr x 1) and 2 (g x 1) are vectors of I(1) variables defined by: zp = 25,1 + u;’;t,
Zpt = Zpg—1 + ugt, Tp = pyp+ uit and zy = py + ugt, where 2y and 2, are assumed, for
simplicity, to be either O,(1) random variables or fixed finite constants. For ease of reference,
the subscript b on the error term stands for “break” and the subscript f stands for “fixed”
(across regimes). The break points (71, ...,T,,) are treated as unknown. This is a partial
structural change model in which the coefficients of only a subset of the regressors are subject
to change. When py = ¢y = 0, we have a pure structural change model with all coefficients

allowed to change across regimes. It will be useful to express (1) in matrix form as:
Y=Ga+Wy+U

where Y = (y1,...,yr), G = (Z5,Xy), Zy = (251, 207)s Xy = (xp1,..,2pr), U =
(ur, wsur)s, W= (wr,owr)s we = (Lzg,a,)s v = (41, By oo ;7,m+1>6?),m+1)/7 o =
(0%, 8%) and W is the matrix which diagonally partitions W at the m—partition (11, ..., T,),
that is, W = diag(Wh, ..., Wyy1) with W; = (wr,_ 41, ..., wp) for i = 1,...,m + 1. Kejriwal
and Perron (2008b) analyze the properties of the estimates of the break dates and the other
parameters of the model under general conditions on the regressors and the errors. In this
paper, the interest is in testing the null hypothesis of no structural change versus the alter-
native hypothesis of m changes as specified by the model (1). Hence, the data generating
process is assumed to be given by (1) with p, = ¢, = 0.

As a matter of notation, “%” denotes convergence in probability, « gy convergence in

distribution and “=" weak convergence in the space D|0, 1] under the Skorohod metric.
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Also, my = (@, 2y,)", st = (ull ulhy, z = (2515 200)'s 10 = (u’f,ug)’ and A = {\, ..., A} s

the vector of break fractions defined by \; = T;/T for i = 1,...,m. We make the following

fro o f! u

assumptions on &, = (uy, ul,, uly, uly, u2,

), a vector of dimension n = g +ps+ q» + p» + 1.
Assumption A1l: The vector ¢, satisfies the following multivariate Functional Central Limit
Theorem (FCLT): T/ ZTT] &, = B(r), with B(r) = (Biy(r), B/ (r)', B%(r), BL(r), B%(r)") is
a n vector Brownian motion with symmetric covariance matrix

o 0. o 9, o, )\ 1

of, off off off o | ¢

Q@ =) of of & o | @

af, of off o of | »

oL QF O Q) p

= lim T'E(SrSy) =X+ A+ N

T—o00

where Sy = Y01 €% = limp oo T S0, B(E€) and A = limgo T X750 ST B(EEL).
We also assume 0% > 0 and plimp_oo 771 S 12 = limp oo T Y0, E[u?] = 02.
Assumption A2: The vector {z;u;} satisfies Assumption A4 in Qu and Perron (2007) so
that T2 S0l u )y = 0 QW (r), where W(r) = (We(r), Way(r)) is a (py +
pp) vector of independent Wiener processes and
. ng* Qé‘b*

Q Qbf* be*

Assumption A3: For all t and s: a) E(uguzs) = 0; b) E(ugiurus) = 05 ¢) E(ugtstgs) = 0.

QIf Qb
Assumption A4: The matrix %% | is positive definite.

Qbf be
Assumption A5: ZLTSI z) 2 sQ and, T 1ZtT81] Uggtt,, 2 sQ*, uniformly in s €

0, 1], for some positive definite matrices ) and Q*.

Assumption Al requires that the errors satisfy a multivariate FCLT. The conditions for
this to hold are very general (see, e.g., Davidson, 1994). It can be shown to apply to a large
class of linear processes including those generated by all stationary and invertible ARMA
models. A2 guarantees that a F'C'LT also holds for the sequence {u,su;}. Assumption A3
restricts somewhat the class of models applicable but is quite mild. Sufficient conditions for
it to hold are: for (a) that the I(0) regressors are uncorrelated with the errors contempo-

raneously even conditional on the I(1) variables; for (b) that the autocovariance structure
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of the I(0) regressors be independent of the errors and, similarly, for (c) that the autoco-
variance structure of the errors be independent of the 7(0) regressors. This assumption is
needed to guarantee that W}(-) and B(-) are uncorrelated and, being Gaussian, are therefore
independent. Without this condition, the analysis would be much more complex. A4 rules
out cointegration among the I(1) regressors. Ab is standard for 7(0) regressors but rules out
trending regressors, which we shall relax in Section 4.2.

Under the alternative hypothesis, the estimates of the parameters are obtained by min-
imizing the global sum of squared residuals. For each m-partition (71, ...,7,,), denoted

{T;}, the associated least squares estimates of v and  are obtained by minimizing

m+1 T;

SSRr(Ty, ... Tn) = 3. > ly—ci— Z}téf - x/ftﬁf — 206 — xétﬁbi]z (2)

'i:l tZTi_1+1

Let &({1;}) and Y({1}}) be the resulting estimates. Substituting these into the objective
function and denoting the resulting sum of squared residuals as Sr (77, ..., T},), the estimate
of the break points are (Tl, ey Tm) =argmin ¢, 1, S7(71, ..., T),), where the minimization is
taken over all partitions (71, ..., T,,) such that T;—T;_1 > €T for some € > 0. The estimates of
the regression coefficients are then & = &({7};}) and 4 = 4({T}}). Such estimates can be ob-
tained using the algorithm of Bai and Perron (2003). Finally, consistent estimates of the ma-
trices ¥ and A (and, hence, Q) are > = T~ 27 é’té’; and A = T-1 Z?;ll w(i/l) S étét+j7
where &, = (i, A2}, Az, (240 — Tf)', (w4 — Tp)")" with @; the OLS residuals from regression
(1), 7 =T "3, 24 (i = f,b) and w(j/l) is a kernel function that is continuous and even
with w(0) =1 and [*7_ w?(z)dz < co. Also, | — oo as T — oo and | = o(T""/?). Consistency

of these covariance matrix estimates has been shown in Hansen (1992c).

3 The testing problem and the test statistics

The data generating process (1) is the most general and in practice restricted versions may
be used. This gives rise to a variety of possible cases for the testing problems considered.
We classify them in two categories: a) models with only /(1) regressors; b) models with
both (1) and I(0) regressors. This classification in two categories is useful since oftentimes
researchers are faced with only /(1) variables. For this category (a), the testing problems
considered are the following (for ease of reference, we list the relevant regression under the

alternative hypothesis):

Testing problems, Category (a), Models with I(1) variables only (p; = p, = 0, for

all cases): Let H{ denotes the restrictions {¢; = ¢, dy; = 6 for all j =1,..,m + 1}.
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Hg(1) = {Hg, qr = 0} versus H{(1) = {q; = 0} (y: = ¢; + 2400 + we);
H§(2) = {Hf, gy = 0} versus H{(2) = {q = 0} (y: = ¢j + 2,05 + us);

H§(3) = {H§, g5 = 0} versus H{(3) = {¢; = cforal j =1,..,m+ 1, g5 = 0}
(4 = ¢+ 244005 + w);

H§(4) = {Hg} versus H{(4) = {no restriction} (y; = ¢; + 24,05 + 2,007 + w);

H§(5) = {Hg } versus H{(5) = {¢; = cforall j = 1,..,m+1} (y; = c+25,0 p+24,0p5+us).

Testing problems, Category (b), Models with both I(1) and I(0) variables: Let
H} denotes the restrictions {c; = ¢, dy; = 0y, By; = By forall j =1,...,m+1}.

1.

10.

11.

HY(1) ={H}, py = q, =0} versus HY(1) = {c; =cforall j=1,..m+1, py = q = 0}
(ye =c+ Z}t5f + 1y By + Uy);

. HY2) ={H}, py = q; =0} versus HY(2) = {¢;=cforall j=1,..m+1, p, = q; = 0}

(ye = ¢+ 2,005 + o' B + u);

Hg(3) = {Hg, py = g = 0} versus H}(3) = {¢; = cforall j =1,..m+1, py = qy = 0}
(ye = ¢+ 2,005 + 24, B4 + We);

- H{(4) = {H, py = qp = 0} versus H{(4) = {py = g5 = 0} (v = ¢+ 23005 23,8y +);

H{(5) = {Hg, pp = gy = 0} versus HY(5) = {py = @ = 0} (y¢ = ¢; + 25,05 + 2,8, +w);
H(6) = {Hg, pp = q7 = 0} versus H{(6) = {py = g5 = 0} (¢ = ¢; + 23,005 + 2, B +w);
H{(7) = {Hg, pr = g = 0} versus H{(7) = {py = ¢ = 0} (g = ¢;+ 25,07 +3,8; + )
Hg(8) = {Hy, g5 = 0} versus H{(8) = {qy = O} (¢ = ¢; + 23,00 + @, B + 24, By + wr);
HY(9) = {H}, g, =0} versus HY(9) = {q, =0} (s = ¢; + 205 + T By + Ty By + Ut);
H}(10) = {H} versus H?(10) = {no restriction} (y; = ¢; + 205 + 24005 + 2, By +
Tpy Bp; + Ue);

Hy(11) = {Hy} versus HY(10) = {¢; = cfor all j = 1,..m + 1} (3 = ¢+ 2,05 +
2,065 + :Jc’ftﬁf + 2y By + ug).



We now give a brief description of each of the models in the two categories. First consider
Category (a). Case 1 is a pure structural change model which allows for a change in the
intercept as well. Case 2 is a partial change model in which only the intercept is allowed to
change. Case 3 is again a partial change model where the intercept is not allowed to change.
Cases 4 and 5 are block partial models in which a subset of the I(1) coefficients is allowed
to change. In Category (b), Cases 1 to 3 are partial change models where the intercept is
not allowed to change across regimes. Case 4 is a pure change model where all I(1) and
1(0) coefficients as well as the intercept are allowed to change. Case 5 is a partial change
model, which involves only an intercept shift. Case 6 is a partial change model where the
1(0) coefficients are not allowed to change. Similarly, Case 7 is a partial change model where
the I(1) coefficients are not allowed to change. Cases 8-11 are block partial models in which
a subset of coefficients of at least one type of regressor is not allowed to change.

We consider three types of tests. The first applies when the alternative hypothesis involves
a fixed value m = k of changes. We consider the Wald test, scaled by the number of regressors
whose coefficient are allowed to change, defined by
T—(k+1)(a+p) = (pr +ar) YR (RW'McW) ' R') 'Ry

k ) SSRy, (3)

FT<)‘7k) = (

where R is the conventional matrix such that (Ry)" = (v} — 75, ..., V% — Viy1) and Mg =
I-G(G'G)"*G". Here SSRy, is the sum of squared residuals under the alternative hypothesis.
As in Bai and Perron (1998), we define the following set for some arbitrary small positive
number €, A¥ = {\ : |\i1 — Ni| > €, A1 > 6, A <1—¢}. The sup-Wald test is then defined
as sup-Fr(k) = supyear Fr(A, k). Since, in the current cases, the estimates A= {1, )
with A; = 7;/T (for i = 1, ..., k) obtained by minimizing the global sum of squared residuals
correspond to those that maximize the test Fr(\, k), we have sup-Fr(k) = Fr(X, k).

The second procedure applies when the alternative hypothesis involves an unknown num-
ber of changes between 1 and some upper bound M. As in Bai and Perron (1998), we consider
a double maximum test based on the maximum of the individual tests for the null of no break
versus m breaks (m = 1,..., M), defined by UD max Frp(M) = maxi<m<ar Suprearn Fr(A, m).
This test is arguably the most useful to apply when trying to determine if structural changes
are present. Simulations presented in Bai and Perron (2006) show that with multiple changes,
the power of tests for a single break can be quite low in finite samples, especially for cer-
tain types of multiple changes; e.g., two breaks with identical first and third regimes. Also
tests for a particular number of changes may have non-monotonic power when the number

of changes is greater than specified. Finally, in their simulations they found the power of
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U D max to be nearly as high as that of the sup-Fr test based on the true number of changes.
The third testing procedure is a sequential one based on the estimates of the break dates
obtained from a global minimization of sum of squared residuals, as in Bai and Perron (1998).
Consider a model with k£ breaks, with estimates denoted by (Tl, e Tk), which are obtained
by a global minimization of the sum of squared residuals. The procedure to test the null
hypothesis of k breaks versus the alternative hypothesis of k£ + 1 breaks is to perform a one
break test for each of the (k + 1) segments defined by the partition (71, ..., 7)) and to assess
whether the maximum of the tests is significant. More precisely, the test is defined by
SEQr (k+1|k) = max Sup T{SSRT(Tl,..., ) SSRT(Tl,.. TJ 1,7, T], k)}/SSRkH
1<j<k+1rep,.
where Aj. = {7;Tj_1 + (Tj = Tj_1)e < 7 < Tj — (Ij — Tj_1)e}. Note that this is different
from a purely sequential procedure since for each value of k the break dates are re-estimated

to get those that correspond to the global minimizers of the sum of squared residuals.

4 The asymptotic distributions of the tests

With integrated regressors, an important issue that arises is the correlation between the
regressors and the errors. We first consider the case where all I(1) regressors are strictly
exogenous. Later, we deal with the case of endogenous regressors and show that if the
regression is augmented with leads and lags of the the first differences of the I(1) regressors,
the limiting distribution of the tests is the same as that obtained when all I(1) regressors
are strictly exogenous. Hence, for now, we assume Qf, = Q4. = 0, which will be relaxed in
Section 5.2. We also start with the following assumption that imposes serially uncorrelated
errors in the cointegrating regression to be relaxed in Section 5.1:

Assumption A6: Let & = (ul], u?, ul} u?)), the errors {u;} form an array of martingale

Uzts zt) Yty

differences relative to {F;} = o-field{&;_,, us—1-s; s > 0}.

