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Abstract 
This paper develops a rational expectations model of physical arbitrage incorporating storage and 

trade to explain how markets are integrated when trade is costly and non-instantaneous. The 

paper finds a striking empirical verification of the model from an analysis of the late nineteenth 

century corn markets in Chicago and New York.  The dataset is particularly high quality and 

includes weekly data on spot and future prices, storage quantities and the cost of three modes of 

transport for a fourteen year period. In keeping with the model, it is shown that the New York 

spot price frequently exceeded both the New York futures price  and the Chicago spot price plus 

the transport cost by several percent when inventories in New York were low, but not when they 

were high. The paper also derives a supply of storage curve for New York corn and argues it can 

be explained as the outcome of rational arbitrage when transport is slow.  
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1. Introduction 
 
In the late nineteenth century, complex marketing infrastructures were developed in Chicago and 

New York to facilitate the export of grain from the Great Plains to Europe. Each year, millions of 

bushels of corn were sent to Chicago for sale to shipping agents, who transported the grain to 

New York, where it was resold, transferred to elevators, and then shipped to European markets. 

Both cities had elaborate facilities for receiving, storing, and forwarding grain, and financial 

exchanges that offered an array of liquid spot and futures markets. In such a setting it would be 

imagined that prices always obeyed the law of one price, i.e. that the price of corn in New York 

was always equal to the price of corn in Chicago plus the cost of shipping. However, this was not 

the case. Although the law of one price held most of the time, on numerous occasions — 

approximately ten percent of the weeks in the period under analysis — the New York spot price 

spiked upwards and reached a level considerably higher than the Chicago price plus the transport 

cost. On these occasions, the spot price also exceeded the price for delivery in New York the 

following month, typically by the same amount1.  These price spikes were temporary and almost 

always occurred when New York inventories of corn were extremely low. Although infrequent, 

the fact that these spikes occurred throughout the period in one of the world’s most organised 

markets suggests that they were not incidental deviations from the law of one price but an 

essential feature of the arbitrage process.  

 

This paper develops a simple model of price arbitrage that explains these price patterns. The 

model builds upon a recent series of papers that examine how prices in separate competitive 

markets would be determined if agents optimally used storage and transportation systems to 

arbitrage prices. In the key paper in this series, Williams and Wright (1991) developed a model to 

investigate how commodity prices in two different locations would be determined if forward 

looking, rational, and risk neutral arbitrageurs could either store goods or transport them 

instantaneously from one location to the other. They showed that storage should have an 

important role in the arbitrage process, as intertemporal arbitrage could be used as a cheap 

substitute for transportation to ensure that prices in the two locations never exceeded each other 

by more than the cost of transport. Their model captures one aspect of the data as they showed 

that if neither centre had inventories then the spot price in each centre would exceed the future 

price, and that such “stock-outs” would occur regularly in equilibrium. However, the price 

                                                 
1 If the spot price exceeds the future price, prices are said to be in backwardation. 
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difference between centres would never exceed the transport cost in their model, since transport 

was instantaneous. 

 

This paper argues that the Williams and Wright model can explain all of the observed price 

relationships in the corn market if the assumption that transport is instantaneous is relaxed. To 

make this argument, a rational expectations model of commodity price arbitrage is specified in 

which it takes one period to ship goods. It is shown that if inventories in both centres are positive, 

the difference between the spot prices will be less than or equal to the difference between the 

transport cost and the storage cost. However, if inventories in a centre fall to zero, the spot price 

will spike upwards and exceed the spot price in the other centre plus the difference between the 

transport cost and the storage cost. Since the price spikes only last until supplies are replenished, 

the spot price also exceeds the local future price on these occasions. Furthermore, by examining 

the condition for profitable shipments, it is shown that storage in one centre should regularly fall 

to zero. Therefore, this model has the implication that there should be regular occasions when the 

spatial price difference exceeds the difference between the transport cost and the storage cost and 

when commodity prices are in backwardation.  

