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Multi-stage contests with stochastic ability∗

Kai A. Konrad†and Dan Kovenock‡

August 16, 2006

Abstract
We consider the properties of perfectly discriminating contests in

which players’ abilities are stochastic, but become common knowledge
before efforts are expended. Players whose expected ability is lower
than that of their rivals may still earn a positive expected payoff from
participating in the contest, which may explain why they participate.
We also show that an increase in the dispersion of a player’s own abil-
ity generally benefits this player. It may benefit or harm his rival, but
cannot benefit the rival more than it benefits himself. We also explore
the role of stochastic ability for sequential contests with the same oppo-
nent (multi-battle contests) and with varying opponents (elimination
tournaments) and show that it reduces the strong discouragement ef-
fects and hold-up problems that may otherwise emerge in such games.
High own ability dispersion selects such players into the contest and
favors them in elimination contests.
Keywords: all-pay auction, elimination tournament, contest, race,

conflict, multi-stage, random ability, discouragement.
JEL classification numbers: D72, D74

1 Introduction

Many tournaments are characterized by multiple rounds, with or without the
elimination of some candidates in earlier stages of the process of determining
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a final winner. Internal career competition has features of an elimination
tournament in which the number of participants may shrink gradually.1

In patent races several firms may take part in what Harris and Vickers
(1987) have termed a race: a multi-battle contest in which the competitor
who first accumulates a given number of successes wins. In the political
context, many election processes consist of multiple contest stages. In the
race for US presidency several competition stages gradually narrow down
the number of competitors.2 Many sports disciplines provide more obvious
examples.3 Also violent fighting for turf, for successorship in the context
of autocratic governance systems, or for military victory in wars typically
consist of multiple battles with victory being a function of the outcomes in
these battles, and with some of the competitors being eliminated at some
stage of the process.

Contests with multiple rounds or tournaments in which the outcome of
previous battles determines whether players are allowed to enter into or win
something in later stages of the game have an important hold-up feature in
common: successful participation in the future stages of the game may re-
quire substantial effort, and this may make it less attractive to expend effort
in preliminary rounds of the game. Similarly, once a player has accumulated
a sufficiently large disadvantage in the game, he may simply want to give
up, even though success in later rounds may bring him back into play. Re-
turning to a state in which the competition becomes more balanced may not
be worth much effort, because the economic rents from winning the compe-
tition at this state may be dissipated by the efforts expended in the state.
Wärneryd (1998), McAfee (2000), Müller and Wärneryd (2001), Klumpp
and Polborn (2006), Konrad (2004) and Konrad and Kovenock (2005, 2006)
illustrate discouragement effects of this type.4

1Such competition has been analysed by Rosen (1986) and an early literature survey
is by Lazear (1995). Rosen (1986) distinguishes between heterogenous contestants with
common knowledge of all players’ talents, and an elimination tournament with two stages
in which there are different types of players but all players share the same symmetric
priors about themselves and about all other players.

2Several dynamic aspects of the presidential nomination campaigns have been analysed
by Aldrich (1980), Strumpf (2002) and Klumpp and Polborn (2006). The latter emphasize
that outcomes of early rounds may lead to what could be called a discouragement effect
for the player who lost in early rounds.

3Szymanski (2003) discusses a large set of design issues in this context. The structure
of an elimination contest has been analysed in the context of sports, e.g., by Abrevaya
(2002), Groh et al. (2003), Harbaugh and Klumpp (2005) and Horen and Riezman (1985).

4The possibility of conflict in future periods and its implications for the resolution of
conflict in earlier periods has also received considerable attention in the literature on the
economics of conflict (see Garfinkel and Skaperdas 2000, Mehlum and Moene 2004).
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In this paper we identify an important reason why the discouragement
effect of future conflict may be less severe than current theory would imply.
A player’s ability, measured, for instance, by his or her cost of expending
effort, may be random. Empirically, the existence of transitory changes in
a player’s ability is seemingly a very reasonable assumption for all of the
examples mentioned. Athletes obviously have transitory ups and down in
their ability. The same should apply to managers and workers in firms, to
researchers in laboratories and the managers who hire and supervise them,
and to politicians and their advisors in the different stages of a campaign.
Moreover, many aspects of a player’s actual ability or effectiveness in a given
battle, match, or campaign may be easily observed by an adversary, so that
it is not unreasonable to model these transitory realizations as common
knowledge at the start of the battle.

Such randomness has important implications. Shocks to the unit cost
of effort ameliorate the effects of cutthroat competition in single and multi-
stage perfectly discriminating contests.5 More precisely, despite the fact
that, all else equal, less able players earn a zero expected utility in such a
contest, stochastic ability means that “on any given day” an underdog may
be more able than a favorite. This turns participation in such a contest into
an option: in perfectly discriminating contests in which a player is less able
than his rival he earns a zero expected payoff, but earns a positive payoff,
linearly decreasing in his own cost of effort, in contests in which he is more
able. Hence, players benefit from mean preserving spreads of their own cost
distribution. Mean preserving spreads of a rival’s distribution of cost may
benefit or harm a player, but never benefit the player more than the rival
himself. All of this implies that with transient ability shocks dissipation will
be lower than in the absence of shocks and the value that players attribute
ex ante to participating in such a contest will be higher.

With transient ability, typically all players earn a positive expected pay-
off from the contest ex ante (in contrast to the deterministic cost case).
Therefore the cutthroat nature of later stage contests is moderated and
does not completely discourage effort in earlier stage contests. Moreover,
the “reversion to the mean” arising in later stage contests means that even
if a player in a given contest is less able than his rival, if he is more able
on average, his continuation value from winning the contest will be greater,
and therefore his imputed value of the prize from the present contest will be

5Randomness of ability has qualitatively similar implications if the contest success
function is not perfectly discriminatory. However, we do not address this issue in this
paper.
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greater. This leads to greater effort, at least partially offsetting his transient
ability disadvantage. Hence, our analysis has implications for the interaction
of favorites and underdogs initiated by Dixit (1987) and further elaborated
upon by Baik and Shogren (1992) and Leininger (1993). In this line of re-
search, ability is some property that remains fixed for the duration of the
contest despite any noise that might be generated by the imperfectly discrim-
inating nature of the contest success function. In contrast, we concentrate
on an environment in which players differ over time in their abilities. A
player’s ability in each round of the contest is a random draw from a player
(and possibly time) specific distribution.