4.1 The main theoretical results

As a matter of notation, we define the following functionals, where W, = o1 B;:
WG, a,b) = bedVI/l Y ([raah L [PGdwy),
f(G) = Zf/\ ldel Z f)\ GG Z f)\ GdWl)



9(G,a,b) = (aG(b) — bG(a)) (aG(b) — bG(a))/ba(b — a) and GO (r) = G(r) — (N —
Aao1) 7t /\/\abil G. Also, by convention \g = 0 and A\,y; = 1. The limit distributions of

the tests when only (1) variables are involved are stated in the following Theorem.

Theorem 1 Assume A1-A6 and Qf, = QY. = 0. For the testing problems in Category (a),
the limit distribution of supyenrFrr(A, k) is supy ear F'(N, k) /k with (X, k) defined as follows

for the various cases. For Case (1),
FOR) = LA, D0, 00) = h(WZHD 0, X 40) + RV N Nig) + (W, Ay A

For Case (2), F(\ k) = f( J6) )— h(Wz (LE+1) ,0, 1)+Z g(W1, Ay Aig1), where W (r) =
(N ~V2BS(r). For Case (3),

k+1

F(\ k) = f(P5) = h(W2H,0,1) — ()+Zh( , Aie1; Ai)

where P%(r) =1 — (f,\A,l T/V/f’)(f/\)L1 WEWE)TWE(r), for r € [Ni_1,\i]. For Case (4),

. k+1 . k
F(A\ k) = fWMED) — p(W/P D 0,1) + 5= h(WEED NiZ1, X)) + 30 g(Wa, A, Aigr)
=1 =1

with W1b(r) = (W1 (r), W2(r)), and where

WM(i,z‘) (T) _ Wf(z‘,i) (’I“) . f)f;ilWf(i’i)Wzb(i,i)/(f)\);ilWzl)(i7i)WzI)(i7i),>_1Wzb(i7i) (T)

¥4 z ¥4

For Case (5), F(\ k) = f(P.;) — h( sz(l’kﬂ),O,l) Wi(1)? + ZkH h(W), Xi—1, \i), where
PM%M%L%UMM%WZWM—QUWWAHWWWWW

Theorem 1 shows that it is possible to make inference in models involving /(1) variables
using the sup-Wald test. Also, the limiting distributions are different depending on whether
the intercept and/or the I(1) coefficients are allowed to change. Note that for Cases 2, 4
and 5 the limit distributions depend on the number of I(1) coefficients that are not allowed
to change. This is different from a stationary framework where the limit distribution is
independent of the number of regressors whose coefficients are not allowed to change. We
now consider the limit distributions of the test for the various cases in Category (b) where

both I(1) and I(0) regressors are present.

Theorem 2 Assume AI-A6 and QI, = Q. = 0 and let Whay = W, Wh)'. For cases
in Category (b), the limiting distributions of supycarFr(A k) under the null hypothesis

9



are given by supyepr F'(A k) /k with F(A\ k) defined as follows. For case (1), F(Ak) =
Zf:l g(Wx iy Nix1). For Case (2), the limit distribution is the same as for Case (3) in
Category (a). For Case (3),

k+1 k
F()\7 k) = f(sz) - h(W£(17k+1)’ 07 1) - W1<1)2 + Z h(Wfa >\i—1> /\z) + Z g( :::kb> /\i’ >‘i+1)'
=1 =1

For Cases (4) and (8),

F(A k) = > [WEED 0, \)=h(WEEHD 10, g1 )+ (WD N Xi1)+9(Whay, A M)

i=1
For Cases (5) and (6), the limit distributions are the same as for Cases (2) and (1), respec-
tively, in Category (a). For Case (7) and (9),

. k
E(\ k) = fWIED) — n(WIHD,0,1) + 37 g(Wyays Ais Aiga)-

‘ i=1
For Case (10),
. k+1 . k
F(\ k) = fWMED) — R(WSP R [0, 1) + 57 AWEED N1, ) + 30 9(Woiys Ais Aisa).
=1

i= i=1
And, for Case (11),
k+1 k
F(A k) = [(Pu) = (WD 0,1) = Wi (1) 4+ 37 AWE, A1, M) + 32 (Wi, My M),
i=1 i=1
The practical implications of Theorem 2 are as follows. As shown in Case (1), if the
intercept and the /(1) variables are held fixed and only the coefficients on the I(0) variables
are allowed to change, the same limit distribution as in Bai and Perron (1998) applies.
However, this equivalence with the case of stationary regressors only holds if the constant
is not allowed to change. As shown in Case (7), the limit distribution is different when the
intercept is allowed to change and depends on the number of I(1) variables present. The
effect of allowing the intercept to change or not can also be seen by comparing Cases (3)
and (4). The limit distributions are different and, as expected, both depend on the number
of I(1) and I(0) variables whose coeflicients are allowed to change. A similar feature also
applies when the regression involves I(1) and I(0) variables whose coefficients are not allowed
to change, as shown in Cases (10) and (11). Comparing these with Cases (3) and (4) again
shows that having /(1) variables whose coefficients are not allowed to change alters the limit
distributions. Finally, comparing Cases (a-1) and (b-6), (a-2) and (b-5), (a-3) and (b-2),
(b-4) and (b-8), and (b-7) and (b-9), shows that including (0) regressors whose coefficients

are not allowed to change does not alter the limit distribution.
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Remark 1 For Case (4) in Category (b), the limit distribution of supyecar Fr(A, k) is:

k
sup {Z(S*()‘iv)‘i-&-l)lv()‘h/\i-l-l)_lS*()‘i,)\i-l—l))

=1

. zk: AW (Nir1) — Aia W (M) (AW (Air) — /\i+1W$b(>\i))}
i=1 Aip1Ai(Aig1 — Ai)

with S*()\w )\1+1) = S()\l)—M()\Z)M()\Z+1)_IS()\Z+1), V<)\17 )\z+l) = M()\Z)—M()\l)M()\ZJrl)_lM()\l),
S(\) = fo)‘i ZXdWy, M(N\;) = fOAi Z*7* and Z* = (1, WY).  The first summation corre-
sponds to the distribution in Case 1 of Category (a), while the second corresponds to the

py 1(0) regressors whose coefficients are allowed to change.

With these theoretical results for the sup-Fr(A, k), we can obtain the limit distribution
of the UD max and SEQr (k + 1|k) tests. These are stated in the following Corollary.

Corollary 1 Under A1-A6 and Q{Z =08 =0, for a particular testing problem denote the
limit distribution of the test supyenr Fr(A, k) by supyear F'(A, k) /k, then: a) UD max Fr(M) =
maxi<m<y SUPreAm Fr(A,m) = maxicm<ar Suprearn F'(A,m)/m, b) limp_o P(SEQ7(k +
1k) < x) = G.(2)**", with G.(x) the distribution function of supycp1 FI(A,1).

4.2 Trends in regressors

Suppose now that the I(1) regressors have a trending non-stochastic component, i.e., are
generated by 2}, = pst + zp and z;; = pyt + 2 with g, > 1 and p, # 0. The limiting
distributions of the tests are then different from the non-trending case. The derivation of the
required modifications follow the treatment of Hansen (1992a). Consider a g, % (g,—1) matrix
p; which spans the null space of p, and let Cy = [C12, Cos] = (py(ph0) " pi (' Q% pp)~1/2).
Note that Chzjy = (Clazu + t, Choz)'. With Wap = diag (T, 1,,-1T*/?), we have
—10v -1
Wl gy = | T LT gy
T2 Chy 21y W2 yy(r)

where Wf(_l)(r) is a (¢, — 1) dimensional vector of independent Wiener processes (a linear
combination of W2(r)). Note that when ¢, = 1, Wzb(_l)(r) = r. It then follows that

- (] _
e, e - [ ®
RS LA r b
T Wor C’QEthut = o, J.dWy (6)
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Note that (4) through (6) also hold for z}, with W,f(q) (r) replaced by W)f(fl)(r), a (qr —
1) dimensional vector of independent Wiener processes (a linear combination of W/(r)).
Here also, when ¢y = 1, sz(_l) (r) = r. Therefore, with trending regressors, the limiting
distributions of the tests are not the same as that without trends. However, we can obtain

them by simply replacing W/ and W? by J/ and J?, respectively.

4.3 Asymptotic critical values

Since the asymptotic distributions are non-standard, critical values are obtained through
simulations. These are provided for models with and without trends in regressors. We
approximate the Wiener processes by partial sums of i.2.d. Normal random variables with
N = 500 steps. The number of replications is 2000. For each replication, the supremum of
F(\, k) with respect to (A1, ..., \x) over the set A* is obtained via a dynamic programming
algorithm (see Bai and Perron, 2003, for details). The I(0) regressors are simulated as inde-
pendent sequences of i.i.d. N(0,1) random variables, and the I(1) regressors as independent
random walks with i.i.d. N(0,1) errors (also independent of the I(0) regressors). The values
of the trimming used are ¢ = .05,.10, .15, .20 and .25. Critical values are presented for up
to 9 breaks and 4 regressors. The maximum number of breaks allowed is 8 when € = 0.10, 5
when € = 0.15, 3 when ¢ = 0.20 and 2 when ¢ = 0.25. For the UDmax test, M is set to 5 or
the maximum number of breaks possible. For models involving both 7(1) and /(0) variables,
critical values are provided for all possible permutations up to 2 regressors of each type. For
the limit distributions of the tests when the regressors contain trends and for the sequential
tests, the critical values are tabulated for ¢ = .15, .20 and .25. Given the large number of
results, we present critical values only for € = 0.15 in Tables 1 through 4. For other trimming

values, tables of critical values are available on the authors’ website.

5 Extensions

We now extend the analysis of the previous Section to the cases where we can have either a)
serially correlated errors in the cointegrating regression; b) endogenous regressors. We show

that simple modifications yield tests with the same limit distributions as stated above.

5.1 Serially correlated errors: a modified sup-Wald test

With serially correlated errors, we use the following robust version of the scaled F' test

(T — (k+ 1) (g + 1) — (a7 +py))
i

Fr(\ k) = 4R(RTV(4)R) ' RY (7)
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where V(%) is an estimate of the covariance matrix of 4 that is robust to serial correlation
and heteroskedasticity; see Bai and Perron (1998) for details. Note that when testing for the
stability of coefficients associated with (1) variables, whether 7(0) variables are included
or not, we can simply apply the following transformation to the test in (3): Fr(\; k) =
(62/67) Fr(\ k), where 62 = T-'3"[_ 42 and 6 is a consistent estimate of o2. Since
the break fractions are consistent even with serially correlated errors, we can first take the
supremum of the original F' test to obtain the break points. The robust version of the test is
then obtained by evaluating F;:()\; k) at these estimated break dates, i.e., the test considered
is supyear Fr(A k) = Ex(\ k) where A = (A, ..., \y) are the estimates of the break fractions
obtained by minimizing the global sum of squared residuals (2).

A problem with the Sup-Wald test is that with persistent errors, the size distortions
can be substantial. The reason for this is the estimation of the long run variance using
residuals under the alternative hypothesis. On the other hand, Vogelsang (1999) shows
through simulation experiments that the estimation of the long run variance under the null
hypothesis leads to the problem of non-monotonic power in finite samples. In a related paper,
Crainiceanu and Vogelsang (2007) show that commonly used data dependent bandwidths
for the estimation of the long run variance (based on the misspecified null model) are too
large under the alternative hypothesis. This in turn leads to a decrease in power as the
magnitude of the change increases. As a solution to this size-power trade-off, we use a new
estimator of the long run variance constructed using a hybrid method that involves residuals
computed under both the null and alternative hypotheses. In particular, the data dependent
bandwidth is selected based on the residuals obtained under the alternative hypothesis. With
this particular value of the bandwidth, the estimate is computed using residuals obtained

under the null hypothesis of no structural change. Specifically, the proposed estimator is

=TI B2 S w(ifh) S G, )
=1 j=1 t=j+1

where u; are the residuals obtained imposing the null hypothesis. The kernel function w(-)
is the Quadratic Spectral and the estimate of the bandwidth is, following Andrews (1991),
given by h = 1.3221(a(2)T)"/® where a(2) = [47%/(1 — p)*] and p = S0/, tuily_1/ St 42 1,
with 4, the residuals from the model estimated under the alternative hypotheses. As we
later demonstrate, the sup-Wald test based on this estimator is able to bypass the problem
of non-monotonic power while maintaining an exact size close to the nominal size. For more

details on the merits of this approach, see Kejriwal (2008).
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5.2 Endogenous /(1) regressors

Generally, the assumption of strict exogeneity is too restrictive and the test statistics devel-
oped in the previous section are not robust to the problem of endogenous regressors. In this
section, we use the linear leads and lags estimator (dynamic OLS) as proposed by Saikkonen
(1991) and Stock and Watson (1993) and prove that the limiting distributions of the tests
based on this estimator are the same as those obtained with the static regression under strict

exogeneity. The modified regression is given by

Yo = &+ Zp0p + 5By + 200+ T B+ KZE Az TL + 7 (9)
j=—Lr

where 2; = (2}, 2,;)'. Note that the number of leads and lags of Az; need not be the same. We
specify the same value for simplicity. Alternatively, one can interpret /7 as the maximum
of the number of leads and lags. In order to prove our results, we need a few additional
assumptions, which are the same that are required to show the consistency of the estimate
of the cointegrating vector in the case of a model with no structural change.
Assumption A7: Let ¢, = (ug,u!], u?) and ¢,, = (ul],u?,). The spectral density matrix
fee(w) is bounded away from zero so that fee(w) > al, (n = qr + g + 1) for w € [0, 7]
where av > 0. Also, the covariance function of (, is absolutely summable, i.e., denoting
E(¢,Cx) = T'(k), we require that Y 7o ||T'(k)|| < oo where ||-]| is the standard Euclidean
norm. Denoting the fourth order cumulants of ¢, by k;ju(my, ma, m3), it is assumed that
D oy Dy 2 [Kigri (M1, ma, m3)| < oo (where the summations run from —oo to +00).