 

The intuition of the model is straightforward. Rational, risk neutral arbitrageurs export from one 

centre to the other if the expected future price in one centre exceeds the price in the other by the 

cost of transport. If there are sufficient inventories in the importing centre when the goods are 

sent, arbitrageurs there run down their inventories until the spot price equals the expected future 

price minus storage costs, and thus the spot price difference between centres equals the transport 

cost minus the storage cost. If inventories in the importing centre are zero, however, the spot 

price cannot be arbitraged down and the price difference between the centres exceeds the 

difference between transport costs and storage costs until the shipment arrives. This explains why 

the spatial price difference can exceed the transport cost2. The spatial price difference should 

exceed the transport cost on occasion because exporters limit the quantities they send to ensure 

that random fluctuations in demand regularly cause inventories in the importing centre to fall to 

zero. Unless they do this, the exporters make negative profits because the price in the importing 

centre does not cover the cost of exporting if the exports arrive when supplies are plentiful.  

 

                                                 
2 More precisely, it explains why the spatial price difference exceeds the difference between the transport 
cost and the storage cost. In practice the cost of storage is much smaller than the transport cost, so if the 
price spikes upwards the spatial price difference will typically exceed the transport cost as well. See section 
3 for the precise formulation of the result.  

 3 



The late nineteenth century Chicago and New York corn markets provide an ideal setting in 

which to detect the price relationships implied by the model as unusually detailed data are 

available including weekly spot prices, future prices, storage quantities, and transportation costs 

for three modes of transport. The data provide a striking verification of the model. During the 

period most corn was shipped from Chicago to New York via the Great Lakes and the Erie Canal 

in a trip that took approximately three weeks, although faster but more expensive rail transport 

was available. The paper shows that while the New York price for future delivery was normally 

equal to the Chicago spot price plus the cost of the lake and canal transportation, the difference 

between the New York and Chicago spot prices depended on the amount of storage in New York. 

When New York inventories were high, the difference between the New York price and the 

Chicago price plus the transport cost was normally less than four cents. However, when 

inventories in New York were low, the New York price spiked upwards and the price difference 

ranged as high as ten cents. These price spikes were temporary, and followed by declines in the 

New York price. The relationship between New York storage quantities and the spatial price 

difference can be summarised by plotting a “spatial arbitrage-storage” curve that links the spatial 

price difference adjusted for transport costs to the quantity of storage in New York. 

 

The “spatial arbitrage-storage” curve examined in this paper has the same form as a supply of 

storage curve, a graph of the difference between the spot price and the future price of a 

commodity versus the quantity of storage. A supply of storage curve has a characteristic form: 

when storage volumes are low, the spot price is typically higher than the future price, but when 

storage quantities are high, the future price exceeds the spot price. The standard explanation for 

this curve, dating back to Kaldor (1939), Working (1949), and Brennan (1958), was that the 

holders of the inventories gained a “convenience yield” from their stocks and thus held them even 

though the spot price was higher than the future price. Recently, however, it has been argued that 

the supply of storage curve might simply be an artifact of an inappropriate method of aggregating 

inventory levels. In particular, Wright and Williams (1989) argued that a supply of storage curve 

exists because the spot-future price spread in one location is compared against inventories held at 

a wide range of locations. These other inventories are not immediately shipped to the central 

location to take advantage of the high spot prices, however, because to do so at short notice 

would incur extremely high transport costs.  

 

This paper offers a related explanation for the supply of storage curve: that because transport 

takes time, inventories held elsewhere cannot be transported to the central market in time to take 
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advantage of temporarily high prices, and thus total inventories are positive even though the spot 

price exceeds the future price in one location. The theoretical model suggests that the spatial 

arbitrage-storage curve and the supply of storage curve should be closely related because when a 

centre has zero storage the spot price exceeds both the local future price and the other spot price 

plus the transport cost. To examine this relationship, a supply of storage curve for New York corn 

is calculated, by plotting the difference between the spot price and the one-month future price 

against the quantity of inventories in New York. It proves that the supply of storage and the 

spatial arbitrage storage curves are related in the suggested manner.  

 

The similarity between the two curves suggests that the model is a useful framework for 

analyzing the supply of storage curve phenomena. Both the spatial arbitrage-storage curve and the 

supply of storage curve exist for two reasons: first, because New York prices frequently spiked 

upwards when stocks were low as grain could not be imported immediately; and, secondly, 

because storage quantities did not literally fall to zero when the New York price spiked upwards. 