Our results have far reaching implications for both naturally arising and
mechanism-induced selection processes. First, we demonstrate that, given
two rival players with identical mean abilities, the player with the greater
dispersion in ability achieves higher payoffs in the contest against his rival.
Moreover, the “riskier” player also obtains a higher expected payoff than
does his rival against any third player, regardless of that player’s distribu-
tion of ability. Hence, all else equal, we would expect evolutionary forces to
lead to greater fitness of players with “riskier” distributions of abilities. Such
players would also be more willing to expend whatever entry costs might be
required to participate in perfectly discriminating contests. In addition to
this naturally occurring selection, within mechanism selection also arises.
All else equal, players with more disperse abilities have higher continuation
values from winning at early or intermediate stages of multistage contests,
which increases their cost contingent incentive to expend effort in the cur-
rent stage-contest faced. This leads to both higher effort and an increased
probability of advancement. Hence not only does an elimination contest
have a tendency to select individuals with higher dispersion, the dispersion
among participating individuals should increase in the later stages of an
elimination tournament.

A roadmap for the remainder of the paper is as follows. In section 2 we
develop the formal framework and analyse the role of cost dispersion for the
payoffs of players in a static, perfectly discriminating contest. We consider
how these results are reinforced in a dynamic elimination contest in section
3, and in a race in section 4. Section 5 concludes.

2 Cost dispersion and the contest

In this section we study a static contest with two players i = 1, 2. A prize is
awarded to the winner. The value of the prize is normalized to unity. The
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competition for this prize is organized as a perfectly discriminating contest
(all-pay auction), in which the two players 1 and 2 simultaneously expend
effort e1 ≥ 0 and e2 ≥ 0 and have costs of effort that are equal to c1e1 ≥ 0
and c2e2 ≥ 0. Here, c1 and c2 are the per-unit-of-bid effort costs of players
1 and 2, with c1, c2 ∈ [c¯ , c̄], and randomness of these unit cost parameterswill be our main concern. However, at the point of time when the efforts are
chosen, each player knows his own and the rival player’s unit cost; hence,
at this stage, the problem describes a perfectly discriminating contest with
complete information, with payoffs of the players characterized as

π1(c1, e1, c2, e2) = p1(e1, e2) · 1− c1e1 (1)

π2(c1, e1, c2, e2) = p2(e1, e2) · 1− c2e2

where pi(e1, e2) = 1 if ei > ej for i, j ∈ {1, 2}, and p1 = p2 = 1/2 if e1 = e2.
This game has been carefully analysed by Hillman and Riley (1989) and
Baye, Kovenock and deVries (1996). As they show, the equilibrium of the
perfectly discriminating contest for given values of c1 and c2 is unique and
described as follows:

Proposition 1 (Hillman and Riley 1989)6 The unique equilibrium of the
two-player all-pay auction with complete information is in mixed strategies.
Let c1 < c2. Then bids are described by the following cumulative distribution
functions:

G1(e) =

½
c2e for e ∈ [0, 1c2 )
1 for e ≥ 1

c2

G2(e) =

½
1− c1

c2
+ ec1 for e ∈ [0, 1c2 )
1 for e ≥ 1

c2

The payoffs are 1− c1
c2
for player 1 and 0 for player 2, and win probabilities

are equal to 1− c1
2c2

for player 1 and c1
2c2

for player 2.

We now turn to the point in time at which the players have not learned
their actual unit cost of expending effort in the perfectly discriminating
contest. We assume that these costs are random variables. The main focus of
this section is how this randomness affects the expected equilibrium payoffs

6The original characterization of equilibrium in two-player perfectly discriminating
contests assumed identical cost of effort. However, as noted by Baye, Kovenock and de
Vries (1996, p. 292), behavior is invariant with respect to affine transformations of utility,
so that by dividing each player’s payoff by his own constant unit cost of effort one can
transform a game with different unit costs of effort into one with identical unit costs of
effort but transformed valuations of the prize.
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of the players at the stage when they do not yet know the realization of their
unit costs.

Assume that unit costs ci are independent random variables that are ab-
solutely continuous with finite support [c

¯
, c̄] with c̄ >c

¯
> 0. The cumulative

distribution functions of c1 and c2 are F1(c1) and F2(c2) with corresponding
densities f1 and f2, which we assume to be positive on [c¯

, c̄]. As is seen
from Proposition 1, not the absolute values of c1 and c2, but rather their
ratio is of importance for the equilibrium payoffs. Let α ≡ c1/c2. Then F1
and F2 induce a cumulative distribution function Z(α),7 which we assume
is absolutely continuous with density function z(α), defined on [α,ᾱ], where
α =c

¯
/c̄ and ᾱ = c̄/c

¯
. The expected payoffs are

π1(Z) =

Z 1

α
(1− α)z(α)dα and π2(Z) =

Z ᾱ

1
(1− 1

α
)z(α)dα. (2)

In this perfectly discriminating contest only the player who has an actual
cost advantage receives a positive payoff, and the player with the cost disad-
vantage receives a zero payoff. Accordingly, if cost is dispersed, and if both
players’ cost parameters are independent random variables with the same
support, then each player has a cost advantage with positive probability,
and therefore earns a positive expected payoff.

Changes in the distributions of cost parameters affect the expected pay-
offs. We first study generalizations of mean-shifts and then turn to changes
in the riskiness in the sense of second order stochastic dominance.

Proposition 2 Consider two distribtions Z(α) and Ẑ(α) with Z(α) ≥ Ẑ(α)
for all α. Then π1(Z(α)) ≥ π1(Ẑ(α)) and π2(Z(α)) ≤ π2(Ẑ(α)).

Proof. Integrating by parts,Z 1

α
(1− α)(z(α)− ẑ(α))dα (3)

=
h
(1− α)(Z(α)− Ẑ(α))

i1
α
+

Z 1

α
(Z(α)− Ẑ(α))dα

= 0 +

Z 1

α
(Z(α)− Ẑ(α))dα ≥ 0,

7Unless otherwise noted, our results stated on Z(α) will hold for more general joint
distributions F (c1, c2) that induce the respective cumulative distribution function Z(α)
and density function z(α).
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where the last inequality uses the assumption that Z(α)− Ẑ(α) ≥ 0 for all
α.