Assumption A7 states the same conditions used by Saikkonen (1991) and allows to
represent the error u; as follows: w, = >°7° (%, I + v, with 372 T[] < oo
and where v; is a stationary process such that E((,vix) = 0, for all k, and f,,(w) =
fuu(W) = fuc. (W) fe_c. (W)™ feu(w). The DGP under the null hypothesis is then

Ly
Yr = c+ 2505 + 0B+ 20 Az T4 vf
j=—Lr

where v = v+, ¢+ ;II; = vy 4 e;. The last requirements pertain to the possible rate
of increase of ¢ as T increases. Following Kejriwal and Perron (2008a), these are given by:
Assumption A8: As T'— oo, by — 00, (2./T — 0 and Ly 3 ., ||| — 0.

Note that A8 allows the use of information criteria such as the AIC or BIC. Since there
can be serial correlation in the errors v;, we need to apply a correction for its presence.
Hence, we consider the statistic supycpr FR (A k) = FR(\ k) where A = (1., \y) are the
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estimates of the break fractions obtained by minimizing the global sum of squared residuals
(2), and FP(\ k) = T-Y(SSRy/62)Fr(\ k) with Fr(\ k) as defined in (3). We consider
an estimate 62 based on a weighted sum of the sample autocovariances of o, the residuals
obtained imposing the null, as defined by (8) with v; instead of u; (and using the unrestricted
residuals to obtain the bandwidth as discussed in the previous section). The relevant result

is stated in the following Proposition.

Theorem 3 Under A1-A5 and A7-AS8, for all testing problems the limit distributions of the
test sup) pr FR(\ k), based on regression (9), are the same as those that apply to the test
supy eax Frr(A, k) under the added assumption of A6 and strict exzogeneity with Q{Z =0t =0.

6 Simulation experiments

We now present the results of simulation experiments that pertain to the size and power of
the tests, including a comparison with the often used LM tests. Hansen’s (2000) method
based on a “fixed regressors bootstrap” is also a possible avenue to provide valid large sample
inference in some of the models considered. In theory, an advantage of his method is that
it remains valid in the presence of changes in the marginal distributions of the regressors.
We conducted extensive simulations and found that the Wald tests considered here are very
robust to changes in the drift of the I(1) regressors and changes in the variance of the
innovations driving them (as in the stationary case as reported by Hansen, 2000). Our

asymptotic results provide tests with exact sizes close to nominal size, as we shall show.

6.1 The size of the tests

We start with the case where the DGP exhibits no structural change and hence analyze the
size of the tests. The sample sizes considered are T' = 120 and T" = 240. The value of the
trimming € is set to .20. The maximum number of breaks (M) considered is 3. Depending
on whether we correct for serial correlation and/or endogeneity, we have the following four
specifications: (i) S_Corr=0, C_ Corr=0: no correction for serial correlation or endogeneity;
(ii) S_Corr=1, C_Corr=0: correction for serial correlation but not for endogeneity; (iii)
S_Corr=0, C_Corr=1: correction for endogeneity but not for serial correlation; and (iv)
S Corr=1, C_Corr=1: correction for both endogeneity and serial correlation. To correct
for serial correlation, we use the method discussed in Section 5.1. To correct for endogeneity,
we use the dynamic OLS estimator, discussed in Section 5.2, with /7 = 2. The various DGPs

considered include the following basic components: y; = 2z; + u; with z; = 2,1 + n,, where
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n, ~ i.i.d. N(0,1). The DGPs considered are, where e; ~ i.i.d. N(0,1) and Cov(n,, ;) =
0: DGP-1 (i.i.d. errors, exogenous regressor): u; = e;; DGP-2 (AR(1) errors, exogenous
regressor): u; = puy_1+e;; DGP-3 (MA(1) errors, exogenous regressor): u; = e;—0e;_1; DGP-
4 (ii.d. errors, endogenous regressor): u; = 0.8, + e;; DGP-5 (MA(1) errors, endogenous
regressor): u; = 0.5v; + 1, vy = e, — 0.5¢;_1.

For each DGP, we consider the case where the regressors are {1, z; } and both the intercept
and the cointegrating coefficient are allowed to change across regimes. In all experiments,
1000 replications are used. All rejection frequencies are calculated at the nominal 5% level.
Table 5 reports the empirical size, with 7" = 120 and 240 and p = 6 = 0.5. Consider first
the base case represented by DGP-1 where the regressor is strictly exogenous and the errors
are 1.¢.d.. With S Corr=0, C_ Corr=0, the size is adequate for all the tests irrespective of
the specification used. For DGP-2 with AR(1) errors, all tests show substantial distortions
when we do not correct for serial correlation. However, using our proposed long run variance
estimator, the size distortions are no longer present and the tests become somewhat conser-
vative. With MA(1) errors (DGP-3), the tests have zero size when no correction for serial
correlation is made. Again, the size is accurate once we use S_Corr=1. With endogeneity
but no serial correlation (DGP-4), we see that all the tests have good size for S Corr=0,
C_Corr=1. Otherwise, size distortions up to 20% may occur. This shows that the correction
for endogeneity based on the dynamic OLS estimator is quite effective. When both serial
correlation and endogeneity are present (DGP-5), the tests have adequate size when we use
S _Corr=1, C_Corr=1, although some mild distortions persist when testing for multiple
breaks. When 7" = 240, for the DGP-5 and S Corr=1, C_ Corr=1, the rejection frequencies
are reduced and even the multiple break tests become conservative.

We also considered the case where the regressors are {1, z;, x;}, with z; ~ i.i.d. N(1,1),
Cov(z,ur) = Cov(xy,m,) = 0, and the model allows the intercept and the cointegrating
coefficient to change across regimes but the coefficient of x; is held fixed. The results were
similar to those in Table 5. Hence, including an irrelevant I(0) regressor does not lead to

any size inaccuracies over and above the case when they are not included.

6.2 A power comparison with the LM type tests

In this section, we analyze the power of the sup-Wald test and compare it with the sup,
mean and exp-LM tests proposed in Hansen (1992b) and Hao (1996). Vogelsang (1999) and
Crainiceanu and Vogelsang (2007) show that the power function of a wide variety of tests for

a shift in the mean of a dynamic time series is non-monotonic with respect to the magnitude
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of the break. One cause is the behavior of the estimate of the error variance in the presence
of a shift in mean. In particular, they find that if the error variance is estimated under the
null hypothesis, non-monotonic power can result. We show that the LM type tests suffer
from the same problem in the cointegration setup and in certain cases, the power can go to
zero as the magnitude of the break increases. Since the main issue pertains to the presence of
serial correlation in the errors, we consider the case where the regressor is strictly exogenous
and the trimming is set at € = 0.15 (we also performed simulation of the power of our tests
with a DGP involving endogenous regressors and, actually, the power is enhanced relative
to the exogenous regressor case). For the case with one break, the DGP is v, = 2z + uy,
if t <[T/2] and y; = (1 +6)z +uy, if ¢ > [T/2], where n, ~ i.i.d. N(0,1), Cov(u,n,) = 0.
The sample size is T' = 240. We consider DGP 2 (AR(1) errors) and 3 (MA(1) errors). The
specification S Corr=1, C_ Corr=0 is used. We analyze the pure structural change model
in which both the intercept and the cointegrating coefficient are allowed to change. The
power functions are plotted in Figure 1. Consider first the case with AR(1) errors. The non-
monotonicity of the power function of the LM tests is evident even at moderate values of 9.
For very small values of §, the power of the mean LM test is slightly higher than the modified
Wald test. This is due to the fact that the mean LM test is particularly suited to detect
small changes (see Andrews and Ploberger, 1994). Surprisingly, however, the mean LM test
performs better than the exp-LM test even for large changes. The sup-LLM test is dominated
by all tests irrespective of the sample size and the degree of persistence. With MA(1) errors,
the picture is quite different. All tests have higher power compared to the autoregressive
case although non-monotonicity is still evident for the LM tests. The performance of the
LM tests is quite similar and no clear ranking emerges between them.

Next, we consider the case where the DGP involves 2 breaks and 3 regimes, specified by
Yy =z +ug, if t <[T/3], yp = (1+0)z +u if [T/3] <t < [2T/3] and yr = 2 +uy if [27/3] <
t <T,where z; = z_1+n,, 2t = ze-1+1;, 0y ~ i.i.d. N(0,1) and Cov(ug,n,) = 0. The power
functions are plotted in Figure 2. Consider first the case with AR(1) errors. Given that
single break tests have difficulty in detecting such parameter changes, it is not surprising
that all tests exhibit non-monotonic power. The modified sup-Wald test dominates all the
LM tests regardless of the sample size and the extent of persistence. With MA(1) errors,
again all tests display non-monotonicity although the power function of the modified Wald
test is much higher than that of the LM tests. What is quite remarkable is the fact that the
UD max test has, in all cases, a monotonic power function that is much higher than any of

the other tests. This provides clear evidence to its usefulness.
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Finally, it is useful to comment on what happens when the regression is spurious, i.e.,
there is no cointegration. Hansen (1992b) showed that the LM test designed to detect a
martingale specification in the intercept, in the spirit of Nyblom’s (1989) test, can be viewed
as a test for the null of cointegration against the alternative of no cointegration. Although
the sup-Wald test is not specifically targeted for the alternative of random variation in the
intercept, it still has power against spurious regressions (i.e., no cointegration). This means
that it will also reject when no structural change is present and there is no cointegration
(the errors are I(1)). However, we can use the following approach to determine if the data
suggest structural changes in a cointegrating relationship or a spurious regression. Suppose
that one is willing to put an upper bound M (say 5) on the number of breaks. Then if
the system is cointegrated with less than M breaks, the sequential testing procedure can be
used to consistently estimate the number of breaks. On the other hand, if the regression
is spurious, the number of breaks selected will always (in large samples) be the maximum
number of breaks allowed. Thus, selecting the maximum allowable number of breaks can be
indicative of the presence of I(1) errors. The same is true when information criteria are used

to select the number of breaks. We verified via simulations that this is indeed the case.

7 Conclusion

We presented a comprehensive treatment of issues related to testing in cointegrated regression
models with multiple structural changes. We analyzed models with I(1) variables only as well
as models which incorporate both I(0) and (1) regressors. The breaks are allowed to occur
either in the intercept, the cointegrating coefficients, the parameters of the I(0) regressors
or any combination of these. Our simulation experiments show that the commonly used LM
tests are plagued with the problem of non-monotonic power in finite samples. The sup-Wald
test however is able to avoid such non-monotonicity while maintaining adequate size. Our
asymptotic results allow us to devise a sequential procedure to select the number of breaks.
Finally, we provide the asymptotic critical values of our tests for a wide range of models that
are expected to be useful in practice. The simulation experiments demonstrate the favorable
properties of our test and the proposed long run variance estimator. It is important to note
that the idea of constructing the estimate of the long run variance using information under
both the null and alternative hypothesis is quite general and is applicable even in regression

models which do not involve structural change.
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Appendix

We use ||.|| to denote the Euclidean norm, i.e., ||z| = (3_7_, 22)Y/? for zeRP. For a
matrix A, we use the vector-induced norm, i.e., [[A| = sup, 4 [|Az|| / [|x]|. We have [|A] <

[tr(A’A)]Y2. Also, for a projection matrix P, ||[PA| < ||A||. We use the notation A =
Agig) — A(Z j)» where A ;) is the matrix of observations from regime 7 to regime j (both

inclusive), i.e., Agj) = (ar,_,41,...,ar,)" while Ag ;) is the matrix (conformable to A; ;) of
means, i.e., A(”) = (EL”,...,&M)’ where a;; = (T; — T;-1) 7" ZtTiTHH a;. Also, we use
Al gy = Aag) — A®) where A9 is the matrix (conformable to A ;) of sample averages,

ie., AW = (z,..,7), where 7 = T-' 3 x;. Let 144 be a (Tj — T;_;) x 1 vector of ones.
To ease notation, we will write /T(m-) as Zi, AZ‘L as Af A (i,i) as A;, AW as A" and L) as
L, Wy, W1 Wb W WP) are independent Wiener processes with dlmensmns corresponding
to those of (B, B!, B%, B!, B%). We also use the notation W, = (W/, W)". We start with
a Lemma about the weak convergence of various sample moments whose proof is standard
given the results in Qu and Perron (2007).

Lemma A.1 Under A1-A5, the following weak convergence results hold (fori =1,....,m+

1): a) T3 [T)\]Zt - foAi T-3/22[TAi]th N fo B, T- 1/2 [T/\] It = BI(\),

TRy i hub, = BN, T- 1/22[ 1]%: = Bi(\); b) T2 22, = [ BIBY,
227&:1 2ot 2y = fo BgBlzﬂf c) T~ 1215 1. thut = fo deB1+)‘ (Efﬁ‘A ), T th/}- ZptUt =

fo/\i BYdB;+\i (25 +A%,); d)T LS N ud) = fo BIdBI'+- ) (SIf+ALH), T2 S 2l =

0 BIAB S AL), T4 S ol o [N BB (S A, T S8 Syl

Jo BYABY + X\ (5% 4+ A%).

The next Lemma will also be useful in subsequent developments.