It is likely that storage was never zero because there was always some corn in the grain elevators 

as they were used to both store grain and to transfer it from railcars and canal boats to ocean 

vessels. Furthermore, these data provide some support for Wright and Williams’ hypothesis that a 

supply of storage curve can exist even when there is no convenience yield from holding the 

commodity. New York prices were in backwardation not because the owners of the grain gained 

convenience yield but because purchasers in New York were willing to pay high prices for grain 

to be delivered immediately rather than wait for new supplies to arrive from Chicago.  

 

This paper is organised as follows. In section 2, a rational expectations model of storage and trade 

with non-instantaneous transport is specified and the solution technique is outlined. The key 

aspects of the solution that can be derived analytically are presented in the first half of section 3, 

while some of the results of numerical simulations are presented in the second half. In section 4, 

several conditional moments of the price distribution are derived and contrasted to the conditional 

moments usually estimated in cointegration models of spatial arbitrage. In section 5 key features 

of the Chicago-New York corn trade are described and it is established that grain was 

predominantly shipped by the slowest and cheapest mode of transport, namely by ship across the 

Great Lakes and then by canal to New York. The relationship between New York and Chicago 

prices, the cost of shipping, and storage quantities is examined in section 6, and a discussion of 

the results is offered in section 7. 
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2. A Model of Storage and Commodity Arbitrage  
Structural models of spatial price arbitrage have antecedents that can be traced to Cournot (1838). 

The basic modeling approach, exemplified by Samuelson (1952), has been to specify a set of 

equations representing demand and supply curves in different locations and a set of no-arbitrage 

conditions that must hold if excess profits cannot be made by transporting goods instantaneously 

from one location to another. A series of prices is found that ensures aggregate demand equals 

aggregate supply and no profitable arbitrage opportunities exist:  

0).( =−−≤− j
t
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t

i
t

Tj
t

i
t TKPPKPP      (1) 

where is the price at centre i at time t, Ki
tP T is the transport cost, and are the exports from j to 

i at time t.  
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Mathematical models of rational storage have a similar structure (see for example Williams 

(1936), Williams and Wright (1991), or Deaton and Laroque (1992, 1996).)   Risk neutral 

arbitrageurs are assumed to make a forecast of the future price and purchase and hold inventories 

until the expected price increase just offsets the costs of storage; conversely, inventories will be 

zero if the expected appreciation is less than the cost of storage. There are three possible storage 

costs. First, there can be an elevator charge KS per unit to store goods each period. Secondly, the 

commodity depreciates at rate δ so if St is stored in period t, (1-δ )St will be available in period 

t+1.  Thirdly, there is an interest cost r foregone when storage is undertaken. These relationships 

are represented by the following equations: 
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where Et  is the expectations operator conditioning on information known at t, and is the 

quantity of inventories held at time t.  

i
tS

 

These models of spatial arbitrage and rational storage were combined and solved by Williams and 

Wright (1991). They investigated how prices in two locations would be determined if rational, 

forward looking, fully informed, and risk neutral arbitrageurs could either store goods or transport 

them instantaneously from one location to the other. Their model has two centres with random 

production and independent demand functions, no capacity constraints to transport or storage 

technology, and is solved using numerical techniques to find the set of optimal storage and trade 

 6 



functions that generate a stationary rational expectations equilibrium. The model developed in 

this paper copies their approach but relaxes the assumption that trade is instantaneous.  

 

Because transport is modeled to take time, the model is also related to those used in the logistics 

management literature. This literature has examined the optimal ways for a company with sales in 

multiple locations to minimise the sum of procurement, transport, and storage costs3.  A general 

theme of the literature is that careful inventory management enables a firm to substitute low cost 

but slow transport systems for faster but higher priced systems. Indeed, a cost minimizing firm 

will use fast transport systems only when inventories unexpectedly fall to such low levels that 

slow transport systems cannot be used to replenish them before they run out. The model in this 

paper extends the logistics management literature by endogenising the penalty that occurs when 

inventories to fall to zero, but at the cost of assuming there is only one type of transport system.  