For player 2, let T (1/α) and T̂ (1/α) be the cumulative distributions for
1/α if α is distributed according to Z(α) and Ẑ(α), respectively. Note that
T (1/α) dominates T̂ (1/α) in the sense of first-order stochastic dominance if
and only if Z(α) is dominated by Ẑ(α) in the sense of first-order stochastic
dominance. Moreover,

π2(T (1/α))− π2(T̂ (1/α)) = (4)Z 1

α
(1− 1

α
)(t(

1

α
)− t̂(

1

α
))d
1

α
.

From here, the proof for player 2 follows by integrating by parts and using
the definition of first-order stochastic dominance.

Proposition 2 considers a generalized shift in the mean of c1/c2, in the
sense of first-order stochastic dominance. Intuitively speaking, if it becomes
more likely that c1/c2 is higher, then this shifts probability mass from states
with cost ratios for which the payoff of player 1 is high to states with cost
ratios for which the payoff of player 1 is smaller, or even zero. The expected
payoff is, therefore, reduced.

We now turn to changes in the dispersion of cost. To symbolize the
property that

R x
α [Ẑ(α) − Z(α)]dα ≤ 0 for all x, i.e., Z is dominated by Ẑ

in the sense of second-order stochastic dominance, we use Z ≤SSD Ẑ . The
following holds:

Proposition 3 Consider two distributions Z and Ẑ of α, such that Z ≤SSD
Ẑ. Then π1(Z) ≥ π1(Ẑ).

Proof.

π1(Z)− π1(Ẑ) =

Z 1

α
(1− α)(z(α)− ẑ(α))dα (5)

=
h
(1− α)(Z(α)− Ẑ(α))

i1
α
+

Z 1

α
(Z(α)− Ẑ(α))dα

=

Z 1

α
(Z(α)− Ẑ(α))dα ≥ 0.

The second line follows from the first line by integration by parts, and the
last inequality holds by the definition of SSD.
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Proposition 3 has implications for the ex-ante benefits of uncertainty of
own strength in the perfectly discriminating contest. These implications can
be spelled out easily with the help of the following lemma:

Lemma 1 Consider three positive random variables ci, cj , and ck, with
cumulative distribution functions Fi(ci), Fj(cj) and Fk(ck). Let ci and ck
and cj and ck be pairwise stochastically independent. Then, if Fi(ci) ≤SSD
Fj(cj), then Z( cick ) ≤SSD Z(

cj
ck
).

The proof of Lemma 1 has been relegated to the Appendix. The Lemma
states an intuitive result. Suppose c1 is dominated by c̃1 in the sense of
SSD. Then, for any given c2 > 0, it holds that c1/c2 is dominated by c̃1/c2
in the sense of SSD. But if this holds for all c2 > 0, it should also hold for
the weighted sum over c2 of c1/c2 and c̃1/c2. Proposition 4 together with
Lemma 1 can be used to make the following observation.

Corollary 1 If F1(c1) ≤SSD F̂1(c1), then, at the stage where c1 and
c2 are not known to the players, player 1 with a cost distribution F1(c1) has
the higher expected equilibrium payoff than player 1 with a cost distribution
F̂1(c1).

Proof. By Lemma 1, Z(α) ≤SSD Ẑ(α) follows from F1(c1) ≤SSD F̂1(c1).
Hence, by Proposition 3, π1(Z) ≥ π1(Ẑ).

Corollary 1 suggests that a player benefits from a higher dispersion in his
own ability. In many other areas of economics a higher dispersion is asso-
ciated with higher risk, and generally disliked. In a contest environment, a
higher dispersion of own ability is beneficial. This property may have impli-
cations for players’ decisions to enter into games which can be characterized
as all-pay auctions or contests. Players with a high variability in their ability
earn larger expected rents when entering into such games. Hence, they are
likely to be willing to expend a higher entry cost. If there are deterministic
entry fees into such games or an opportunity cost of participating, we should
therefore expect some self-selection of players: for given entry cost, players
with high variability in their ability benefit more from entering into such
games and should be more likely to participate, whereas players with the
same average ability, but less variability are more likely to stay out.

Intuitively, the corollary can also be interpreted from a competition point
of view. If c1 = c2, the rules of the perfectly discriminating contest make
players compete very strongly. Competition is so strong that, as is shown
in Proposition 1, the players dissipate the full value of the prize. Dissi-
pation is less than complete if competitors differ from each other, i.e., if
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their costs are not symmetric. More randomness will generally mean that,
in the actual perfectly discriminating contest, the realizations of the cost
parameters typically differ. Hence, randomness will cause some differentia-
tion between players, and this will relax competition. The result parallels
results on randomness and diversity in competition theory more generally.
For instance, in both Bertrand and Cournot competition with constant unit
cost, randomness of own unit cost typically benefits a firm.

The effect of changes in the cost distribution of player 2 on player 1’s
payoff (or vice versa) is less straightforward. Let c1 and c2 be stochas-
tically independent of each other and distributed according to F1 and F2
and let F2(c2) be a mean preserving spread of some distribution F̃2(c2), (so
that

R x
c (F2(c)− F̃2(c))dc ≥ 0 for all x and

R c̄
c (F2(c)− F̃2(c))dc = 0). Such a

spread does not leave the mean of α = c1
c2
unchanged and the implication of

such a spread for the payoff of player 1 is not well determined.
For the most simple case in which c1 is constant, the difference in player

1’s profit is:

π1(Z̃)− π1(Z) (6)

=

Z c̄

c1

c− c1
c

(f̃2(c)− f2(c))dc

=

·
c− c1
c

(F̃2 − F2)

¸c̄
c1

−
Z c̄

c1

c1
c2
(F̃2 − F2)dc

= 0−
Z c̄

c1

c1
c2
(F̃2 − F2)dc.