Lemma A.2 Let X171, 1yxp) = (Tiy s Ti), T = (T;=T;—1) " ZtT;THH x; and ué(TFTH)Xp) =
(fty ..., u)’.  Then under Al-A4, we have for i = 1,...m + 1: (i) ' — X; > 0; (ii)
TY2(X; — Xo)U; = T7V2X; — 1i)'Us + 0,(1); (i) T7H(X: — X)) (X, — Xi) = T7HX; —
Y (Ko ) 4 0(1); (i) T-93Z(X, %) = T-V2Z(X, — ) + 0,(1).

Proof of Lemma A.2: Part (i) follows trivially. To prove (ii), note that T—/2(X;— X;)'U; =
T2 X— ) UAT V2 (11— X;)'U;. We have T2 (11— X,)'Us = (u—2) T V23w =
0p(1), using part (i). For (iii), note that
T7HX = X)(X = X)) = TN X — ) (X = ) + T7H X — ) (1 = X)
HTH (' = Xa) (X = ') + T (' = X) (0" = X3)
Now T7H(X; — ) (' = Xi) = T g (o = i) = 0) = —(Ai = A (u —_i" )i —
z;) = o0,(1). Similarly, 771 (" — X;)'(X; — p') = o0p(1). Finally, T (y* ) (pf -
X)) = (N — Nic)(p — ) (p — 7;)" = 0,(1). To prove (iv), note that T 3/22’( X;
T2y o1 2) (1 — %) = 0p(1) and the result follows immediately.
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Proof of Theorem 1: We only consider Cases (1) and (4). The details for the other cases
can be found in the working paper version. We have

SSRy — SSRy,
k(T — (k+1)(q+pp) —qr — ps) LSS Ry

where SSRy and SSR; are the sum of squared residuals under the null and alternative
hypotheses, respectively. In all cases, we have k(T — (k+1) (g +p5) —qr —ps) " 'SSRy 2 ko>,
Case 1: The regression under H; is y; = ¢; + 2,00 + u and for SSRy we have

SSRy = (Y(>_1k_,k+1) - sz(l,k+1)5b),(y(§,k+1) - le(l,k:—&-l)éb)
= (Zya 1y (O = ) + Ul 1)) (Zoa ey (06 — 05) + Ul )
= U(*l/,kJrl)Ul k+1) (Zlfll s Ukt ) (Z;(/l,k+1)Z;(1,k+1))il(Zlf(/l,k+1)U;1,k+1)oA'1)

FT<)\, k’) -

k+1 _ ~ ~ A k+1

SSR, = S (Y — Zyby) (Vi = Zuiow) = S (Zui(86 — 005) + Us) (Zyi (6 — 0i) + Uy)
=1 =1
k+1 ~

= 2t (20 (ZyZw) M (ZU5) + U0
Therefore,
SSRy — SSR;, = _02(folwzb(l,kﬂ)dwl)/(folWzb(l,k+1)WZb(1,k+1)/)—1(folwzb(l,kﬂ)dwl)
el Ai 2,1 Ai 0,0 1,7 2,0
+U2 Z{(fAz—lwf( 7 )dwl),(f)\q Wb( )W )/ f)\z 1Wb dW )}
Z AL (Aig1) = M Wi ()2
Aip1Ai(Aig1 — Ai)
and the result stated follows. Case 4: The regression under the alternative hypothesis is

~ ~ ~
Yo = i+ 20 + 2500 + e Let Z0 ) = (270 k11)0 Zoaprny) and 0 = (04, 0,)". We have

SSRy = (Y — 40, k+1)5),(1/(§,k+1) — Z{1 j41)0)
x/

= (Z(l UG, k+1)),(Z(1,k+1)Z(*1,k+1)) (Z(l k:+1)U(*1,k+1)) U(l k) U1 k1)

k+1

SSRy, = S2(Yi— Zpibs — Zuiow) (Yi — Zgid s — Zuidws)
=1
el o X N X N
= S(Zpi(05 — 07) + Zui(0p — 0i) + U (Z5i(85 — b5) + Zi(8p — 0pi) + Ty)
=1

After considerable algebra, we can show that

k+1 _ ~ k+1 k+1 _
SSRk = _(Z Z sz z) (Z leszZh) (ZZ sz z)
k+1 ~ k-l—l ~ o~

—Z(sz U (ZyZw) (23U )+Z(UU)
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where My, = I, — Zbl(Z’anl)_lzgz and [; the (T; — T;_1) x (T; — T;_1) identity matrix. Thus,
SSRy— SSRy = _(Z(*ll,kJrl)U(*l,k+1)),<Z(*1, k) (1 1)) (Z(1 kUl 1))

k+1 ~ k+1 k+1

(Z Zszbz z) (Z ZszblZfZ) (Z Zszszz>

k:+1~~ o o~ ~ k+1 _

+ Z(lenUi)/(ZI;z‘Zbi)_l(ZzgzU) + U1k+1 U(*l,kﬂ) - E(U;Uz)

i=1 i=1
and, with B/*(r) = (B{(r),B%(r)"),
SSRy — SSR, = (fObe1k+1 dB)(f be1k+1)be1k+1 ) (f be1k+1 dB,)

¥ . v i) iy
+(Z:1 f’\i—lBi\d( ’ )dB Z f,\ BM( )BM Z f)\z 1BM )dB, )
k+1 A N ‘ N - | !
+ Z:l(f/CilBi’(l,l)dBl)/(fA)lilBS(Z,@)BS(Z,@)/)fl(f)\);«:lBi)(’L,z)dBl)

Eo(AiBi(Aig1) = Aigi Bi(\)) (A Bi(Ai1) — Aia Bi(\))

_|_
> Amxwﬂ )
where B2'"(r) = BI®V(r) — [} BICOBIE ([ BN -1 (1) Note that

each element of B2 Z)( ) is the residual from the projection of the corresponding element
of BI")(r) onto the space spanned by {ng) }iv, for a given realization of these stochastic

processes. We also have B (r) = (N2 M0 (1) g0 that

kEp(\ k) = — fo Wfb (1,k+1) dW fo Wfb (1,k+1) Wfb (1,k+1) fo Wfb (1 k:+1)dW )
k+1

Zf)\ WMZ’L dW Z‘/‘)\ WMZ’L)WMZZ Z‘/‘)\ 1WZJ\JH dW)

SR RO ([ WHOWH Y W)

EC AW (A1) = X Wi () (AW (Aign) = A Wi (\))

+
i:zl A1 Ai(Aig1 — Ai)

Proof of Theorem 2. We give the details only for cases 4 to 6. Case 4. The regression
under H; is y; = ¢; + 2,00 + 21, 58;; + u. We have,

SSRo = [Yiks1) = ZoarsnO — Xoasn)Bo) Y k1) = Zo(1ie1)06 — Xo1 1) o)
By Lemmas A.1 and A.2, T~ 3/2Zl;"('1 ki) KXok = 0p(1). Thus,

[Zy1 o1y (00 — gb) + Xo 1) (B — ﬁb) + Ul ps) %

[Zok+1) (06 — gb) + Xpna1)(Bp — Bb) + Ul 1))
= (6 — 5 b) szll K1) 2o 41y (G — gb) +2(dp — gb),ZIj(ll,k—l—l)UEkl,k—H) + U(*ll,k—&-l)U(*l,k—H)
+(By 51;) Xy X prn) By — Bb) +2(8, — Eb)/Xg(/l,k+l)U€<1,k+1) + 0p(1)

SSRy =
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= _(TilU*llk:+l)Z*(1,k+1))(TiQZ;(Il,kJrl)Zl;k(l,kJrl)) N IZb(lerrl)U(*l,k+l))

—(T U ki X o) T Xk Xiwwrn) (TP X 50k Uik
U 5y Ul ey + 0p(1)

We have SSRy = SO [Yi = XyiBy — Zyidul Vi — XuiByy — Zuidyi]. Using Lemmas A.1-A.2,
T-3/27. Xy = 0,(1) and under Hy, Y, = szﬁb + Zpi6p + UZ, so that

k+1 __ “ ~ R ~ ~ N ~ N ~

SSRy = Y [Xui(By = Bri) + Zi(06 — 06:) + Uil [Xui(By — Brs) + Zi (06 — i) + U]
=1
k+1 o~ ~ o~ ~ o~
= YT 2 ) (T2 Zyy Zi) (T Z3,Us)
=1

—(T2U; X)) (T X3, X0) (T2 X40) + U[U] + 0,(1)
Therefore,
kEp(\ k) = _(folwg(l,k—&-l)dwl)/(folWf(l,k+1)W:(1,k+1)/)—1(folwf(l,k+1)dwl)

(1) Wi (1) — WA (1)% + § {(N = X)) T (N) — WA (Ao1))? )

+;(>\z‘—>\z’—1)_l( w(Ai) = W (Nic1)) (W (i) — Wi (Aica)

faapi i Ai i GV —1/ [Ai i
+ LI W WY ([ W OWE) ([ W dm)]

which reduces to the expression stated in the Theorem. Case 5: The ‘model Ulnder~H 1 1s
Yt :Ci—i-Z}t(Sf—f—Ilftﬁf—l—ut. We have SSRk :Z’H—l[y Xﬂﬁf Zfi(Sf]l[Y;—Xfiﬁf—Zﬁ(Sf].
Under Hy, Y; = X8y + Zyi05 + U, so that

k+1

SSR = S [X1i(Br — By) + Zsi(6p — 05) + UV [Xi(By — By) + Zyi(05 — 0f) + U]

=1

Furthermore, T'(d; — 8) = (T2 S5 Zlefl) Y- ZHI ZfZ ;) +0,(1) and

k+1 ~

T3y = By) = (T ZXfoz) (T 1/2ZXfZ i)+ 0p(1).

Hence, after some algebra,

SR, — —(TSCTZNT25 7. 5.0 TS 7.0
k= —( Z i fz)( Z fi fz) ( Z fi z)
k+1 - k41 _

—(T71? Z UXp)(T™ 2 XpXps) M1 Z X3U0) + 2 UU; + 0,(1)
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and

kFT()\, k) - _(fole(l,kJrl)dW f[) Wf(l k+1) Wf (1 k+1)/ fo Wf(l k+1) dW )
k+1
Ai gy i i,i) ivi
(5[ OIS [ WIS [ W)

n Zk: (AW1(Aipr) — >\z‘+1W1(>\v;))
i=1 Air1Ai(Aipr — Ag)
Case 6: The model under H; is y¢ = ¢; + 2,00 + xftﬁf + uy. In this case, SSR;, =

SY - szﬁf Zyidy) [Y; — szﬁf sz5bz] Under Hy, Y; = szﬁf + Zyi6y + U;, so that

SSRy = Ii[)zfi(ﬁf — By) + Zui(0y — 0ui) + Ul [X1i(B; — By) + Zui(Ss — bi) + Uy

We also have T'(8y; — 6,) = (1722}, Zy;) T Z}.U; + 0,(1) and

TR, — B,) = (T- kz“)?flxm (T 1/22sz )+ 0p(1).

Hence,

k+1 ~ o~ ~ o~ ~ o~
SSRk - - Z(T_IUZ,sz)(T_QZl/anZ)_l(T_IZ{)ZUz)
12 s k+1 1 12 k+1 _

—(T ZUsz)(ZT X5 X)) T Zsz )+ZUU

so that

kEr(\E) = ki:l[_(f())wrlWf(l,i—s—l)dWl)/(fO)\HlWf(l,i—&-l)Wf(l,i—&-l)/)—l(fo)\i+1Wf(1,i+1)dW1)

i=1

Ai i 17 PN i i)\ — Ai i
([ WD WY ([ WEEDPEEDN LAy b gy )

z z

+ f/\/\m Wb(i+1,i+l)dW1)/(f)\>j+1 WZ1)(1+!,¢+1)W5(1+1J+1)/)71(f):\im Wzb(i+1,i+1)dwl)]

zk: (AWi(Niqa) — At Wi (\))°
- AisiAi(Aip1 — )

Proof of Theorem 3: We provide a proof for the testing problem (2) in Category (a), a
pure structural change model with only I(1) regressors and a constant. The proofs for the

other cases are very similar. We first let By = T-1/2 Zg %C where ¢, = (v;,u?,). Under

the stated conditions, By = B = (Bi.., BY) as T — oo, where B}, = By — Q},(Q%)"'BY.
Note that BY , is independent of BY. Thus, B denotes a vector Brownian motion with block

diagonal covariance matrix Q = diag((c4 )% Q%), where (0% )% = 02 —Q°_(Q%)~1Q" . The

relevant regression under the alternative hypothesis is

A it A
/ / A%
Ye = ¢ + 200 + D Az 1 + 0

Jj=—Lr
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As a matter of notation, let 0y, = (Azp,_y s s A2y ) 15 = (Mhys - Mir)'s B = (€1, er),
V = (v1,...,vr), and 1T = (II",_, ..., 1T} )'. Also, define M, = Ir — ny(nyn;)~ I, 2
(L, zw)'s Z = (21,0 27), Zi = (21141, -, 21), £ = diag(Zy, ..., Zy11), 6 = (¢, 8;)" and the
[(k 4+ 1)(g + 1) x 1] vector 6 = (9, 5 ~-,0). The vectors of estimates under the null and the
alternative are 6 and 5, respectively. The vector of residuals is v* = M, Y — M, Z 6 under the

null and v* = M,Y — MnZé under the alternative. We have v* = 0* + MnZ(5 5), so that
SSRy — SSR, = 0" — 00" = (6 — 5) 7'M, Z (5 — 5)

= (6—0)Z'Z(8~8) — (6~ 0) Zmi(ufyus) iy 25— 8)
Now note that
1(5=3) Z'mi (my) ™y Z(5=3)|| < |1(5=8) D[ D7 Zmi || (n) ™I 1mfs ZD7 || D (5=3)|
where the [(k +1) X (¢ + 1)] diagonal matrix Dr = diag(TY?,T,T,...,T,... T2, T, ... T).
We have ||Dr(5 — 5)|| O,(1), ||(772*772§) " = O( _1), 1D Z';]) = O,(13*), since
|

1TSS, Zumiill = Op(), 1772 20 il = O,(14!%) (Saikkonen, 1991, Kejriwal and
Perron, 2008a). Hence, ||(§ — 0)'Z Z'nt () "y Z(6 — 0| = O,(lp/T) = 0,(1). Next,
~ = _ _ A = k+1
(6-0YZ'2(6—=0) = —(ZV)(Z'2)" 2V + Y (ZVi)(ZiZ)(ZVi) + 0p(1)
1=1

*/ */

= _(Zb(l,k—&—l)v(ik—&—l )/(Zb(l,k+1)Z;(1,k+1)> (Zb(lk—&-l)v(ik—kl))

k1 o .
Ve Vi + Z{(sz ) (ZhiZi) M (Z3Vi) = ViVi} + op(1)

Therefore,

SSRO . SSRk = _(f Bb(l k+1) dBi)Z f(] Bb (1 k+1)Bb(1 k+1) f Bb (1, k+1)dBi),z>

L Ai iy Ai iy i)\ =1 [ iy
+ Z{(fAi, BYdBy ) ([ BB T[T B )dBi’.z)}
n Z (NiBY, (A1) = A BY (\))?
)\z+1)\z<)‘z+1 - )\z)
Since BY _ and B, are independent BY =% W, and B? = (Q°, )1/2Wb so that
SSRO_SSR’C:> 0_1 fowblkJrl dW fowb1k+1 Wb1k+1 fowb1k+1 dW)

k+1 . , . o , .
(00 S AW ([ WEEDWRED) =[N e g, )}
=1 1—1 i—1 1—1

2 & A1) = A Wi (N))?
i=1 Ai1Ai(Aip1 — i)
It can be shown, using arguments as in Kejriwal and Perron (2008a) that &, is a consistent

estimate of o4 _ under the stated conditions (the proof is quite tedious and omitted). This
proves the theorem.




