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INTERIOR OPTIMA AND THE INADA CONDITIONSF

C. D. ALIPRANTIS, G. CAMERA, AND F. RUSCITTI

Department of Economics, Krannert School of Management, Purdue University, 403 West State Street,

W. Lafayette, IN 47907-2056, USA.

Abstract. We present a new proof of the interiority of the policy function based on the Inada

conditions. It is based on supporting properties of concave functions.
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1. Introduction: A Typical Growth Model

The standard formulation of a typical one-sector growth model is as follows.1 There is a single
commodity which is used as capital, along with labor, to produce output. In the simplest formula-
tion, labor is presumed to be supplied in fixed amounts and there is a representative agent. In each
period t = 0, 1, 2, . . . a part ct of the output is consumed and a part xt+1 is saved as capital for next
period, which fully depreciates after its use. This process repeats ad infinitum. The quantities ct

and xt+1 satisfy the standard resource constraint

ct + xt+1 = f(xt) ,

where f : [0,∞) → [0,∞) is the production function and x0, the initial capital stock, is given. The
function f is assumed to satisfy the Inada conditions [5, p. 120]:

(1) f is twice differentiable on (0,∞),
(2) f ′(x) > 0 and f ′′(x) < 0 for each 0 < x < ∞,
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1 For more details see [4, Chapters 2 and 3] or [8, Chapter 5].
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(3) f ′(0) = ∞ 2 and lim
x→∞

f ′(x) = 0 .

Replacing f by f − f(0), we can assume without loss of generality that the production function
satisfies f(0) = 0 (and still satisfies the Inada conditions). Clearly, the functions f(x) = xα, where
0 < α < 1, are all production functions satisfying the Inada conditions. The key point is that every
production function satisfying the Inada conditions is strictly increasing and strictly concave.

The following lemma will be used later.

Lemma 1.1. Assume that a function f : [0,∞) → [0,∞) satisfies:

(1) f(0) = 0,
(2) is twice differentiable on (0,∞),
(3) f ′(x) > 0 and f ′′(x) < 0 for each 0 < x < ∞.

Then we have f ′(0) = ∞ if and only if lim
x→0+

f ′(x) = ∞ .

Proof. Assume first that f ′(0) = ∞. Since f ′′(x) < 0 holds for all x > 0, it follows that f ′ is
a (strictly) decreasing function on (0,∞). This easily implies that ` = limx→0+ f ′(x) exists in
(0,∞]. Now for each x > 0 there exists (by the Mean Value Theorem) some 0 < cx < x such that
f(x)−f(0)

x−0 = f ′(cx). Clearly, cx → 0+ as x → 0+, and so

` = lim
x→0+

f ′(cx) = lim
x→0+

f(x)−f(0)
x−0 = f ′(0) = ∞ .

For the converse, assume that limx→0+ f ′(x) = ∞. Using the L’Hôpital’s classical rule appro-
priately (see, for instance [2, Theorem 7.9, p. 292]), we see that

f ′(0) = lim
x→0+

f(x)−f(0)
x−0 = lim

x→0+

f(x)
x = lim

x→0+

f ′(x)
x′ = lim

x→0+
f ′(x) = ∞ ,

and the proof is finished.

Any sequence x = (x0, x1, x2, . . .) satisfying 0 ≤ xt+1 ≤ f(xt) for all t = 0, 1, 2, . . . is called a
plan. The collection of all plans starting with x0 is denoted Π(x0). With each plan x ∈ Π(x0) we
associate the consumption plan cx = (c1, c2, . . .) defined recursively for each t = 0, 1, 2, . . . by

ct = f(xt)− xt+1 .