 

The model  

There are two centres, A and B, each with a separate inverse demand function for a commodity:  
, , , ,( ) : (0) , lim ( ) 0D i D i i D i D i

t t D
P P D P P D

→∞
= < ∞ =      (3) 

where i
tD  is the amount purchased for final use at time t and i = A, B. All production, 

consumption, storage and trade activity takes place at the beginning of the period, and the length 

of a period is the time that it takes to ship goods from one centre to another4. To be consistent 

with the data envisaged being used, the period length is typically taken to be between one and 

four weeks. 

 

Output is assumed to be price inelastic but stochastic in the period under consideration, because it 

has a long gestation period. Output in each centre follows an independent first order 

autoregressive process around a constant mean:  

1( ) ( )i i i i i i
t t tX X X X e i A Bρ −− = − + = ,

                                                

     (4) 

 
3 See Baumol and Vinod (1970) for an original statement, or Tyworth (1991), McGinnis (1989) or de Jong 
(2000)  for a review. 
4 This assumption is made for analytic convenience, for decisions to store and trade could be made at 
higher frequencies than the time it takes to transport goods. However, if decisions were made at higher 
frequencies, each decision would be a function of additional state variables representing quantities at 
different stages of transit, which would substantially complicate the model. 
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where  is a white noise process and |ρi
te i|<15.  It is assumed that unlimited amounts of the 

good can be stored, and that goods produced in two different periods are indistinguishable from 

each other so that they trade at the same price. The good can be stored in either centre, or shipped 

from one centre to the other. It is assumed that it is more expensive to transport goods from one 

centre to the other than it is to keep them in the same centre, so KS < KT. Note that an arbitrageur 

will store the commodity until it needs to be transported to minimise interest costs.  

 

Let product availability, and , be the total quantity of stored and imported goods 

available in each centre at the beginning of the period,  

A
tM B
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where is the non-negative quantity stored in centre i and 1
i
tS − 1
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tT − is the non-negative quantity 

exported from centre j. The quantities stored and exported are such that . i i i
t t tS T X M+ ≤ + i
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It is assumed that risk neutral, profit maximizing, and rational speculators in both cities undertake 

a mixture of trade and storage to take advantage of expected price differences. The speculators 

have rationally determined expectations about future prices that incorporate all information about 

output, storage, and trade in both centres. The behavior of risk neutral speculators can be 

represented by four inequalities. Let [ ]B
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A
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where 

                                                 
5 The assumption that mean output is predetermined and price inelastic can in principle be relaxed; see 
Williams and Wright (1991). Bailey and Chambers (1996) and Deaton and Laroque (1996) argue that if 
demand is linear there is an inherent lack of identification between changes in the mean and variance of 
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The first two of these inequalities are the conditions for profitable storage in either centre, while 

the second two are the conditions for profitable trade between centres. Each of the four 

inequalities holds with equality if the control variables (storage or trade) are non-zero. Since KS < 

KT, the centres will not export simultaneously. 

 

The model solution, which is found numerically, comprises two parts. The first part is the set of 

optimal storage and trade functions [SA(.), SB(.), TA(.), TB(.)] that satisfy the four inequalities 6a - 

6d. Each function depends on the vector of four state variables. The second part of the solution is 

the distribution of the state variables that occurs in equilibrium, which depends on the assumed 

stochastic process determining output and the optimal storage and trade functions. The solution 

fulfils two conditions: first, that storage and trading decisions are profit maximizing conditional 

on expectations of future prices; and, secondly, that price expectations are consistent with the 

storage and trading decisions and expectations of future output quantities.  
 
The model solution technique 

The numerical solution to the model is calculated over a discrete four dimensional grid 

corresponding to the four state variables. The solution technique has four key steps. First, a 

discrete joint probability distribution over the grid values for the stochastic variables XA and XB is 

chosen, and the double integral formula in equation 7 is replaced by the equivalent summation 

formula. The joint probability density for X is chosen to mimic an autocorrelated process with 

normal innovations, and is represented by a m2 x m2 Markov transition matrix Π specifying the 

probability of going from one point  to a second point .  ),( 11
B
j

A
i XX ),( 22

B
j
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Secondly, a solution to the optimal storage problem for the limiting case that transport costs equal 

zero and trade is instantaneous — the “combined centre” case — is found using solution 

 
output and changes in the demand function, so the random shocks can be considered either demand shocks 
or supply shocks. 
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techniques similar to those documented in Deaton and Laroque (1995, 1996)6. The solution is a 

function linking the optimal values of storage to combined centre output and combined centre 

availability. A linear demand function for each centre was specified:  