Table 1.a: Asymptotic Critical Values for Category (a) Case 1, ¢ = .15.
(The entries are quantiles = such that P(sup F(\ k)/k < z) = )

Non Trending Case Trending Case
Number of Breaks, k Number of Breaks, k
Qv « 2 4 5 UD max 1 2 3 4 5 UD max
1 .90 | 10.34 8.85 7.66 6.66 5.30 10.53 11.18 9.25 8.09 6.95 5.53 11.33
95 | 12.11 9.96 8.60 7.36 5.90 12.25 13.03  10.39 894 760 6.12 13.07
975 | 13.85 11.41 9.40 7.99 6.42 13.91 15.08 11.49 9.66 8.28  6.67 15.13
99 | 17.03 1241 10.40 8.71 7.08 17.40 16.86 1273 10.82  8.95 7.32 16.86
2 .90 | 12.36 11.01 9.60 8.45 6.96 12.64 11.88 10.31 9.00 798  6.62 12.13
95 | 1430 1211 10.41 9.19 7.64 14.47 13.63 11.34 9.94  8.68 7.31 13.99
975 | 15.72  13.37  11.26 9.75 8.15 15.90 15.51 12.57 10.86 9.37  7.92 15.53
99 | 17.67 1473 12.21  10.77 8.82 17.67 17.31 14.63 12.10 10.51  8.73 17.31
3 .90 | 14.88 12.84 11.49 10.19 8.53 15.09 14.39 12.14 10.79  9.61 8.22 14.65
95 | 16.66 14.11 12.38 10.94 9.12 16.71 16.50 13.22 11.66 10.33 8.92 16.61
975 | 18.32 15.24 13.01 11.52 9.61 18.35 18.08 14.45 12.54 11.04 9.44 18.24
99 | 2078 16.29 14.36 12.37 10.23 20.78 20.28 15.55 13.80 12.02 10.10 20.28
4 .90 | 16.87 14.72 13.20 11.75 9.90 17.05 16.27 13.80 1241 11.17 9.62 16.46
95 | 19.08 1590 14.15 12.68 10.72 19.16 18.36 15.08 13.38 12.07 10.28 18.46
975 | 20.81  17.15 1521 13.38 11.43 20.89 20.52 17.01 14.33 12.98 10.93 20.52
99 | 2259 1885 16.44 14.25 11.98 22.59 23.12 1871 1577 13.87 11.72 23.12
Table 1.b: Asymptotic Critical Values for Category (a) Case 2, ¢ = .15.
(The entries are quantiles 2 such that P(sup F(\ k)/k < z) = «)
Non Trending Case Trending Case
Number of Breaks, k Number of Breaks, k
qf «Q 1 2 3 4 5 UD max 1 2 3 4 5 UD max
1 .90 7.52 6.38 537 4.54 349 7.79 8.67 6.84 6.07 531 4.01 8.90
.95 9.26 730 6.21 5.19 3.98 9.38 10.29 7.89 6.85 5.97 4.49 10.44
975 | 10.63 8.25 6.98 5.67 4.40 10.87 12.18 899 7.57 6.66 5.02 12.18
299 | 12,57 10.01 7.77 6.42 4.88 12.60 14.21 10.19 845 7.10 5.62 14.27
2 .90 8.48 6.70 5.66 4.77 3.63 8.66 832 649 5.65 498 3.84 8.60
95 | 10.13 7.66 6.43 5.36 4.10 10.25 10.06 745 6.42 5.67 4.36 10.11
975 | 11.69 8.85 7.34 599 4.62 11.82 1147 859 7.21 6.29 5.02 11.52
99 | 13.66 10.20 8.09 6.91 5.35 13.66 13.21 986 829 7.01 5.49 13.30
3 .90 8.47 6.51 559 4.77 3.58 8.74 840 6.53 5.64 503 391 8.66
.95 | 10.08 761 6.26 5.49 4.07 10.26 10.08 748 6.35 5.65 4.35 10.10
975 | 11.27 851 721 6.12 4.49 11.43 11.68 855 6.90 6.15 4.83 11.68
99 | 12.88 9.95 788 6.70 5.13 12.93 13.72 953 7.51 6.72 5.34 13.72
4 .90 8.56 6.59 571 4.87 3.81 8.85 857 649 5.69 494 3.85 8.69
.95 | 10.07 7.66 6.52 5.55 4.30 10.17 10.22 734 6.51 559 4.46 10.36
975 | 11.69 8.61 7.10 6.09 4.70 11.69 11.90 833 7.22 6.26 4.88 11.95
99 | 13.88 9.64 7.83 6.58 5.33 13.88 14.53 9.68 833 6.97 5.53 14.53




Table 1.c: Asymptotic Critical Values for Category (a) Case 3, ¢ = .15.
(The entries are quantiles = such that P(sup F(\ k)/k < z) = )

Non Trending Case Trending Case
Number of Breaks, k Number of Breaks, k
W « 1 2 3 4 5 UD max 1 2 3 4 5 UD max

1 .90 7.90 6.37 5.36 4.49 3.46 8.21 7.21 5.34 4.54 3.81 3.02 7.43
.95 9.50 7.36 6.08 5.01 3.90 9.75 8.98 6.32 5.29 4.42 3.54 9.07
975 | 10.83 8.44 6.75 5.66 4.34 10.93 10.74 7.54 5.97 4.97 3.89 10.74
99 | 12.34 9.73 7.82 6.31 4.96 12.34 13.10 8.76 7.38 5.86 4.58 13.10
2 .90 | 10.59 9.13 7.94 6.81 5.43 10.83 10.33 8.90 7.70 6.68 5.35 10.61
95 | 1249  10.36 8.72 7.52 5.94 12.69 12.01 9.93 8.57 7.28 5.91 12.08
975 | 14.33  11.31 9.56 8.13 6.45 14.40 13.48  10.80 9.32 7.89 6.27 13.51
99 | 16.56 12.78 10.45 8.94 7.03 16.56 15.61 11.97 10.10 8.55 6.85 15.62
3 .90 | 1274  10.98 9.71 8.56 6.98 12.94 13.15  11.11 9.77 8.57 7.04 13.23
95 | 1453 12.18 10.62 9.30 7.49 14.61 14.85 12.22  10.82 9.32 7.61 14.97
975 | 16.14 13.24 11.43 9.96 8.17 16.14 16.32  13.20 11.57 10.02 8.17 16.32
99 | 1797 14.64 12.58 10.87 8.83 17.97 1870 14.76 12.15 10.60 8.76 18.70
4 .90 | 1485 12.81 11.44 10.13 8.44 14.95 15.21 13.05 11.57 10.24 8.50 15.33
95 | 16.77  14.00 12.35 10.82 9.12 16.99 17.23 14.09 1254 11.03 9.29 17.31
975 | 18.77 1527 13.17 11.50 9.71 18.79 19.10 15.22 13.12 11.81 9.82 19.10
99 | 2076 16.15 1443 12.28 10.35 20.87 21.14 16.73 14.24 12.60 10.57 21.14

Table 1.d: Asymptotic Critical Values for Category (a) Case 4, ¢ = .15.

(The entries are quantiles : such that P(sup F(\ k)/k < z) = )
Non Trending Case Trending Case
Number of Breaks, k Number of Breaks, k
qar, @ «Q 1 2 3 4 5 UD max 1 2 3 4 5 UD max

1,1 90 | 10.19 8.77 7.74 6.60 5.26 10.53 10.81 9.18 799 6.89 5.48 10.98
95 | 12.03 9.78 8.53 7.18 5.81 12.30 12.27 1030 887 7.61 6.09 12.34
975 | 14.05 11.03 9.28 7.92 6.30 14.07 1443 1139 954 828 6.72 14.45
99 | 16.02 12.33  10.33 8.67 6.99 16.09 16.65 12,56 10.45 9.02 7.14 16.65
1,2 90 | 12.89 11.03 9.70 8.60 7.02 13.16 12.57 10.62 9.17 817 6.80 12.76
95 | 14.88 12.27  10.76 9.38 7.68 14.97 14.19 11.69 10.12 893 743 14.27
975 | 16.72  13.67 11.63 10.03 8.48 16.75 15.86 12.73 10.78 9.51 7.85 15.89
99 | 1848 14.72 12.48 10.89 9.06 18.48 17.89 13.79 11.76 10.18 8.39 18.16
2,1 .90 | 10.99 9.08 7.91 6.82 5.46 11.15 11.33 936 807 7.04 5.66 11.45
95 | 13.04 10.09 8.71 743 6.02 13.06 13.18 1046 9.09 7.73 6.21 13.26
975 | 14.80 10.84 9.46 8.01 6.60 14.80 15.22 11,55 9.80 833 6.71 15.22
99 | 16.46 12.08 10.43 8.87 7.04 16.46 17.85 12.48 10.49 9.08 7.32 17.85
2,2 90 | 12.87 11.04 9.71 8.58 7.12 13.07 12.58 1041 9.15 815 6.78 12.78
95 | 14.81  12.25 10.75 944 7.74 15.01 14.65 11.78 10.04 8.85 7.48 14.72
975 | 16.74 1348 11.57 10.15 8.34 16.74 15.95 12.92 10.94 9.57 8.04 16.12
99 | 19.36 14.78 12.29 10.83 8.78 19.36 1794 13.91 11.83 10.32 8.91 18.08




Table 1l.e: Asymptotic Critical Values for Category (a) Case 5, ¢ = .15.

(The entries are quantiles = such that P(sup F(\ k)/k < z) = )

Non Trending Case Trending Case
Number of Breaks, k Number of Breaks, k
qf, Do « 1 2 3 4 5 UD max 1 2 3 4 5 UD max
1,1 .90 7.97 6.43 534 4.52 3.48 8.17 9.06 6.84 5.72 4.77 3.70 9.23
.95 9.46 7.48 6.11 5.14 3.98 9.62 1043 775 6.36 530 4.14 10.47
975 | 11.36 8.49 6.88 5.76 4.52 11.47 11.82 861 7.14 597 4.54 11.87
99 | 13.44 9.89 7.70 6.56 4.96 13.47 14.03 9.54 8.09 6.60 5.06 14.03
1,2 .90 | 10.80 8.91 779 6.73 5.39 11.04 10.23 806 6.95 6.10 4.99 10.47
95 | 1241 9.96 857 731 5.89 12.47 11.83 9.19 7.70 6.87 5.67 11.93
975 | 13.63 11.01 949 8.03 6.40 13.68 13.85 10.27 8.63 747 6.25 14.01
99 | 1597 1220 10.46 8.70 7.03 16.10 15.75 1142 9.61 822 6.94 16.04
2,1 .90 7.89 6.47 546 4.63 3.55 8.10 882 691 590 496 3.83 8.96
.95 9.54 7.47 6.18 5.18 3.99 9.68 10.84 787 6.72 552 4.39 11.01
975 | 10.96 8.44 6.83 5.68 4.43 11.20 13.05 884 733 6.02 4.76 13.05
99 | 12.44 9.39 750 6.31 4.91 12.44 15.58 10.50 8.35 6.91 5.31 15.58
2,2 .90 | 10.83 8.89 783 6.74 541 10.98 10.16 816 7.18 6.23 5.11 10.36
95 | 1276 10.11 855 7.31 5.96 12.76 11.88 9.30 8.03 6.84 5.64 12.02
975 | 14.26  10.90 9.28 7.93 6.50 14.26 13.26 1032 879 7.59 6.21 13.40
99 | 1556 11.83 10.21 8.63 6.98 15.56 1491 1158 9.80 8.19 6.77 15.03
Table 2.a: Asymptotic Critical Values for Category (b) Case 3, ¢ = .15.
(The entries are quantiles  such that P(sup F(\ k)/k < z) = «)
Non Trending Case Trending Case
Number of Breaks, k Number of Breaks, k
Qb, Db « 1 2 3 5 UD max 1 2 3 4 5 UD max
1,1 90 | 10.08 861 730 6.38 5.15 10.40 10.88 876 7.62 6.66 5.37 10.99
95 | 11.94 942 828 693 574 12.11 1244 10.17 861 7.28 594 12.44
975 | 13.40 10.70 935 7.97 6.18 13.58 1493 11.15 948 8.03 6.38 14.93
299 | 1496 1230 10.70 894  6.85 15.11 16.90 12.12 10.58 882 7.24 16.90
1,2 90 | 12.24 10.80 9.53 837  6.82 12.53 12.88 11.03 9.61 839 6.82 12.97
95 | 1453 11.94 10.38 9.28  7.51 14.79 1490 1232 1062 9.20 7.41 14.97
975 | 1591 13.22 1140 9.89 8.28 16.14 16.60 13.44 11.59 10.16 8.27 16.60
299 | 19.33 14.92 12.70 11.03 8.91 19.33 19.60 15.02 1295 11.32 9.09 19.60
2,1 90 | 12.87 11.04 996 863 7.14 13.05 13.15 11.23 9.93 864 7.15 13.32
95 | 1455 1221 10.73 938 7.74 14.90 15.04 1242 10.76 9.51  7.78 15.10
975 | 16.74 13.25 11.59 10.21 8.42 16.91 16.72 13.74 11.98 10.23 8.38 16.73
299 | 19.056 14.74 12.88 11.08 8.94 19.05 19.49 14.63 12.61 11.14 9.06 19.49
2,2 90 | 1477 1294 11.56 10.25 8.54 14.97 14.86 13.05 11.73 10.31 8.58 14.99
95 | 16.30 14.07 1242 11.10 9.02 16.80 16.89 14.23 12,79 11.19 9.27 17.02
975 | 1792 15.06 13.75 11.77 9.77 18.13 18.46 15.80 13.82 12,52 10.24 18.50
299 | 19.89 17.19 14.60 12.84 10.73 19.89 21.17 17.41 1524 13.17 10.87 21.17