The indeterminacy of the sign of this expression can be illustrated by con-
sidering two very simple distributions of c2. For this purpose, assume that
F̃2 is degenerate, with c̃2 =

c1
∆ . Moreover, let F2 be equal to F̃2 plus some

very simple and symmetric noise. More precisely, let c2 have two possible
outcomes in this case, c2 = 1

2
c1
∆ with probability 1/2 and c2 =

3
2
c1
∆ , also

with probability 1/2. Calculating the expected profit of player 1 yields

π1(F̃ ) =

½
1−∆ if ∆ < 1
0 if ∆ ≥ 1

and

π1(F ) =


1
2(1− 2∆) + 1

2(1− 2∆
3 ) if ∆ < 1

2
1
2(1− 2∆

3 ) if 1
2 ≤ ∆ ≤ 3

2
0 if ∆ > 3

2
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Accordingly, whether the mean preserving spread in c2 increases or de-
creases player 1’s payoff depends here on this player’s advantage in the de-
generate case. If ∆ was larger than 1 but smaller than 3/2, then the payoff
of player 1 increases from zero to something positive. If, for instance, ∆ was
between 1/2 and 3/4, the payoff of player 1 actually decreases due to the
mean preserving spread in c2.

These results refer to the implications of a mean preserving spread of
the cost distribution of one player for this player and for the other player.

If two contestants’ cost parameters are identically distributed with cu-
mulative distribution functions F1(c1) = F2(c2) = F (c), symmetry implies
π1(Z) = π2(Z). We now compare payoffs of the two players who compete
with each other if their cost distributions are ranked by second-order sto-
chastic dominance. We can state the following result:

Proposition 4 Let Z(α) ≤SSD Z̃(α). Then π1(Z) − π2(Z) ≥ π1(Z̃) −
π2(Z̃).

Proof. By (2),

π1 − π2 =

Z ᾱ

α

·
(1− α)I{α≤1} + (

1

α
− 1)I{α>1}

¸
z(α)dα (7)

with I{α≤1} an indicator function that takes on the value 1 if α ≤ 1 and
zero otherwise, and I{α>1} an indicator function that takes on the value 1 if
α > 1 and zero otherwise. Define

Ψ(α) ≡ (1− α)I{α≤1} + (
1

α
− 1)I{α>1}. (8)

This function is depicted in Figure 1. It is continuously differentiable with
Ψ0(α) < 0 and Ψ00(α) ≥ 0 for all α. Applying Theorem 2 in Hadar and
Russel (1969),

π1 − π2 =

Z ᾱ

α
Ψ(α)z(α)dα (9)

is higher for Z than for Z̃ if Z(α) ≤SSD Z̃(α).8

Proposition 4 holds for distributions of α ranked by second-order sto-
chastic dominance, which may be generated by different combinations of

8The result is obtained directly by twice integrating [π1(Z)−π2(Z)]− [π1(Z̃)−π2(Z̃)]
by parts. This yields

R ᾱ
α
Ψ00(α)

R α
α
(Z(x)− Z̃(x))dxdα−Ψ0(ᾱ)

R ᾱ
α
(Z(x)− Z̃(x))dx and this

expression is non-negative if Ψ0(α) ≤ 0 and Ψ00(α) ≥ 0 by the definition of SSD.

10



Figure 1: The graph of Ψ(α)

changes in F1 and F2. We are mostly interested in the implications of one
player’s cost distribution and the change in this distribution. If F1, F̃1 and
F2 are stochastically independent, we know from Lemma 1 that F1 ≤SSD F̃1
implies Z(α) ≤SSD Z̃(α). This yields the following result:

Corollary 2 If F1, F̃1 and F2 are stochastically independent and F1 ≤SSD
F̃1 then, for the difference in expected payoffs, π1(F1, F2) − π2(F1, F2) ≥
π1(F̃1, F2)− π2(F̃1, F2) holds.

The corollary 2 states a seemingly natural property: as has been seen
from Corollary 1, an increase in a player’s cost dispersion directly increases
the payer’s payoff. This increase in the dispersion may also increase the
other player’s payoff. Corollary 2 suggests that the direct effect of own cost
dispersion is stronger than the potentially positive effect for the competing
player. The next corollary follows from Proposition 4 and allows us to
compare the players’ payoffs directly.

Corollary 3 Suppose c1 and c2 are independent and F1(c1) ≤ SSDF2(c2).
Then π1(F1, F2) ≥ π2(F1, F2).

Proof. If F1 = F2, then π1(F1, F2) − π2(F1, F2) = 0 by symmetry. Now
suppose F1 ≤ SSD F2. Then, by Corollary 2, π1(F1, F2) − π2(F1, F2) ≥
π1(F2, F2)− π2(F2, F2) = 0.

As a special case, Corollary 3 may be used to compare two players who
have the same expected ability, but differ in their abilities by a mean pre-
serving spread (see Rothschild and Stiglitz 1970). It shows that the higher
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dispersion of ability will generally favor the player who has this higher dis-
persion. This difference in payoffs should also affect individuals’ decisions
whether to participate in this competition. Individuals with a higher vari-
ability (in the mean-preserving spread sense) of their ability have a stronger
incentive to participate in this game.

3 Elimination tournaments

If players anticipate that the prize from winning a perfectly discriminating
contest is to enter into another perfectly discriminating contest, it may be
surprising that players expend considerable effort in the semi-final, even if
their rival in the final is expected to be a very strong player. Particularly if
the contest is adequately described by a perfectly discriminating contest, the
fact that weaker players do not receive a rent in the equilibrium of the fu-
ture perfectly discriminating contest should strongly discourage most of the
players from entering into early rounds of a such multiple-round elimination
tournaments. Moreover, if they do enter, it should reduce their incentives
to expend effort in early rounds. This discouragement effect has been noted
for multi-battle contests by Harris and Vickers (1987), Klumpp and Polborn
(2006) and Konrad and Kovenock (2006), and for elimination tournaments
by Rosen (1986), Gradstein and Konrad (1999) and Groh et al. (2003).

In this section we show that ex-ante uncertainty about players’ actual
ability in any of a series of perfectly discriminating contests provides a pos-
sible explanation why players are willing to expend considerble effort in
any round of a contest architecture with sequential perfectly discriminating
contests, even if they are weaker than their future opponents in terms of
expected unit cost of effort. We also show that a player whose cost distri-
bution is more dispersed has a genuine advantage compared to the other
player; his expected payoff is higher, and he wins with a higher probability.