,
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      (8) 

The third step is an algorithm that calculates the optimal amounts of storage and trade in the two 

centres. The model is solved by finding a series of successive approximations to the optimal 

storage and trade functions, and , where k refers to the k( )i
k tS y ( )i

k tT y th approximation. The 

algorithm is briefly described in Appendix 1. The starting value of the algorithm is based upon 

the combined centre solution, and the algorithm is repeated until the difference between 

successive values of the control values is small.  

 

The fourth step, once the optimal storage and trade functions are calculated, is the calculation of 

the invariant probability distribution of the model solution. The invariant distribution of the 

model is the unconditional probability of being at a particular grid point, which is used to 

calculate various statistics about the price distributions in each centre. The method used to 

calculate the invariant distribution is also described in Appendix 1. 

 

The model with capacity constraints or variable transport costs.  

In practice, most logistics systems have capacity constraints that occasionally bind, so that the set 

of equations 6a-6d does not always hold. Rather, when the constraints bind the spot price spikes 

down, because the good must be consumed immediately or thrown away. Coleman (1998) 

contains an outline of a model in which there are storage capacity constraints: in particular, it is a 

model of optimal storage and trade decisions for a good that can be stored for only one period, so 

that the maximum amount that can be stored is the previous period’s production. Other than the 

occasional downward price spikes that occur when then there is a large quantity of the perishable 

 
6 The centres are combined to have a single demand function and a single production function, and the 
optimal storage function is calculated using equation 6a applied to the combined centres. The solution 
technique is slightly different to that of Deaton and Laroque. Their model is solved at annual frequencies, 
so the maximum possible level of storage is typically 20 times maximum annual production, assuming an 
annual depreciation rate of 5 percent. When the model is solved at weekly frequencies, maximum storage 
can be several hundred times as large as maximum weekly output, and several thousand times as much as 
the variation in output. Since it is not practical to choose a grid with several million points to describe 
output in both centres, three interlocking grids were used, with the finer grids focussed around the area 
where storage is zero and a coarse grid used to model the situation when availability is very large. 
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good available, the solution to this model is qualitatively similar to the case when the good can be 

stored indefinitely. The similarity of these solutions gives grounds for believing that the model 

solution is robust to a variety of assumptions about the nature of a good's storability. 

 

The model is more difficult to solve if transport costs are both time varying and predictable, 

because the solution depends on whether there are transport or storage capacity constraints. 

Suppose there are no capacity constraints and one centre primarily exports to the other. If 

transport costs are expected to increase substantially, the optimal solution is for arbitrageurs in 

the exporting centre to transport all their goods at the low cost time and store them in the 

importing centre until they are needed. If capacity constraints limit the amount that can be 

shipped, however, the solution depends on whether transport capacity is allocated on a “first-

come, first-served” basis or whether transport prices are allowed to adjust to ensure that demand 

for transport just equals the available capacity. If transport prices are flexible, they adjust to 

ensure the set of inequalities 6a-6d still hold. If transport prices are fixed and capacity is rationed, 

the inequalities do not hold. Rather, under these circumstances the expected future price in one 

centre exceeds the spot price in the other plus the transport cost, and the agents who obtain the 

transport capacity make windfall profits.  

 

The late nineteenth century corn market had transport capacity constraints, but transport prices 

were flexible. Indeed, there is evidence that transport prices adjusted to equate supply with 

demand, as shipping prices typically increased towards the end of the season. Consequently, the 

model described by equations 6a-6d should adequately describe the behavior of prices during this 

period.  
 