Clearly, 0 ≤ ct ≤ f(xt) for each t = 0, 1, 2, . . . .
The objective is to find a plan x∗ ∈ Π(x0) that maximizes the infinite horizon time-separable

utility function defined by

U(x) =
∞∑

t=0

βtu(ct) =
∞∑

t=0

βtu
(
f(xt)− xt+1

)
, (1.1)

2 Here, as usual, we define f ′(0) = lim
x→0+

f(x)− f(0)

x− 0
.
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where u : [0,∞) → [0,∞) is a bounded function satisfying the Inada conditions and normalized so
that u(0) = 0 3 and 0 < β < 1 is a constant discount factor. Since u is bounded, notice that U as
given by (1.1) is a well-defined function. As a matter of fact, if 0 ≤ u(x) ≤ M holds true for all
x ≥ 0, then for every plan x = (x0, x1, . . .) ∈ Π(x0) we have 0 ≤ U(x) ≤ M

1−β .
Let X = [0,∞), define the constraint correspondence Γ: X→→X by Γ(x) =

[
0, f(x)

]
, and then

introduce the return function F : GΓ → R defined by F (x, y) = u
(
f(x) − y

)
, and assumed to be

bounded, continuous, and strictly concave. Here, GΓ is the graph of the constraint correspondence
Γ defined by GΓ = {(x, y) ∈ R2

+ : 0 ≤ y ≤ f(x)}, which is a convex set.
Given this terminology, we have

U(x) =
∞∑

t=0

βtF (xt, xt+1) .

The function U may be interpreted either as a social welfare function of a central planner or as the
lifetime utility function of a representative agent who owns the “backyard” production technology
f . Given this, we wish to solve the following optimization problem:

(P) Maximize: U(x)

Subject to: x ∈ Π(x0) .

The optimization problem (P) gives rise to a function v : [0,∞) → R defined for each x0 ≥ 0 by

v(x0) = sup
x∈Π(x0)

U(x) .

This function v is called the value function and it has been studied extensively (e.g., see [8]). Here,
we simply state two well known properties of the value function:

(1) v is strictly increasing, concave and continuous,4 and

(2) it satisfies the Bellman equation, i.e., for each x ≥ 0 we have

v(x) = sup
y∈Γ(x)

[F (x, y) + βv(y)] = max
0≤y≤f(x)

[F (x, y) + βv(y)] .

3 The boundedness of u together with property (2) of the Inada conditions, guarantee that limx→∞ u′(x) = 0.

To see this, note first that since u′ is a decreasing function over (0,∞), the limit λ = limx→∞ u′(x) exists in [0,∞).

By virtue of the Mean Value Theorem, for each x > 0 there exists some x < cx < 2x such that
u(2x)−u(x)

2x−x
= u′(cx).

Clearly, limx→∞ cx = ∞, and from this it follows that λ = limx→∞ u′(cx) = limx→∞ u(2x)−u(x)
x

= 0.
4 Clearly, the concavity of v implies its continuity over (0,∞), the interior of X. For the point 0 notice first that

v(0) = 0. Put limx→0+ v(x) = ` ≥ 0 and let xn ↓ 0. This implies f(xn) ↓ 0. From v(xn) ≤ u(f(xn)) + βv(f(xn)),

taking limits, we get ` ≤ 0 + β` or 0 ≤ (1 − β)` ≤ 0. This implies ` = 0, so that the value function v is also

continuous at 0. For a different proof of the continuity of v at zero see [6, Proposition 3.1, p. 49].
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For a fixed x > 0, we consider the function φ : [0, f(x)] → R defined for each 0 ≤ y ≤ f(x) by

φ(y) = u
(
f(x)− y

)
+ βv(y) . (1.2)

Using the continuity and strict concavity of u, the continuity of f , and the concavity and continuity
of v, it is not difficult to see that φ is continuous and strictly concave. In particular, it follows
that there exists a unique maximizer of φ over the interval [0, f(x)]. We shall denote this unique
maximizer by g(x). This implies that a function g : [0,∞) → [0,∞) can be defined via the identity

v(x) = u
(
f(x)− g(x)

)
+ βv

(
g(x)

)
.