We first consider the least complex dynamic structure, which, however,
proves to be a useful building block for the analysis of more complex struc-
tures. The structure is depicted in Figure 2. There are three players,
i = 1, 2, k. In a first round players 1 and 2 compete against each other
in a perfectly discriminating contest, which will be called the "semi-final".
The winner in the semi-final will be admitted to the final, where this winner
will compete against player k in a perfectly discriminating contest. The
timing of the game is as follows. In stage 1 players i = 1, 2 learn their own
and their opponent’s unit-cost parameters c1 and c2, which, for now, are
draws from stochastically independent and time invariant distributions F1

12



Player 1

Player 2

Player k

Winner

Champion

FINALSEMI-FINAL

Figure 2: Semi-final

and F2. In stage 2 the players simultaneously choose their efforts e1 and
e2, which cost c1e1 and c2e2, respectively. The player with the higher effort
wins and enters into the final. In the final, the winner of the semi-final has
to play againts player k in a perfectly discriminating contest. Player k’s
characteristics are known to players i = 1, 2 , already in the semi-final, and
are described by a cumulative distribution function Fk of player k’s cost of
effort that is also stochastically independent of F1 and F2.

Given that there are now more than 2 players, it helps to define

ci
cj
≡ αij (10)

and the cumulative distribution functions and density functions of αij that
are induced by F1, F2 and Fk by Zij and zij , respectively. From the analysis
in section 2 we know the two players’ expected payoffs π1k and π2k from
entering the final, given the characteristics of player k, and their own char-
acteristics. Using (2) they are given by

π1k =

Z 1

α
(1− α)z1k(α)dα and π2k =

Z 1

α
(1− α)z2k(α)dα. (11)

In the final the winner of the semi-final between 1 and 2 enters into a per-
fectly discriminating contest with player k, and all this is common knowledge
in the semi-final. We can now consider the equilibrium payoffs for players 1
and 2 in the semi-final:

Proposition 5 Let c1 and c2 be the realization of the unit costs of effort of
players 1 and 2, respectively, in the semi-final. Then their overall equilibrium
payoffs when playing the semi-finals are

πS12(c1, c2) = max{0, π1k − c1π2k
c2
}

πS21(c1, c2) = max{0, π2k − c2π1k
c1
}. (12)
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Proof. When players 1 and 2 compete in the perfectly discriminating con-
test in stage 1 and have cost parameters c1 and c2, they maximize

π1(e1, e2, c1, c2) = prob(e1 > e2)π1k − c1e1, and (13)

π2(e1, e2, c1, c2) = prob(e2 > e1)π2k − c2e2.

These objective functions are strategically equivalent to a situation in which
players 1 and 2 maximize

π1
π1k

= prob(e1 > e2)− c1
π1k

e1, and (14)

π2
π2k

= prob(e2 > e1)− c2
π2k

e2,

respectively. For this problem, from Proposition 1, player 2 earns a payoff
of zero and player 1 earns a positive payoff equal to

π1 = π1k − c1
c2
π2k (15)

if π1k
c1

> π2k
c2
, and similarly for player 2 and player 1 switching roles if the

reverse inequality holds. Accordingly, if

π1k
π2k

=
c1
c2
, (16)

the two players are symmetric and dissipate all rent in expectation. If π1kπ2k
>

c1
c2
, then player 1 has a strictly positive expected payoff that is equal to

π1k − c1
c2
π2k, and if

π1k
π2k

< c1
c2
, then player 2 has a strictly positive expected

payoff that is equal to π2k − c2
c1
π1k .

This result can be used to state the ex-ante expected payoffs of players
1 and 2 in the semi-final for given cost distributions. Recall that Z12(α)
is the cumulative distribution of α obtained for α = c1/c2, with c1 and
c2 independent draws from distributions F1(c1) and F2(c2), respectively.
The equilibrium payoffs from simultaneous optimization of these objective
functions follow from Proposition 1:

πS1 (Z12) =

Z π1k
π2k

α
[π1k − απ2k]z12(α)dα (17)

and

πS2 (Z12) =

Z ᾱ

π1k
π2k

[π2k − 1
α
π1k]z12(α)dα (18)

We may now compare players 1 and 2 with different distributions of their
unit costs, if these distributions are ordered by SSD.

14



Proposition 6 If F1 ≤SSD F2, then πS1 ≥ πS2 .

Proof. Consider Z12(α ;F1, F2) the cumulative distribution of α obtained
for α = c1/c2, with c1 and c2 independent draws from distributions F1(c1)
and F2(c2). Let F1 ≤SSD F2. Then Z12(α;F1, F2) ≤SSD Z12(α;F2, F2) by
Lemma 1. We claim that under Z12(α;F1, F2), πS2 ≤ πS1 .

First note that π1k(F1, Fk) = π2k(F2, Fk) if F1 = F2 by symmetry, and
π1k(F1, Fk) ≥ π2k(F2, Fk) by Proposition 3 and Lemma 1 if F1 ≤SSD F2.
From (17) and (18),

πS1 (F1, F2)− πS2 (F1, F2) (19)

=

Z π1k
π2k

α
(π1k − απ2k)z12(α)dα−

Z ᾱ

π1k
π2k

(π2k − 1
α
π1k)z12(α)dα

= π2k

"Z π1k
π2k

α
(
π1k
π2k
− α)z12(α)dα−

Z ᾱ

π1k
π2k

(1− 1
α

π1k
π2k

)z12(α)dα

#

≥ π2k

·Z 1

α
(1− α)z12(α)dα−

Z ᾱ

1
(1− 1

α
)z12(α)dα

¸
= π2k

Z ᾱ

α

·
(1− α)I{α≤1} + (

1

α
− 1)I{α>1}

¸
z12(α)dα

≡ π2k

Z ᾱ

α
Ψ(α)z12(α)dα.

Since π2k is constant with respect to a change in F1, and it follows from
Proposition 4 that

R ᾱ
α Ψ(α)z12(α)dα is non-negative. To complete the proof,

we confirm that the inequality used in (19) holds. Define s ≡ π1k
π2k
, replace

this definition in the third line of (19) to obtain

π2k

·Z s

α
(s− α)z12(α)dα−

Z ᾱ

s
(1− 1

α
s)z12(α)dα

¸
, (20)

and note that

∂

∂s

·Z s

α
(s− α)z12(α)dα−

Z ᾱ

s
(1− 1

α
s)z12(α)dα

¸
(21)

= 0 +

Z s

α
z12(α)dα+ 0−

Z ᾱ

s
− 1
α
z12(α)dα

=

Z s

α
z12(α)dα+

Z ᾱ

s

1

α
z12(α)dα ≥ 0.
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Accordingly, replacing all π1k
π2k

> 1 by 1 will not increase the value of the
expression, and this confirms the weak inequality.