3. Properties of the Model 
Analytical Results 
The key results of the paper can be derived analytically by considering various combinations of 

the complementary conditions associated with equations 6a - 6d. The possible combinations are 

summarised in Table 1. Numerical simulations are used to calculate the relative importance of 

each combination; the probabilities in Table 1 correspond to the parameters described in footnote 

8 below, but are representative of those pertaining to a wide variety of parameters. The 

probabilities suggest that the most common combinations are positive storage in both centres and 

zero trade (row 1), positive storage in both centres with trade from one centre to the other (rows 2 

and 3), and positive storage in the exporting centre and zero storage in the importing centre (rows 
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6 and 8). The other combinations appear to occur rarely7. The set of conditions 6a - 6d indicates 

how prices adjust in each of these cases.  

 

First, consider a point yt when inventories are positive in each centre. Because inventories are 

positive, the price in each centre is expected to increase and therefore prices are expected to 

diverge; more precisely, by equations 6a and 6b  

( )1
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1

i i S
t t t
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In addition, equations 6c and 6d imply the spatial price difference lies within the range 

)()( STB
t

A
t

ST KKPPKK −+≤−≤−−  with the inequality holding if trade is positive. 

(Otherwise it would be possible to make profits by reducing storage in the low priced centre and 

exporting to the high priced centre.) Therefore, when inventories are positive in both centres and 

trade is zero, prices lie in the range and are expected to diverge.  )(|| STB
t

A
t KKPP −≤−

 

Secondly, consider a point yt at which inventories in centre B are positive and arbitrageurs in 

centre B export to centre A. If centre A also has positive inventories, equations 6a, 6b, and 6d 

hold with equality and imply  

( ) ( )A B T
t tP y P y K K= + − S         (11a) 

1 1
1[ | ] (
1

A B T S
t t t

r )E P P y K K
δ+ +

+
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−
       (11b) 

 

In this case the spatial price differential is exactly ST KK − , but again prices are expected to 

diverge. Alternatively, if centre A has zero inventories, equations 6b and 6d hold and imply  

( ) ( )A B T
t tP y P y K K> + − S

                                                

        (12a) 

 
7 As the stochastic process determining output is changed, the optimal storage and trade functions change 
but the solution still fulfills the set of conditions 6a-6d. Consequently, analytic statements about the 
solution will hold irrespective of the assumed stochastic process, but the distribution of the state variables 
in equilibrium will differ. With other modeling assumptions, other combinations of the state variables may 
become much more important.  
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1[ | ] (
1

A B T S
t t t

r )E P P y K K
δ+ +

+
− = −

−
       (12b) 

In this case the spatial price difference exceeds the difference between the transport cost and the 

inventory holding cost, as prices are unusually high in the importing centre. However, for 

reasonable values of δ and r the centre A price is expected to fall when the goods arrive at t+1 

and thus prices are expected to converge.  

 

The last two sets of equations determine how goods price arbitrage occurs when the exporting 

centre has large inventories and shipping takes time. Equations 11b and 12b imply that the price 

difference at time t+1 must exceed ST KK − under some circumstances. Since the price 

difference at  t+1 cannot exceed ST KK − when the imports arriving in centre A are so plentiful 

that there is a surplus that is held over to the following period, on some occasions the imports 

must be sufficiently small relative to demand that inventories fall to zero and temporarily high 

prices occur (equation 12a, applied at t+1). For the zero profit condition to hold, exporters must 

export a sufficiently small quantity that on regular occasions the importing centre inventories are 

zero. Here the non-negativity of storage causes an important asymmetry. If output is higher than 

expected in the destination centre when the goods arrive, the surplus can be stored and prices fall 

but little; but if output is very low there will be a shortage and prices will increase sharply. For 

the zero profit condition to hold, a sufficiently large quantity must be shipped that there are only a 

small number of sharp price increases offset by a large number of small price decreases. 

Consequently, if the output shocks are symmetric, the median trade will be unprofitable. 

Furthermore, the zero-profit condition for trade means that an importing centre will normally 

have positive inventories, because larger shipments arrive on the typical occasion than are needed 

for immediate consumption.  

   

Numerical Results 
In the rest of this section numerical results corresponding to two different situations are 

presented. In the first case the two centres are identical, so that trade occurs as frequently one 

direction as the other. In the second case, both centres have the same demand functions but mean 

production in centre B is higher than in centre A so that exports typically flow from B to A. The 

parameters are chosen so that transport costs are approximately 5 percent of the average price, the 
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period is one week, and the annual interest and depreciation rates are approximately 5 percent8. 