Table 2.b: Asymptotic Critical Values for Category (b) Cases 4 and 8, € = .15.

(The entries are quantiles = such that P(sup F(\ k)/k < z) = )

Non Trending Case Trending Case
Number of Breaks, k Number of Breaks, k
Qby Pb « 1 2 3 4 5 UD max 1 2 3 4 5 UD max
1,1 90 | 11.69 9.88 8.63 7.52 6.27 11.99 11.98 10.29 8.96 7.83 6.63 12.27
95 | 13.24  10.96 9.62 8.29 6.87 13.43 13.74 11.64 9.92 8.66 7.28 14.06
975 | 14.78  12.10 10.54 8.99 7.56 14.87 15.86 12.85 10.87 9.30 7.87 15.91
99 | 17.28 1340 11.53 9.75 8.11 17.39 1799 14.27 11.87 10.20 8.44 17.99
1,2 90 | 12.88 11.06 9.55 8.53 7.52 13.26 13.24 11.17 9.79 8.85 7.69 13.51
95 | 15.10 1213 10.53 9.42 8.16 15.25 15.16 12.19 10.85  9.61 8.29 15.20
975 | 17.51 13.04  11.30 9.98 8.71 17.60 16.89 13.33 11.59 10.48 8.87 16.89
99 | 19.10 14.68 1235 11.07 9.51 19.10 18.95 14.43 1279 11.23 9.90 18.95
2,1 90 | 13.85 12.05 10.48 9.35 7.99 14.23 13.42 11.33 10.06 9.00 7.73 13.64
95 | 1591 1345 11.50 10.23 8.64 16.07 1542 1276 11.03 9.86 8.44 15.47
975 | 17.68 14.60 12.44 11.06 9.30 18.06 1750 13.95 12.05 10.58 8.97 17.50
99 | 19.89 16.02 13.80 11.88 10.14 20.03 19.61 15.23 13.05 11.38 9.59 19.61
2,2 90 | 14.82 13.09 11.64 10.40 9.04 15.24 1491 12,50 11.14 10.06 8.83 15.28
95 | 17.02 1449 1251 11.19 9.73 17.33 17.17 14.02 12.23 10.91 9.59 17.22
975 | 19.59 1557 13.39 11.85 10.29 19.59 1948 1541 13.18 11.57 10.23 19.48
99 | 21.66 17.07 14.35 12.81 10.85 21.66 21.46 16.50 14.18 12.60 10.82 21.46
Table 2.c: Asymptotic Critical Values for Category (b) Cases 7 and 9, € = .15.
(The entries are quantiles 2 such that P(sup F(\ k)/k < z) = )
Non Trending Case Trending Case
Number of Breaks, k Number of Breaks, k
af,Pb o 1 2 3 4 5 UD max 1 2 3 4 5 UD max
1,1 .90 8.72 7.48 6.23 541 4.52 9.12 8.38 6.72 582 5.15 4.29 8.64
.95 | 10.65 8.59 6.97 6.13 5.06 10.87 10.16 793 6.82 576 4.73 10.34
975 | 12.13 9.61 792 6.68 5.50 12.39 11.95 9.18 752 632 5.34 11.99
.99 | 14.37  10.75 9.10 7.76 6.32 14.95 13.88  10.40 8.26 6.99 6.09 13.88
1,2 .90 9.95 8.17 717 6.50 5.63 10.31 9.35 7.38 6.58 5.93 5.31 9.62
.95 | 11.58 9.54 8.25 7.23 6.25 11.93 10.98 8.60 732 6.61 5.92 11.07
975 | 12.99  10.74 9.23 7.83 6.85 13.68 12.76 9.59 824 735 6.48 12.83
99 | 1566 12.19 1030 8.65 7.71 15.68 15.22  10.92 9.55 820 7.16 15.22
2,1 .90 9.03 7.51 6.45 5.70 4.66 9.49 8.96 6.80 594 5.19 441 9.08
.95 | 10.70 8.77 734 6.32 5.22 10.85 10.56 7.90 6.84 5.85 5.00 10.73
975 | 11.98 9.77 798 6.98 5.70 12.30 12.50 8.99 748 6.53 5.46 12.55
299 | 15.29 10.80 895 7.71 6.32 15.29 14.98 9.87 8.53 7.08 6.03 14.98
2,2 .90 | 10.58 8.52 736 6.64 5.78 10.88 9.82 7.95 7.00 6.31 5.50 10.33
95 | 12.32 9.72 8.23 7.45 6.39 12.53 11.82 9.26 7.88 7.09 6.20 12.09
975 | 14.09 11.05 9.36 8.23 6.95 14.22 13.76  10.64 879 7.87 6.85 13.99
99 | 16.23 12.04 1043 9.13 7.67 16.23 15.75 12.06 10.23 8.68 7.70 16.09




Table 2.d: Asymptotic Critical Values for Category (b) Case 10, € = .15.
(The entries are quantiles « such that P(sup F(X\ k)/k < z) = a)

Non Trending Case

Trending Case

Number of Breaks, k

Number of Breaks, k

qf, qb, Db @ 1 2 3 4 5 UD max 1 2 3 4 5 UD max
1,11 90 | 11.83 10.06 8.74 7.79 6.47 12.04 12.30 10.39 9.18 8.10 6.61 12.68
95 | 1395 11.26 9.76  8.47 7.15 14.02 14.55 11.71 10.14 8.97 7.32 14.66
975 | 1576 1231  10.61  9.30 7.76 15.79 16.70 1297 11.17 9.73 7.97 16.70
99 | 1798 1355 11.36  9.85 8.56 17.98 18.68 14.61 12.38 10.45 8.61 18.68
1,1,2 90 | 12.87 10.93 9.59  8.68 7.52 13.22 13.45 11.50 10.17 8.88 7.75 13.83
95 | 15.07 12.24 10.78  9.46 8.28 15.20 1570 12,78 11.14 9.78 8.38 15.72
975 | 16.68 13.17 11.62 10.23 8.94 17.10 18.41 14.04 11.86 10.55 8.97 18.41
99 | 19.17 1471 12.61  11.03 9.64 19.26 20.75 15.09 1298 11.23 9.71 20.75
1,2,1 90 | 14.06 12.05 10.51  9.48 8.05 14.30 13.80 11.59 10.44 9.08 7.83 14.05
95 | 1599 13.20 11.61 10.23 8.77 15.99 1579 1299 11.44 9.83 8.56 15.95
975 | 1772 14.58  12.38  11.02 9.36 17.78 17.60 14.03 12.25 10.51 9.05 17.67
99 | 19.77 16.16 13.80 12.00 10.09 19.77 20.69 15.52 13.13 11.66 9.77 20.69
1,22 90 | 15.06 12.97 11.51 10.40 9.05 15.47 14.61 1222 11.07 10.17 8.95 15.10
95 | 17.60 14.32 1247 11.19 9.62 17.79 16.75 13.64 12.17 10.96 9.63 16.98
975 | 19.42 1575 13,55 12.09 10.37 19.57 18.67 15.03 13.34 12.00 10.37 18.88
99 | 2229 1748 14.77  13.10 11.18 22.29 20.94 16.52 1494 13.02 11.27 20.96
2,11 90 | 12.06 10.02 8.85 7.81 6.55 12.29 12.39 10.56 9.10 8.06 6.66 12.71
95 | 13.80 11.36 9.70 8.57 7.21 13.92 14.37 11.87 10.17 8.75 7.31 14.76
975 | 16.14 12.50 10.57 9.28 7.7 16.16 16.04 13.33 11.18 9.65 7.82 16.36
99 | 18.68 14.40 11.75 10.21 8.50 18.76 19.23 14.56 12.18 10.48 8.67 19.23
2,1,2 90 | 13.13 1091 9.72 8.72 7.50 13.49 13.56 11.44 10.16 9.06 7.85 13.78
95 | 15.23 1241  10.68 9.53 8.24 15.46 15.74 12,62 11.05 9.71 843 15.79
975 | 17.23  13.51  11.56  10.13 8.92 17.36 1756 13.76 11.97 10.47 8.85 17.62
99 | 1937 1519 12.63 11.23 9.49 19.37 20.26 15.23 12.82 11.26 9.56 20.26
2,2,1 90 | 1450 12.16 10.69 9.58 8.06 14.72 13.78 11.55 10.22 9.25 7.99 14.05
95 | 16.78 1346 11.88 10.35 8.74 16.80 15.64 12.81 11.18 9.98 8.62 15.81
975 | 1850 14.64 12.76 11.11 9.37 18.50 17.22 1422 12.07 10.67 9.21 17.24
99 | 2083 16.28 13.77 11.82 9.92 20.83 19.20 1548 1349 11.61 10.04 19.20
2,2,2 90 | 1529 13.03 11.64 10.49 9.09 15.70 14.82 12,52 11.15 10.17 8.92 15.23
95 | 17.00 14.47 12.88 11.42 9.75 17.22 16.86 13.94 12.33 11.07 9.70 17.06
975 | 18.87 1549 13.72 1212 10.43 19.08 18.99 1548 13.30 11.79 10.27 19.24
99 | 2203 16.89 14,50 1296 11.20 22.03 21.22 1691 1475 12.67 11.18 21.22




Table 2.e: Asymptotic Critical Values for Category (b) Case 11, ¢ = .15.
(The entries are quantiles « such that P(sup F(\ k)/k < z) = a)

Non Trending Case

Trending Case

Number of Breaks, k

Number of Breaks, k

qf,qb, Db Q 1 2 3 4 5 UD max 1 2¢ 3 4 5 UD max
1,1,1 90 | 1072 886 7.68 6.64 5.44 10.86 10.62 9.04 7.85 6.83 547 10.85
95 | 1244 10.02 851 737  6.06 12.57 12.25 10.12 871 744  6.06 12.30
975 | 14.10 1097 9.62 827  6.55 14.19 14.05 1096 9.48 810  6.67 14.05
99 | 1641 1274 10.78 898  7.28 16.57 15.82 1220 10.36 898  7.37 15.82
1,1,2 90 | 1234 1073 936 826  6.62 12.57 12,77 1083 9.64 841 6.91 12.94
95 | 1420 11.88 10.32 896  7.46 14.49 14.27 1197 1061 9.09 7.51 14.28
975 | 16.06 1270 11.00 9.87 8.11 16.23 1558 13.03 11.36 9.64 8.10 15.58
99 | 1771 13.73  12.02 10.61 8.82 17.71 18.04 13.89 11.95 10.49 8.61 18.04
1,2,1 90 | 1293 11.056 978 872 7.06 13.04 13.37 11.14 9.92 862 7.05 13.47
95 | 1538 1246 10.99 9.59  7.82 15.51 15.18 1237 10.82 9.55  T7.57 15.38
975 | 1733 13.87 11.94 10.22 8.43 17.43 16.67 13.74 11.88 10.20 8.29 16.69
99 | 19.61 1557 1291 11.40 9.22 19.61 18.56 15.92 1279 11.23  9.09 18.56
1,2,2 90 | 1475 1283 1146 10.18 8.59 14.95 1492 1293 11.59 1049 8.69 15.12
95 | 17.39 1396 1236 11.04 9.28 17.39 16.97 13.99 12.78 11.35 9.44 16.98
975 | 18.82 15.12 13.12 11.55 9.75 19.01 18.56 15.31 13.75 12.06 10.23 18.65
99 | 2170 16.41 14.47 12.44 10.59 21.70 22.02 16.66 14.56 12.88 11.00 22.02
2,1,1 90 | 10.77 888 7.78 6.87 5.29 11.05 1141 936 815 7.02  5.52 11.49
95 | 1243 1031 871 751 5.96 12.65 13.22 1043 9.01 7.83 6.09 13.47
975 | 13.65 1133 9.74 830  6.40 13.77 15.53 11.59 10.04 837 6.63 15.64
99 | 16.69 13.49 11.27 9.05 7.18 16.81 1799 13.38 1048 9.10 7.18 17.99
2,1,2 90 | 12,52 10.70 9.64 848 7.03 12.78 13.04 11.12 9.83 862 7.20 13.18
95 | 1451 12.04 10.65 938 7.71 14.60 15.05 1234 1089 9.51 7.85 15.17
975 | 16.21  13.01 11.37 10.04 8.29 16.21 16.91 13.68 11.95 10.51 8.64 17.15
99 | 1875 1438 12.24 1099 9.10 18.75 18.72 15.19 13.05 11.41 9.33 18.72
2,2,1 90 | 13.12 11.25 10.02 881 7.21 13.63 14.01 1140 10.21 888  7.46 14.07
95 | 15,53 12,68 11.01 947 7.78 15.69 1593 12,61 11.04 9.71 7.98 16.03
975 | 1763 13.78 11.80 10.19 8.45 18.24 1734 13.85 11.81 10.32 8.59 17.34
99 1 20.25 1555 1293 11.29 9.40 20.25 19.27 14.83 1294 11.08 9.13 19.27
2,2,2 90 | 14.58 1290 11.68 10.29 8.70 14.71 14.65 1291 11.56 10.29 8.64 14.95
95 | 16.33  14.08 12.51 11.17  9.22 16.40 16.84 1397 1240 11.13 9.44 16.87
975 | 18.37 14.66 13.32 11.97 10.06 18.46 18.21 15.16 13.28 11.98 9.98 18.21
99 | 2147 16.24 14.27 13.18 10.57 21.47 20.29 1590 14.59 12.81 10.82 20.29




Table 3.a: Asymptotic Critical Values of the Sequential Test SEQr(k + 1|k) for
Category (a) Case 1, ¢ = .15.