Proposition 6 shows that the benefits that a player receives from a more
dispersed cost distribution in the static game carry over to the dynamic
game. The benefit of a higher dispersion in the structure here is two-fold.
First, the player with the more dispersed cost distribution benefits from this
dispersion if he makes it to the final and has a higher expected payoff if he
is admitted to the final. But also in the semi-final, the higher dispersion
benefits a player and increases the player’s expected payoff. As the proof
shows, the two effects compound.

We also consider the implications of dispersion of the cost parameter
for players’ probabilities of winning the contest. The following proposition
holds.

Proposition 7 If F1 ≤SSD F2, then player 1 wins the semi-final with a
(weakly) higher probability than player 2.

Proof. Since the objective functions of the competition between 1 and 2
for given c1

c2
can be stated equivalently by (14) we can apply Proposition 1

to characterize the probability that player 1 wins the contest between 1 and
2 as

p1(c1, c2) =

(
π1k/c1
2(π2k/c2)

if π1k
π2k

< c1
c2

1− π2k/c2
2(π1k/c1)

if π1k
π2k
≥ c1

c2

(22)

and p2(c1, c2) = 1− p1(c1, c2).
Consider Z12(α;F1, F2) the cumulative distribution of α obtained for

α = c1/c2, with c1 and c2 independent draws from distributions from F1(c1)
and F2(c2). Integrating over all possible c1

c2
= α, we can write

p1(Z12) =

Z π1k
π2k

α
(1− α

2π1kπ2k

)z12(α)dα+

Z ᾱ

π1k
π2k

π1k
π2k

2α
z12(α)dα (23)

for a given distribution Z12(α;F1, F2).
Let F1 ≤SSD F2. Then Z12(α;F1, F2) ≤SSD Z12(α;F2, F2) by Lemma 1.

We claim that p1(Z12(α;F1, F2)) ≥ p1(Z12(α;F2, F2)). Note that

p1(Z12(α;F2, F2)) =

Z 1

α
(1−α

2
)z12(α;F2, F2)dα+

Z ᾱ

1

1

2α
z12(α;F2, F2)dα = 1/2

(24)
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which follows from symmetry. Consider now

p1(Z12(α;F1, F2)) (25)

=

Z π1k
π2k

α
(1− α

2π1kπ2k

)z12(α;F1, F2)dα+

Z ᾱ

π1k
π2k

π1k
π2k

2α
z12(α;F1, F2)dα

≥
Z 1

α
(1− α

2
)z12(α;F1, F2)dα+

Z ᾱ

1

1

2α
z12(α;F1, F2)dα

=

Z ᾱ

α

·
1

2α
I{α>1} + (1−

α

2
)I{α≤1}

¸
z12(α;F1, F2)dα.

The win probability of player 1 is monotonically increasing in π1k
π2k

and π1k
π2k
≥

1 by F1 ≤SSD F2 and Corollary 1, which is used for the inequality in line
3 of (25). To confirm this monotonicity, denote s ≡ π1k

π2k
and consider first

derivatives:

∂

∂s
(

Z s

α
(1− α

2s
)z12(α)dα+

Z ᾱ

s

s

2α
z12(α)dα) (26)

= (1− s

2s
)z12(s)− s

2s
z12(s)

+

Z s

α

α

2s2
z12(α)dα+

Z ᾱ

s

1

2α
z12(α)dα

=

Z s

α

α

2s2
z12(α)dα+

Z ᾱ

s

1

2α
z12(α)dα > 0

Define the bracketed expression in the integrand in the last line of (25) to
be Φ(α), so that

p1(Z12(α;F1, F2)) =

Z ᾱ

α
Φ(α)z12(α;F1, F2)dα. (27)

Note that Φ(α) is continuously differentiable everywhere on (α, ᾱ) and de-
creasing in α with ∂Φ(α)

∂α = − 1
2α2

< 0 for α > 1 and ∂Φ(α)
∂α = −12 < 0 for

α ≤ 1. Furthermore, Φ(α) is convex since ∂2Φ(α)
(∂α)2 = 1

α3 > 0 for α > 1 and
∂2Φ(α)
(∂α)2 = 0 for α ≤ 1. Accordingly, we can again apply Theorem 2 in Hadar
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Player 1

Player 2

Winner of {1,2}

Champion
Player 3

Player 4

Winner of {3,4}

Figure 3: Elimination tournament

and Russel (1969) to find that

p1(Z12(α;F1, F2)) (28)

≥
Z ᾱ

α
Φ(α)z12(α;F1, F2)dα

≥
Z ᾱ

α
Φ(α)z12(α;F2, F2)dα

= p1(Z12(α;F2, F2)).

This concludes the proof.
These insights can now be applied to the simplest example of a self-

contained elimination tournament. Consider four players i ∈ {1, 2, 3, 4} in
the elimination tournament that is depicted in Figure 3. The tournament
consists of a series of elimination matches. Player 1 plays against player 2
in one of the semi-finals, and players 3 and 4 play against each other in a
parallel semi-final. The winner from each of these semi-finals is admitted to
the final. Both the semi-finals and the final follow the rules of a perfectly
discriminating contest similar to the perfectly discriminating contest that
was considered in section 2. Each of the respective two participants expends
effort and the contestant with the higher effort wins the respective stage
game, with the winner determined by a random draw in the case of a tie in
effort. In each stage game the cost parameters ci of the two contestants are
independent draws (across players and time) from a probability distribution
with cumulative distribution functions Fi for i ∈ {1, 2, 3, 4}.

We assume here that these distribution functions are time invariant; i.e.,
ci of player i in the semi-final and in the final are independent draws from
the same distribution Fi. Changes in the distributions over time will be
considered in section 4. For tractability, we consider the problem for players
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1 and 2 assuming that players 3 and 4 have identical cost distributions
F3 = F4 ≡ Fk. For any given distribution of player i ∈ {1, 2}, Fi, the
payoff from taking part in the final is πik(Fi, Fk) and determined by (2)
with Zik(α) being the distribution of

ci
ck
that is induced by Fi and Fk, where

F3 = F4 = Fk makes it a matter of irrelevance for players 1 and 2 whether
3 or 4 is the other finalist.