This new function g : [0,∞) → [0,∞) is known as the policy function.
For many classes of models (including the typical growth model) it is helpful to set conditions

in place such that the policy function lies in the interior of the constraint correspondence. Broadly
speaking, this property ensures that the representative agent would always want to split the output
into two components, consumption and savings, so the economy can grow. The reason why the
Inada conditions are so extensively used in the literature is that they guarantee this property holds
along the equilibrium path. The available proofs of this interiority property of the policy function
are, to our knowledge, based on the existence of an optimal plan (see for instance [8, Exercise 6.1,
p. 134], [3, Lemma 1, p. 158] or [10]). Ideally, however, one would want to demonstrate that the
interiority property holds even if one is not given an optimal plan. We accomplish this task in the
next section.

2. The Main Result

In this section we demonstrate that for each x > 0 the value of the policy function g(x) lies
in the interior of the constraint correspondence Γ(x). Our contribution is to present a proof that
does not require the existence of an optimal plan.

Theorem 2.1. For each x > 0 the value g(x) in an interior point of Γ(x). That is, for each
x > 0 we have 0 < g(x) < f(x).

Proof. Fix x > 0. We shall establish first that g(x) > 0. To see this, assume by way of contradiction
that g(x) = 0. This implies that

v(x) = max
0≤y≤f(x)

[
u
(
f(x)− y

)
+ βv(y)

]
= u

(
f(x)

)
.

Now consider the function ψ : [0, f(x)] → R defined for each 0 ≤ y ≤ f(x) by

ψ(y) = u
(
f(x)− y

)
+ βu

(
f(y)

)
= U(x, y, 0, 0, 0, . . .) .
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We claim that this function is maximized when y = 0. To see this, assume that 0 is not a maximizer
of ψ over [0, f(x)]. This means that there exists some 0 < y∗ ≤ f(x) satisfying

ψ(y∗) = u
(
f(x)− y∗

)
+ βu

(
f(y∗)

)
> u

(
f(x)

)
.

In this case, the plan x =
(
x, y∗, 0, 0, 0, . . .) ∈ Π(x) must satisfy

v(x) ≥ U(x) = u
(
f(x)− y∗

)
+ βu

(
f(y∗)

)
= ψ(y∗) > u

(
f(x)

)
= v(x) ,

which is impossible. This contradiction shows that 0 maximizes ψ over [0, f(x)].
Next, notice that for each 0 < y < f(x) we have

ψ′(y) = −u′
(
f(x)− y

)
+ βu′

(
f(y)

)
f ′(y) .

Using that both f and u satisfy the Inada conditions and f(0) = 0, we get limy→0+ ψ′(y) = ∞. In
particular, there is some 0 < y0 < f(x) such that ψ′(y) > 0 holds for all 0 < y ≤ y0. This easily
implies that ψ is strictly increasing in the interval [0, y0]. But then 0 is not the maximizer of ψ

over [0, f(x)], a contradiction. Hence g(x) > 0 must be the case.
Next, we establish that g(x) < f(x). To this end, assume by way of contradiction that g(x) =

f(x). That is, for each 0 ≤ y < f(x) we have

φ(y) < φ
(
f(x)

)
.

In this case, we claim that the function φ, as defined in (1.2), is also a strictly increasing function.
To see this, let 0 ≤ x1 < x2 < f(x). Choose 0 < λ < 1 such that x2 = λx1 + (1− λ)f(x) and note
that by the strict concavity of φ we have

φ(x2) > λφ(x1) + (1− λ)φ
(
f(x)

)
> λφ(x1) + (1− λ)φ(x1) = φ(x1) .

Now pick a sequence {yn} ⊆ (0, f(x)) such that yn → f(x). Let v̂ : [0, f(x)] → R denote the
restriction of v to the closed interval [0, f(x)], and also let G : [0, f(x)] → R be the function defined
by G(y) = u

(
f(x)− y

)
. Clearly, both v̂ and G are concave functions and φ = G + βv̂.