Non Trending Case Trending Case
k k
@w 1 2 3 4 5 1 2 3 4 5

1 .90 | 12.00 12.94 13.74 14.53 15.23 || 12.94 1399 1493 15.50 15.73
95 | 13.78 15.25 16.38 17.02 17.70 || 15.01 15.85 16.53 16.86 17.04
975 | 16.38 17.70 18.24 1853 19.18 | 16.53 17.04 17.17 17.43 18.04
99 | 1853 1933 1992 20.50 21.34 || 17.43 1858 19.11 19.22 19.54

2 .90 | 14.26 15.02 15.64 16.02 16.51 || 13.57 14.78 1540 15.87 16.12
95 | 15,65 16.61 17.12 17.66 17.85 | 15.51 16.18 17.08 17.31 17.50
975 | 1712 17.85 18.22 19.04 19.27 || 17.08 17.50 19.27 19.62 19.70
99 1 19.04 1935 1990 19.99 20.01 || 19.62 19.79 21.52 2258 22.75

3 .90 | 16.64 17.57 1828 18.86 19.53 | 16.38 1730 17.92 1840 18.62
95 | 1830 19.58 20.21  20.77 21.45 | 1799 18.74 19.77 20.28 20.89
975 | 20.21  21.45 22.67 23.36 23.48 || 19.77 20.89 21.56 22.11 22.28
99 | 23.36  23.52 2413 2443 25.16 || 22.11 2237 22.83 23.98 24.54

4 .90 | 1896 1991 20.68 21.13 21.51 || 18.29 19.54 20.43 20.97 21.32
95 1 2080 21.59 2236 22.58 23.12 | 20.51 21.81 2240 23.12 23.78
975 2236 23.12 2410 25.73 26.11 || 22.40 23.78 25.10 25.75 25.84
99 | 2573 27.01 2743 2747 27.75 | 25.75 26.36 26.66 26.86 27.71

Table 3.b: Asymptotic Critical Values of the Sequential Test SEQr(k + 1|k) for
Category (a) Case 2, e = .15.

Non Trending Case Trending Case
k k
g « 1 2 3 4 5 1 2 3 4 5

1 .90 9.14 10.09 10.61 11.04 11.45 | 10.22 11.21 12.02 12.33 12.75
95 | 10.63 11.54 12.09 12.57 12.86 || 12.15 12,77 13.48 14.21 14.32
975 | 12.09 1286 13.25 14.01 14.19 || 13.48 14.32 14.66 1541 15.72
99 | 14.01 1433 14.80 1533 16.43 | 1541 1596 16.23 16.48 16.62

2 .90 | 10.06 11.18 11.68 12.21 12.52 9.92 10.v3 1141 11.79 12.18
95 | 11.69 12,62 13.33 13.66 14.07 || 11.41 12.18 12.80 13.21 13.69
975 | 13.33 14.07 1461 1522 1531 || 12.80 13.69 14.19 14.68 14.94
99 | 1522 1540 16.51 17.02 18.13 || 14.68 15.00 15.96 16.37 17.09

3 .90 9.97 1074 11.25 11.73 12.17 9.95 11.05 11.64 11.92 12.76
95 | 11.27 12,18 12.60 12.88 12.94 || 11.66 12.77 13.26 13.72 14.15
975 | 12.60 12,94 13.24 14.33 1449 || 13.26 14.15 14.70 14.83 15.71
99 | 1433 15.14 1532 1556 16.12 || 14.83 15.86 16.59 16.66 16.91

4 .90 | 10.01 10.81 11.55 12.09 12.37 || 10.19 11.19 11.79 12.67 13.05
95 | 11.59 1240 12.80 13.88 14.23 || 11.90 13.08 13.68 14.53 15.03
975 | 12.80 14.23 1559 1574 16.03 || 13.68 15.03 15.62 16.08 16.70
99 | 15674 16.10 16.61 16.93 17.05 || 16.08 16.80 17.48 17.48 17.80




Table 3.c: Asymptotic Critical Values of the Sequential Test SEQr(k + 1|k) for
Category (a) Case 3, ¢ = .15.
Non Trending Case Trending Case
k k
Qb « 1 2 3 4 ) 1 2 3 4 )
1 .90 9.46 10.27 10.63 11.03 11.31 8.84 10.09 10.69 11.13 11.80
95 | 10.68 11.37 11.80 12.34 12.65 || 10.73 11.87 1258 13.10 13.83
975 | 11.80 12.65 12.97 13.12 13.50 || 12.58 13.83 14.73 15.04 15.30
99 | 13.12 1533 16.54 16.68 16.83 || 15.04 1537 15.74 16.31 16.71
2 90 | 1243 13.59 14.14 14.85 1533 | 11.92 12.90 13.42 13.77 14.38
95 | 14.29 1542 1587 16.56 17.02 || 13.44 14.39 15.05 15.61 15.94
975 | 15.87 17.02 1741 1750 18.09 || 15.05 15.94 16.33 16.59 16.85
99 | 17.50 19.35 19.50 20.73 21.08 || 16.59 17.64 18.14 18.15 18.71
3 90 | 14.48 15,51 16.11 16.53 16.72 || 14.83 15.61 16.24 17.15 1747
95 | 16.12 16.78 17.66 1797 18.14 | 16.26 17.48 1797 18.70 19.01
975 | 17.66 18.14 18.85 19.45 20.30 || 17.97 19.01 19.79 20.11 20.22
99 | 19.45 20.34 21.65 21.66 22.84 | 20.11 20.64 21.23 21.27 21.39
4 90 | 16.74 17.81 18.75 19.22 19.53 || 17.17 18.19 19.08 19.46 19.84
95 | 1877 19.73 20.53 20.76 21.10 || 19.10 19.93 20.62 21.14 21.51
975 |1 20.563  21.10 22.15 22.50 23.20 || 20.62 21.51 21.85 22.31 22.58
99 | 2250 23.24 23.36 23.53 23.95 | 22.31 22.61 24.20 2499 25.19
Table 3.d: Asymptotic Critical Values of the Sequential Test SEQr(k + 1|k) for
Category (a) Case 4, ¢ = .15.
Non Trending Case Trending Case
k k
G« 1 2 3 4 5 1 2 3 4 5
1,1 90 | 11.98 13.02 14.03 14.73 14.94 || 12.20 13.51 14.26 14.63 15.21
95 | 14.05 14.94 1548 16.02 16.50 || 14.30 15.25 16.28 16.65 17.05
975 | 1548 16.50 17.10 17.57 17.92 || 16.28 17.05 17.85 18.17 18.46
99 | 17.57 18.68 20.20 20.26 20.63 || 18.17 1854 20.88 22.23 22.35
1,2 90 | 1477 15.85 16.63 17.17 17.35 || 14.09 1520 15.77 16.04 16.38
95 | 16.64 17.36 18.10 18.48 18.70 (| 15.82 16.44 17.19 17.89 18.19
975 | 18.10 18.70 19.48 20.38 20.61 || 17.19 18.19 18.76 19.21 19.61
.99 | 20.38 21.05 21.57 2236 2254 || 19.21 19.69 20.34 20.48 20.66
2,1 90 | 12.87 13.78 14.72 15.06 1547 || 13.11 14.03 15.14 15.73 16.22
.95 | 1477 15.55 16.14 16.46 16.70 || 15.22 16.45 17.21 17.85 18.15
975 | 16.14 16.70 16.99 17.19 18.20 || 17.21 18.15 18.79 18.96 19.01
99 | 17.19 1836 18.55 18.58 18.91 |[ 18.96 19.48 20.33 20.49 20.86
2,2 90 | 14.70 15.67 16.70 17.04 17.56 || 14.48 1540 15.93 16.37 16.70
95 | 16.71 17.65 18.63 19.36 19.49 || 15.93 16.72 17.56 17.94 18.10
975 | 18.63 19.49 20.02 20.55 21.07 || 17.56 18.10 18.78 19.01 19.64

.99

20.55 21.38 2289 23.16 24.18 || 19.01 20.34 21.056 21.28 21.30




Table 3.e: Asymptotic Critical Values of the Sequential Test SEQr(k + 1|k) for

Category (a) Case 5, ¢ = .15.

Non Trending Case

Trending Case

k i

T 1 2 3 1 5 1 2 3 1 5

1,1 90 | 940 10.30 11.14 11.80 12.42 || 10.39 11.15 11.69 12.10 12.40
95 | 11.24 1245 13.00 1344 1352 || 11.70 1244 13.17 14.03 14.10
975 | 13.00 1352 14.23 14.75 1512 || 13.17 14.10 14.76 14.98 15.17
99 | 1475 1519 15.85 16.30 16.40 || 14.98 1552 15.87 15.89 16.16

1,2 90 | 1220 13.11 1349 14.09 1451 || 11.80 12.78 13.80 14.39 14.92
95 | 1352 14.61 1570 1597 16.56 || 13.81 14.94 1543 1575 16.24
975 | 1570 16.56 16.96 17.72 18.29 || 15.43 16.24 16.43 16.67 16.98
99 | 17.72 1841 19.13 19.21 20.07 || 16.67 17.67 18.06 18.48 19.13

21 90 | 949 1038 10.88 11.34 11.65 | 10.76 12.02 12.82 13.44 13.86
95 | 1095 1174 12.27 1244 13.07 || 1295 13.88 15.17 1558 1597
975 | 12.27  13.07 1358 14.31 1540 || 1517 1597 16.42 16.65 17.37
99 | 14.31 1557 1578 1579 15.96 || 16.65 17.63 18.64 18.75 19.30

22 00 | 1264 1353 14.14 1450 1473 || 11.79 12.66 13.15 13.57 14.15
95 | 1419 1474 1534 1556 1655 || 13.18 14.25 14.77 1491 1527
975 | 1534 16.55 16.69 17.53 17.82 || 14.77 1527 1595 16.76 17.14
99 | 1753 18.04 1821 1849 19.00 || 16.76 17.18 17.59 19.83 19.89

Table 4.a: Asymptotic Critical Values of the Sequential Test SEQr(k + 1|k) for

Category (b) Case 3, e = .15.

Non Trending Case

Trending Case

k k
o0 1 2 3 1 5 1 2 3 1 5
1,1 .90 | 11.93 1205 13.38 13.62 14.18 || 12.47 13.83 14.82 15.19 15.58
95 | 1340 14.18 14.59 14.96 15.02 || 14.93 1558 1644 16.90 17.19
975 | 1459 15.11 1599 16.54 17.22 | 16.44 1743 17.70 18.61 18.88
99 | 1654 17.54 17.54 17.93 17.93 || 18.61 18.98 18.98 19.20 19.20
1,2 90 | 1447 1521 1583 16.47 17.36 || 14.81 15.68 16.46 17.21 18.30
95 | 15.91 17.36 18.19 19.33 19.34 | 16.60 18.30 19.07 19.60 19.65
975 | 18.19 19.49 20.39 20.48 21.15 || 19.07 19.93 21.46 21.96 22.00
99 | 2048 21.52 21.52 23.28 23.28 || 21.96 23.85 23.85 24.68 24.68
21 90 | 1454 15.95 16.68 17.07 17.24 || 14.99 1599 16.61 17.22 17.43
95 | 16.74 17.24 17.40 19.05 19.15 || 16.72 17.43 18.24 19.49 19.56
975 | 17.40 19.44 20.71 21.24 2181 | 1824 1959 21.89 22.00 24.38
99 | 21.24 22.01 22.01 23.54 23.54 || 22.00 24.84 24.84 26.36 26.36
90 | 1628 17.34 17.90 18.13 18.64 || 16.89 17.75 1842 19.03 19.60
95 | 17.92 18.64 19.05 19.80 20.30 || 18.46 19.60 20.28 21.17 21.21
975 | 19.05 20.33 20.46 21.40 21.80 | 20.28 21.45 21.60 21.90 21.94
99 | 2140 23.39 23.39 23.64 23.64 || 21.90 22.58 22.58 24.08 24.08




Table 4.b: Asymptotic Critical Values of the Sequential Test SEQr(k + 1|k) for
Category (b) Cases 4 and 8, ¢ = .15.