Given this game, (17) and (18) determine the equilibrium payoffs in the
semi-final for players 1 and 2. We can apply Propositions 6 and 7 to conclude
that, starting at the semi-final stage, the expected equilibrium payoff and the
win probability of player 1 are higher than the payoff and the win probability
of player 2 if F1 ≤SSD F2.

This example reveals that a higher cost dispersion also benefits a player
in a dynamic contest. It makes it more likely that the player succeeds and is
not eliminated in an earlier round of the tournament and it also increases the
player’s payoff from participating in the tournament. Thinking about selec-
tion properties of repeated elimination tournaments, this result suggests that
individuals with a higher variability in their ability have a two-fold advan-
tage in such competition structures. The prize from winning in earlier stages
is higher, and for given prize levels, the probability of winning is higher. For
the population of potential participants in such competition structures, the
self-selection of types in the entry stage and the selection forces in the course
of the elimination tournament compound in their effects. Participants from
a larger population who self-select into such competition structures should
have an ability that is more dispersed than average, and this dispersion
should increase in the later stages of an elimination tournament due to the
selection properties of the elimination contest.

4 Multi-battle contests

The conclusion that dispersed ability benefits players also holds for problems
in which the same players compete with each other in multi-battle contests.
Consider two players 1 and 2 in a simplified and symmetric multi-battle
contest as described Konrad and Kovenock (2006). The two players take part
in a game which is comprised of a sequence of similar one shot simultaneous
move perfectly discriminating contests which we refer to as battles. A prize
of size 1 is awarded to the one player who is the first to win two battles; the
loser receives a prize of zero. The problem is depicted in Figure 4. Starting
from the initial state (2, 2) the first battle takes place. If player 1 wins,
they move to state (1, 2). From there, player 1 wins the prize if he wins the
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Player 2 wins

Player 1
wins

(1,1)(2,1)

(2,2) (1,2)

Figure 4: Multi-battle contest

subsequent battle. If player 2 wins the subsequent battle, they move to state
(1, 1). Similarly, if player 2 wins the battle at (2, 2), they enter into state
(2, 1). From there, 2 can win the prize in the next battle, or, if 1 wins at
(2, 1), they move to (1, 1). Finally, the subgame at state (1, 1) is equivalent
with the static perfectly discriminating contest that was studied in section
2.

Konrad and Kovenock (2006) consider a more general version of this
game with asymmetric players, with more than two required battle wins,
and with intermediate prizes that are allocated to the winner of any bat-
tle. However, they assume that the ability of players is exogenous, invariant
across all states, and known to both players. Applying their framework to
the simple symmetric case, they show that the symmetric game has the fol-
lowing interesting features: at (2, 2), the sum of both players’ efforts is equal
to the unit value of the prize. From there, players move to state (2, 1) or
(1, 2). At this asymmetric state the advantaged player wins without expend-
ing any further effort and the perfectly discriminating contest at (2, 1) or
(1, 2) becomes trivial. The key for understanding this result is the following
fact. Suppose the players are in state (2, 1). Player 1 could expend some
positive effort and try to win the perfectly discriminating contest in this
state. But if he does this and wins, the players will enter into state (1, 1), at
which they will dissipate all rent fighting over the unit prize in a symmetric
perfectly discriminating contest with complete information. It is this antic-
ipated outcome that leads to hold-up and prevents player 1 from trying to
get back into play and to win, once the contest becomes asymmetric.

We consider how ability uncertainty at each state changes the result.
For this purpose, let F (i,i)1 (c1) = F

(i,i)
2 (c2) ≡ F (i,i) in state (i, i) and let
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F
(i,j)
1 (c1) = F

(j,i)
2 (c2) ≡ F (i,j) in states (i, j) and (j, i), in the sense that

the actual cost parameters c(i,j)k at state (i, j) are draws from F (i,j), and
stochastically independent over players and time. Further, let Z(i,j)(α) be
the distribution of c1

c2
that is induced by these distribution functions. We

solve the multi-battle contest recursively, starting with state (1, 1).
At (1, 1), a perfectly discriminating contest takes place. The expected

payoffs of 1 and 2 at this state prior to the resolution of c(1,1)1 and c(1,1)2 are

π
(1,1)
1 = π

(1,1)
2 = π(1,1) and are given in (2). Turn now to (1, 2). Player 1’s

payoff from winning at (1, 2) is equal to 1 (the unit prize), and 1’s payoff
from losing is determined by the payoff in the continuation game at (1, 1),
i.e., equal to π(1,1). For player 2, the payoff from losing at (1, 2) is zero. The
payoff from winning is the equilibrium payoff in the continuation game at
(1, 1), i.e., equal to π(1,1).

From Proposition 1, for given c1 and c2, it holds that the equilibrium
payoff for player 1 is 1− c1

c2
π(1,1) for c1

c2
< 1−π(1,1)

π(1,1)
and π(1,1) for c1

c2
≥ 1−π(1,1)

π(1,1)
.

Accordingly, the expected payoff of player 1 is

π
(1,2)
1 =

Z 1−π(1,1)
π(1,1)

α
(1− απ(1,1))z(1,2)(α)dα+

Z ᾱ

1−π(1,1)
π(1,1)

π(1,1)z(1,2)(α)dα. (29)

Analogous reasoning for player 2 yields an equilibrium payoff equal to π(1,1)−
c2
c1
(1 − π(1,1)) for given cost parameters with c1

c2
> 1−π(1,1)

π(1,1)
, and a payoff of

zero for c1
c2
≤ 1−π(1,1)

π(1,1)
. Hence, the expected equilibrium payoff at (1, 2) prior

to the revelation of the actual cost parameters at this state is

π
(1,2)
2 =

Z ᾱ

1−π(1,1)
π(1,1)

(π(1,1) − 1
α
(1− π(1,1)))z(1,2)(α)dα. (30)

By symmetry, the payoffs at (2, 1) are π(2,1)1 = π
(1,2)
2 and π

(2,1)
2 = π

(1,2)
1 .