According to Lemma 3.3, the superdifferential of φ is nonempty at each yn. If τn ∈ ∂φ(yn),
then (by Theorem 3.6) there exist tn ∈ ∂G(yn) and sn ∈ ∂v̂(yn) such that

τn = tn + βsn . (2.1)

Because φ is increasing, we obtain that τn ≥ 0 (see Part 2 of Lemma 3.2). Since yn is an interior
point of [0, f(x)], it follows that tn is the derivative of G at yn. That is, we have tn = −u′

(
f(x)−yn

)
,

and from (2.1) we get
u′

(
f(x)− yn

) ≤ βsn . (2.2)

Now consider the value function v : [0,∞) → R and notice that sn is a supergradient of v at yn

when restricted to [0, f(x)]. Since yn is an interior point of [0, f(x)], it follows from Lemma 3.4
that sn is a supergradient of v over [0,∞), i.e., sn ∈ ∂v(yn). Also, since f(x) is an interior point



6

of [0,∞), it follows from Theorem 3.5 that the supergradient correspondence x 7→→ ∂v(x) is upper
hemicontinuous at f(x). Taking into account that ∂v(f(x)) is a compact set (see Lemma 3.3) and
yn → f(x), we infer that {sn} has a subsequence that converges to some point in ∂v(f(x)). By
relabeling, we can assume without loss of generality that sn → s ∈ ∂v(f(x)).

Now using the Inada Conditions, Lemma 1.1 and (2.2), we see that

∞ = lim
n→∞

u′
(
f(x)− yn

) ≤ β lim
n→∞

sn = βs ∈ R ,

which is impossible. This contradiction establishes that g(x) < f(x) is also true.

3. Appendix: Concave Functions

In this section we state a few the basic properties of concave functions that are used in this
note. Recall that a function f : C → R, where C is a nonempty convex subset of a vector space, is
said to be concave if for each x, y ∈ C and each 0 ≤ α ≤ 1 we have

f(αx + (1− α)y) ≥ αf(x) + (1− α)f(y) .

A concave function f : C → R is called strictly concave if x, y ∈ C with x 6= y and 0 < α < 1
imply f(αx + (1− α)y) > αf(x) + (1− α)f(y).

Lemma 3.1. For a concave function f : C → R we have the following.

(1) The (possibly empty) set of maximizers of f is a convex set.
(2) If f is also strictly concave, then the (possibly empty) set of maximizers of f is at most a

singleton.

Next we shall discuss some basic supporting properties of concave functions that we need for
our work. Let f : D → R be a function, where D is a subset of a vector space X. We say that a
linear functional x∗ ∈ X∗ 5 is a supergradient of the function at a point c ∈ D, if for all x ∈ D

we have
f(x) ≤ f(c) + x∗(x− c) .

The collection of all supergradients linear functionals of f at c is denoted ∂f(c) and is called the
superdifferential of f at c. That is,

∂f(c) = {x∗ ∈ X∗ : f(x) ≤ f(c) + x∗(x− c) for all x ∈ D} .

It is easy to see that when the function is differentiable at an interior point c of some subset
of a Euclidean space, then the only possible supergradient of f at c is the gradient of f at c. In
particular, if f is defined on a subset of the real numbers, then the superdifferential of f consists
of real numbers—that can be thought of as substituting the notion of the derivative.

5 As usual, X∗ denotes the algebraic dual of X, i.e., the vector space of all linear functionals on X.
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The proof of the next lemma is straightforward and is omitted.

Lemma 3.2. For a function f : D → R, where D is a subset of R, we have the following.

(1) If c ∈ D and α > 0, then ∂[αf ](c) = α[∂f(c)].
(2) If f is a non-decreasing (resp. non-increasing) function, then at point c in the interior of

D we have ∂f(c) ⊆ [0,∞) (resp. ∂f(c) ⊆ (−∞, 0]).

For the proof of the following result see [1, Theorem 7.22, p. 272].

Lemma 3.3. For a concave function f : I → R defined on an interval of R we have the following.