Non Trending Case

Trending Case

k k
w0 1 2 3 1 5 1 2 3 1 5
1,1 .90 | 13.18 13.92 14.70 15.08 15.79 || 13.72 15.14 15.72 16.44 16.75
95 | 1472 15.82 16.60 17.28 17.61 || 15.73 16.83 17.54 17.99 18.17
975 | 16.60 17.61 19.20 19.43 19.85 | 17.54 18.17 19.27 19.97 20.53
99 | 19.43 20.02 21.38 21.43 22.10 || 19.97 21.13 22.77 2342 23.98
1,2 90 | 15.06 16.32 17.39 17.83 18.22 | 15.09 16.21 16.85 17.33 17.85
95 | 1744 18.25 18.65 19.10 19.96 || 16.86 17.87 18.81 18.95 19.28
975 | 18.65 19.96 20.06 20.37 20.69 | 18.81 19.28 19.66 21.10 21.43
99 | 20.37 20.73 21.96 23.13 23.22 || 21.10 21.61 22.74 23.70 24.12
21 90 | 15.82 16.69 17.59 18.15 18.39 || 1521 16.54 17.44 17.98 18.46
95 | 17.68 18.63 19.37 19.89 20.39 || 17.49 1849 19.26 19.61 20.27
975 | 19.37  20.39 21.48 22.63 22.84 | 19.26 20.27 20.76 21.69 22.03
99 | 22.63 23.82 24.73 2540 25.62 || 21.69 22.37 22.94 24.08 24.08
22 90 | 16.05 18.69 10.46 20.06 20.44 | 17.12 1856 19.40 19.92 20.75
95 | 19.48 2044 21.33 21.66 21.97 || 19.45 20.42 21.16 21.46 22.33
975 | 21.33  21.97 22.39 2352 24.03 || 21.16 21.86 22.89 23.41 23.85
99 | 2352 24.11 24.75 25.05 25.12 || 23.41 23.85 25.06 25.94 26.32

Table 4.c: Asymptotic Critical Values of the Sequential Test SEQr(k + 1|k) for
Category (b) Cases 7 and 9, e = .15.

Non Trending Case

Trending Case

k k
4. «a 1 2 3 1 5 1 2 3 1 5
L1 90 | 10.56 11.68 12.06 12.70 13.25 || 10.14 11.07 11.81 1231 12.90
95 | 12.08 13.26 14.04 14.37 14.95 || 11.85 13.01 13.57 13.8%8 13.99
975 | 14.04 14.95 15.11 15.68 16.31 || 13.57 13.99 14.63 15.19 15.95
99 | 1568 17.70 18.33 19.01 20.20 || 15.19 16.15 16.24 16.25 16.34
1,2 90 | 11.52 1251 1206 13.57 14.28 || 10.95 11.83 12.70 12.92 13.89
95 | 12.98 1445 1530 15.66 1593 || 12.70 13.89 14.90 15.22 16.00
975 | 1530 15.93 16.30 16.85 16.95 || 14.90 16.00 16.68 17.33 17.48
99 | 16.85 17.36 17.77 1854 19.60 || 17.33 17.91 18.29 1871 19.21
21 00 | 10.65 11.45 11.95 12.68 13.14 || 1049 11.45 1234 12.86 13.34
95 | 11.97 1347 1457 1529 1585 || 12.36 13.69 14.55 14.98 15.07
975 | 1457 15.85 16.64 17.43 17.92 || 14.55 15.07 1529 15.72 15.86
99 | 1743 18.13 1871 1952 19.64 || 15.72 15.96 16.44 16.48 17.43
2,2 00 | 1222 13.22 14.03 1456 14.93 || 11.76 12.88 13.46 14.31 14.75
95 | 14.03 15.05 1556 16.23 16.54 || 13.51 14.97 15.19 15.75 16.10
975 | 1556 16.54 17.38 17.82 18.18 || 15.19 16.10 16.45 17.06 17.27
99 | 17.82 1846 19.61 19.65 20.18 || 17.06 17.40 18.55 19.65 20.08




Table 4.d: Asymptotic Critical Values of the Sequential Test SEQr(k + 1|k) for

Category (b) Case 10, ¢ = .15.

Non Trending Case

Trending Case

k k
qf, v, Pb «Q 1 2 3 4 5 1 2 3 4 5
1,1,1 90 | 13.72 15.13 16.24 16.68 17.11 |[ 14.32 1597 16.59 17.08 17.31
95 | 1575 16.74 1798 18.34 18.44 || 16.60 17.35 18.07 18.68 18.99
975 | 17.42  18.34 19.12 19.85 20.15 || 18.07 18.99 19.73 20.26 20.71
99 | 19.12  20.15 21.12 21.21 21.21 |[ 20.26 21.24 22.52 2255 22.81
1,1,2 90 | 14.85 1595 17.30 17.86 18.46 (| 15.58 16.90 18.31 18.92 19.14
95 | 16.64 18.01 19.17 19.55 19.72 || 18.39 19.14 19.98 20.75 21.50
975 | 18.69 19.55 21.44 21.63 22.04 || 19.98 21.50 21.94 22.54 22.86
99 | 21.44 22.04 23.51 24.20 24.20 || 22.54 23.07 23.18 23.35 23.85
1,2,1 90 | 1594 16.98 17.99 1830 18.46 (| 15.72 17.04 17.59 17.75 18.16
95 | 17.69 1831 19.77 20.07 20.32 || 17.59 18.47 19.63 20.69 21.06
975 1 19.01 20.07 20.93 21.42 21.81 | 19.63 21.06 21.76 22.59 22.70
299 | 20.93 21.81 2283 22.88 22.88 |[ 22.59 22.83 23.91 24.31 24.81
1,2,2 90 | 1743 1853 19.99 20.17 20.75 || 16.70 17.70 18.60 19.20 19.82
95 | 1942 20.21 2229 22.49 2257 || 18.63 19.83 20.60 20.94 21.27
975 | 21.40 2249 23.20 24.51 24.63 || 20.60 21.27 21.71 23.06 23.19
99 | 23.20 24.63 25.82 26.26 26.26 || 23.06 23.23 23.52 23.54 25.67
2,1,1 90 | 13.75 14.86 16.55 17.03 18.10 || 14.31 15.26 15.96 16.71 17.40
95 | 16.09 17.16 18.68 18.90 20.00 || 16.00 17.60 18.26 19.23 19.96
975 | 18.12 18,90 20.85 21.25 2227 || 18.26 19.96 21.00 22.20 22.30
299 | 20.85 22.09 2293 23.14 23.14 (| 22.20 22.61 24.61 24.76 25.10
2,1,2 90 | 1522 16.26 17.60 18.14 18.99 || 15.68 16.62 17.43 17.99 18.50
95 | 17.14  18.23 19.37 20.03 20.79 || 17.52 18.50 19.57 20.26 20.44
975 1 19.03 20.03 21.76 22.33 23.09 || 19.57 20.44 21.28 21.79 22.42
99 | 2176 22.83 23.18 23.46 23.46 || 21.79 22,50 22.82 23.61 23.91
2,21 90 | 16.70 17.48 18.82 19.34 20.49 (| 15.54 16.36 17.08 17.44 17.96
95 | 18.34 19.38 20.83 21.46 21.70 ([ 17.11 18.01 18.62 19.20 19.60
975 1 20.52 2146 22.00 23.35 23.69 || 18.62 19.60 20.74 21.16 22.04
299 | 22.00 23.59 24.22 2541 2541 (| 21.16 2235 22.92 23.90 24.39
2,22 90 | 16,93 18.15 19.27 19.87 20.73 || 16.76 17.94 18.93 19.82 20.09
95 | 18.87 19.92 22.03 2230 22.85 || 18.97 20.11 20.59 21.22 21.83
975 | 21.29 2230 23.24 23.62 23.70 || 20.59 21.83 22.31 22.75 23.49
99 | 23.24 23.64 2424 2436 24.36 || 22.75 23.58 25.33 25.76 26.04




Table 4.e: Asymptotic Critical Values of the Sequential Test SEQr(k + 1|k) for

Category (b) Case 11, ¢ = .15.

Non Trending Case

Trending Case

k k
qf, v, Pb «Q 1 2 3 4 5 1 2 3 4 5
1,1,1 90 | 1242 13.24 14.08 14.40 15.10 (| 12.21 13.08 14.02 14.74 14.94
95 | 14.10 15.10 15.60 16.41 16.57 || 14.05 14.94 15.08 15.82 16.06
975 | 15.60 16.61 17.46 17.79 18.58 || 15.08 16.42 16.52 16.54 17.87
99 | 1779 1890 18.90 21.38 21.38 || 16.54 19.39 19.39 20.59 20.59
1,1,2 90 | 14.17 1546 16.06 16.53 17.09 ([ 14.20 15.10 15.55 16.07 16.49
95 | 16.06 17.09 17.34 17.71 18.06 || 15.58 16.49 17.32 18.04 18.24
975 | 17.34  18.09 18.57 19.03 19.08 || 17.32 18.65 19.02 19.12 19.69
299 | 19.03 19.51 19.51 20.33 20.33 || 19.12 19.70 19.70 20.43 20.43
1,2,1 90 | 15.38 16.40 17.29 17.98 18.29 ([ 15.18 16.23 16.61 16.99 17.36
95 | 1733 1829 19.09 19.61 20.04 || 16.67 17.36 17.69 18.56 19.40
975 1 19.09 20.57 21.29 21.64 21.85 | 17.69 19.66 20.44 21.68 23.43
99 | 21.64 22.22 2222 2343 23.43 || 21.68 23.63 23.63 25.79 25.79
1,2,2 90 | 17.28 1820 18.80 19.30 19.92 || 16.87 17.73 1845 18.83 19.78
95 | 18.82 19.92 21.25 21.70 22.15 || 18.56 19.78 21.03 22.02 22.23
975 | 21.25 2228 22.80 24.44 25.09 || 21.03 22.69 23.56 23.72 23.98
99 | 2444 25.23 2523 2595 25.95 (| 23.72 24.03 24.03 25.78 25.78
2,1,1 90 | 1243 13.03 13.57 14.25 1498 || 13.21 14.44 1552 16.04 16.63
95 | 13.65 14.98 15.88 16.69 16.82 || 15.53 16.63 17.42 17.99 18.08
975 | 15.88 16.94 18.74 18.83 19.15 || 1742 18.86 19.27 19.34 20.07
99 | 18.83 20.20 20.20 22.79 22.79 ([ 19.34 20.08 20.08 21.03 21.03
2,1,2 90 | 1442 1534 16.01 16.89 17.49 || 14.97 1591 16.90 17.29 17.71
95 | 16.21  17.49 1853 1875 19.26 (| 16.91 17.71 17.90 18.72 19.44
975 | 18.53 1942 19.84 20.11 20.60 || 17.90 19.53 20.62 20.91 21.98
99 | 20.11 21.74 21.74 22.13 22.13 |[ 20.91 22,55 2255 23.93 23.93
2,21 90 | 1545 16.28 17.60 18.68 19.01 ([ 15.90 16.74 17.34 17.58 17.96
95 | 17.63 19.01 19.81 20.25 20.42 || 17.34 1796 18.11 19.27 19.52
9751 19.81 2044 21.19 21.62 21.68 || 18.11 19.54 19.59 20.30 20.53
99 | 21.62 2246 2246 22.67 22.67 || 20.30 20.69 20.69 20.81 20.81
2,22 90 | 16.27 17.06 17.98 19.43 19.91 (| 16.75 17.86 18.20 18.51 19.06
95 | 18.37 19.91 20.55 21.47 21.70 (| 18.21 19.06 19.74 20.29 20.30
975 1 20.55 2216 2279 2290 23.80 || 19.74 20.53 20.90 21.29 21.94
299 | 2290 2394 2394 24.12 24.12 || 21.29 23.17 23.17 23.65 23.65




Table 5: Empirical Size.

T =120 T =240

Specification Test\DGP | 1 2 3 4 5 1 2 3 4 5

SupFr(1) | .04 55 .00 .15 20| .04 63 .00 .14 .19
SupFr(2) | .05 73 .00 .19 .27|.04 .82 .00 .20 .31
S_Corr=0,C_Corr=0 | SupF;(3) | .04 .75 .00 .20 27|.04 .85 .00 .22 .33
UDmaz | .04 65 .00 .16 .21|.05 .72 .00 .16 .21

SupFy(1) | .04 .03 .02 .14 .25(.03 .03 .02 .12 .28
SupF7(2) | .03 .02 .05 .13 .29|.03 .02 .02 .17 .43
S Corr=1,C_Corr=0 | SupF;(3) [ .02 .01 .05 .12 29| .02 .00 .02 .18 .45
UDmax | .04 .03 .03 .14 .26(.03 .02 .02 .14 .32

SupFr(1) [ .06 58 .00 .05 .00|.05 .64 .00 .05 .00
SupF5(2) | .07 76 00 .07 .00|.05 .82 .00 .05 .00
S_Corr=0,C_Corr=1 | SupFi(3) | .06 .77 .00 .06 .00|.05 .8 .00 .05 .00
UDmaz | .06 .67 .00 .05 .00|.05 .73 .00 .05 .00

SupFr(1) | .05 .04 .03 .04 .04|.04 .04 .01 .04 .01
SupFi(2) | .03 .02 .06 .03 .07|.03 .02 .02 .04 .03
S_Corr=1,C_Corr=1 | SupFy(3) | .03 .02 .07 .02 .07 .02 .01 .02 .04 .03
UDmax .05 .04 04 04 .05]|.04 .04 .01 .06 .02
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Figure 2: Power Functions: The Case with Two Breaks