Turn now to state (2, 2). Player 1’s gain from winning the perfectly
discriminating contest at (2, 2) equals π(1,2)1 − π

(2,1)
1 = π

(1,2)
1 − π

(1,2)
2 and, by

symmetry, the same applies for player 2. This difference can be calculated
further and turns out to be

π
(1,2)
1 −π(1,2)2 =

Z 1−π(1,1)
π(1,1)

α
(1−απ(1,1))z(1,2)(α)dα+

Z ᾱ

1−π(1,1)
π(1,1)

1

α
(1−π(1,1))z(1,2)(α)dα.

(31)
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This difference is strictly positive. Note also that the function

(1− απ(1,1))I{α≤ 1−π(1,1)
π(1,1)

} +
1

α
(1− π(1,1))I{α>1−π(1,1)

π(1,1)
} (32)

is convex in α for a given value of π(1,1). Accordingly, making again use of
(2), but using that the value of winning is not equal to 1, but equal to (31),
the equilibrium payoff of player 1 or player 2 from winning at (2, 2) is

π(2,2) =

Z 1

α
[(π

(1,2)
1 − π

(1,2)
2 )(1− α)]z(2,2)(α)dα+ π

(2,1)
1 . (33)

This payoff is typically strictly positive. Of course, the payoff is bounded
from above, as the difference π(1,2)1 − π

(1,2)
2 ≤ 1.

Consider also changes in the distribution of Z(i,j)(α) in the sense of SSD.
If Z(2,2) ≤SSD Ẑ(2,2), then by Proposition 3 player 1’s payoff is higher under
Z(2,2) than under Ẑ(2,2). Similarly, if Z(1,1) ≤SSD Ẑ(1,1), then π(1,1) under
Z(1,1) is higher than π(1,1) under Ẑ(1,1). Also, π(1,2)1 is convex in α, and,

hence, a mean preserving spread in Z(1,2)(α) will increase π(1,2)1 .
It is conceptually straightforward and notationally cumbersome to gen-

eralize this outcome for multi-battle contests that do not start at (2, 2),
but at some state (n,m). But it is clear from this example that uncer-
tainty about actual ability in each single battle will partially resolve the
hold-up problem in this game. Players will not dissipate the value of the
prize if they start in a symmetric state (n, n) in which they have symmetric,
but random abilities. Also, in contrast to the case of deterministic ability
(Konrad and Kovenock 2006), effort will generally not drop to zero in the
perfectly discriminating contest in asymmetric states. Intuitively, starting
in an asymmetric state, returning to a state of symmetry will not imply that
all rent will be dissipated in expectation at this state, and this provides in-
centives for the disadvantaged player to try and catch up to the advantaged
player.

5 Conclusions

In this paper we show that transient ability shocks or, more precisely, shocks
to the unit cost of effort, ameliorate the effects of cutthroat competition
in single and multi-stage perfectly discriminating contests. More precisely,
despite the fact that, all else equal, less able players earn a zero expected
utility in such a contest, stochastic ability means that “on any given day” an
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underdog may be more able than a favorite. This turns participation in such
a contest into an option: a player earns a zero expected payoff in perfectly
discriminatory contests in which he is less able than his rival, but earns a
positive payoff, linearly decreasing in his own unit cost of effort, in contests
in which he is more able. Hence, players benefit from mean preserving
spreads of their own cost distribution. Mean preserving spreads of a rival’s
distribution of cost may benefit or harm a player, but never benefit the
player more than the rival himself. This has important implications for
the hold-up problem arising in multi-stage contests. First, because players
earn a positive expected payoff from the contest ex ante (in contrast to the
deterministic cost case), the cutthroat nature of later stage contests does not
completely discourage effort in earlier stage contests. Second, the “reversion
to the mean” arising in later stage contests means that even if a player in
a given contest is less able than his rival, if he is more able on average, his
continuation value from winning the contest will be greater, and therefore
his imputed value of the prize from the present contest will be greater.
This leads to greater effort, at least partially offsetting his transient ability
disadvantage.

Our results have far reaching implications for both naturally arising and
mechanism-induced selection processes. First, we demonstrate that, given
two rival players with identical mean abilities, the player with the greater
dispersion in ability achieves higher payoffs in the contest against his rival.
Moreover, the “riskier” player also obtains a higher expected payoff than
does his rival against any third player, regardless of that player’s distribu-
tion of ability. Hence, all else equal, we would expect evolutionary forces to
lead to greater fitness of players with “riskier” distributions of abilities. Such
players would also be more willing to expend whatever entry costs might be
required to participate in perfectly discriminating contests. In addition to
this naturally occurring selection, within mechanism selection also arises.
All else equal, players with more disperse abilities have, higher continuation
values from winning at early or intermediate stages of multistage contests,
which increases their cost contingent incentive to expend effort in the cur-
rent stage-contest faced. This leads to both higher effort and an increased
probability of advancement.

6 Appendix

In this Appendix we formally prove Lemma 1 for absolutely continuous
distributions. The proof for more general distributions is similar. Define
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αs =
cs
ck
for s ∈ {i, j}, and let Zs(αs) be the cumulative distribution function

of αs. Note that

Zs(α) = prob(
cs
ck
≤ α)

= prob(cs ≤ αck)

=

Z c̄

c
Fs(αck)fk(ck)dck

where use is made of the assumption that ck is positive. Hence,

Zi(α)− Zj(α) =

Z c̄

c
Fi(αck)fk(ck)dck −

Z c̄

c
Fj(αck)fk(ck)dck

=

Z c̄

c
(Fi(αck)− Fj(αck))fk(ck)dck

Accordingly, Z x

α
(Zi(α)− Zj(α))dα (A3)

=

Z x

α

·Z c̄

c
(Fi(αck)− Fj(αck))fk(ck)dck

¸
dα

=

Z c̄

c

·Z x

α
(Fi(αck)− Fj(αck))dα

¸
fk(ck)dck

=

Z c̄

c

1

ck

·Z ckx

α
(Fi(γ)− Fj(γ))dγ

¸
fk(ck)dck,

where γ ≡ αck. Now, since cj dominates ci in the sense of second-order

stochastic dominance,
hR ckx

c (Fi(γ)− Fj(γ))dγ
i
≥ 0 for all xck ≥ 0, and

this, in turn, implies that the last line in (34) is non-negative for all x and
this completes the proof.
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