(1) The left- and right-derivatives f` and fr of f exist at each interior point of I.
(2) Both functions fr and f` (defined on the interior of I) are decreasing functions.
(3) If a, b are in the interior of I and satisfy a < b, then

f`(a) ≥ fr(a) ≥ f`(b) ≥ fr(b) .

Moreover, at each interior point c of I the superdifferential of f at c is nonempty and

∂f(c) = [fr(c), f`(c)] .

In particular, if f is differentiable at an interior point c of I, then ∂f(c) = {f ′(c)}.

For concave functions, local supportability implies global supportability.

Lemma 3.4. Let f : I → R be a concave function, where I is an interval of R. Assume that
at some interior point c of I there is a neighborhood V of c such that the real number m is a
supergradient of f at c for the restriction of f to V . Then, m is a supergradient of f at c.

Proof. Let c ∈ V = (a, b) ⊆ I and assume that for each x ∈ (a, b) we have

f(x) ≤ f(c) + m(x− c) .

It follows that mr ≤ m ≤ m`, where mr = fr(c) and m` = f`(c). In particular, for x ∈ I with
x ≥ c we have

f(x) ≤ f(c) + mr(x− c) ≤ f(c) + m(x− c) .

Similarly, for x ∈ I with x < c we have

f(x) ≤ f(c) + m`(x− c) ≤ f(c) + m(x− c) .

From the above conclusions, we easily infer that m ∈ ∂f(c).

The superdifferential correspondence is upper hemicontinuous.
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Theorem 3.5. If f : I → R is a concave function, where I is an interval of R, then the superdif-
ferential correspondence ∂f : I→→R is upper hemicontinuous at every interior point of I.

Proof. Let c be an interior point of I. If m` and mr are the left and right derivatives of f at c,
respectively, then we know that ∂f(c) = [mr,m`]. In particular, ∂f(c) is a compact subset of R.

Now assume that a sequence {xn} of I satisfies xn → c and a sequence {mn} of R satisfies
mn ∈ ∂f(xn) for each n. We must show that the sequence {mn} has a subsequence that converges
to some point of ∂f(c); see [1, Theorem 17.20, p. 565].

Since c is an interior point of I, we can assume without loss of generality that there exist two
points s, t ∈ I and some ε > 0 such that s + ε ≤ xn ≤ t− ε holds true for all n.

Since mn ∈ ∂f(xn) we have

f(x) ≤ f(xn) + mn(x− xn) (3.1)

for all x ∈ I. In particular, letting x = s and x = t consecutively, it follows from (3.1) that

f(t)−f(xn)
t−xn

≤ mn ≤ f(s)−f(xn)
s−xn

(3.2)

holds for each n. Now recalling that (since c is an interior point of I) the function f is continuous
at c, we have lim f(xn) = f(c) and so

lim
n→∞

f(s)− f(xn)
s− xn

=
f(s)− f(c)

s− c
and lim

n→∞
f(t)− f(xn)

t− xn
=

f(t)− f(c)
t− c

.

In particular, it follows that the two sequences { f(s)−f(xn)
s−xn

} and { f(t)−f(xn)
t−xn

} are bounded. But
then, a glance at (3.2) shows that the sequence {mn} is bounded and so it has a convergent
subsequence. By passing to a subsequence and relabeling, we can assume without loss of generality
mn → m. Now letting n → ∞ in (3.1) we get f(x) ≤ f(c) + m(x − c) for all x ∈ I. This shows
that m ∈ ∂f(c), and the proof is finished.

For a proof of the next result see [7, Theorem 23.8, p. 223] or [9, Theorem 5.38, p. 77].

Theorem 3.6 (Moreau–Rockafellar). If I is a non-trivial interval of R and f, g : I → R are two
concave functions, then for each c ∈ I and all α > 0 and β > 0 we have

[∂(αf + βg)](c) = α[∂f(c)] + β[∂g(c)] .
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