The solution is used to calculate the distribution of the spot price difference, , and 

various statistics about the distribution of storage and trade.  

B
t

A
t PP −

 
Distribution of Prices 
Figure 1 shows the unconditional distribution of the spot price difference  in the two 

cases. Mean output is assumed to be 100 when the centres are equal; otherwise, mean output in 

centre A is 95 and mean output in centre B is 105. In both cases the dominant features of the 

distribution are the spikes at corresponding to the occasions when one centre 

exports to the other, and the scattering of density outside these spikes corresponding to the price 

difference that occurs when at least one centre has zero inventories. When the centres are 

identical, the distribution is symmetric and appears to have a local maximum at ; 

otherwise the spike at is larger than the spike at  

, and the density in the region is 

increasing in the spatial price difference

B
t

A
t PP −

)( ST KK −±

0)( =− B
t

A
t PP

)( STB
t

A
t KKPP −=− =− B

t
A

t PP

)( ST KK −− )()( STB
t

A
t

ST KKPPKK −<−<−−
9. As the production asymmetry is exacerbated, more and 

more of the density is located at . )( STB
t

A
t KKPP −=−

 
The Two Centre Model with Equal Centres 

Table 2 presents selected statistics of the optimal price, storage, and trade variables under the 

baseline parameterization when mean production in both centres equals 100.  The statistics are 

compared with the case when trade is costless and timeless (i.e. the combined centre solution) and 

the case when trade is not possible. Results are also presented for two variations of the base 

parameters: when transport costs are increased to KT = 10; and when they are reduced to KT = 2.5. 

 

Three features of the results should be noted. First, prices are smoothed primarily through the 

adjustment of storage quantities within a centre, not the transport of goods between centres.  For 

each of the three transport costs, exports were zero more than 80 percent of the time and the mean 

                                                 
8 In the baseline case, the following model parameters are used: the demand function PD,i(X) = α-βX = 200 
– X; the production conditional variance σ2= 100; the production autocorrelation  ρ = 0.9 ; the weekly 
interest rate r = 0.001; the weekly depreciation rate δ = 0.001; KS = 0; and KT = 5. 
9 The use of a discrete grid to calculate the solution means that confidence in the exact shape of the density 
is limited.  The problem is exacerbated in the “equal centre” case as when output and storage  
are exactly the same in each centre (an event with zero probability in the continuous case, but with positive 
probability in the discrete case) the spatial price difference equals zero. This is the cause of the sharp spike 
at (PA

t - PB
t) = 0 in Figure 1. 
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export value was only between 2 and 4 units or 2 – 4 per cent of average weekly output. In 

contrast, storage in each centre was positive 97 percent of the time, and mean storage in each 

centre was two to three times weekly output. 

Secondly, even though trade volumes were small, trade had a large effect on prices because 

storage behaviour was altered so that the spatial price difference between the centres was nearly 

always less than the cost of transporting goods. Irrespective of the transport cost, the spatial price 

difference exceeded the difference between the transport cost and the storage cost only 3 percent 

of the time, so as the cost of transport was reduced price dispersion between the centres declined. 

 

Thirdly, the possibility of trade reduced average storage by 25 to 50 percent of the level that 

would have prevailed were no trade possible. The average quantity stored in either centre fell 

because of access to supplies from the other centre when output fell below normal levels.  

 

The effect of various changes to parameters on the distribution of prices and storage can be easily 

calculated. For instance, when the autocorrelation of output is low, there are few extended periods 

when output is very high and consequently large stocks are not built up. Moreover, inventories 

are used up immediately when output is unusually low because it is expected to rapidly return to 

average levels. This means the fraction of time that one or other centre has zero storage and when 

the spatial price difference exceeds the transport cost increases as the autocorrelation of output 

decreases. A more interesting variation concerns the effect of adjusting the length of the transport 

period, keeping the cost of transport the same. This can be done by changing the mean, variance, 

and autocorrelation of output as well as the demand curve parameters (and the interest rate and 

depreciation rate) in line with the changing period length: when the transportation period is 

halved, for instance, mean output is halved and the slope of the demand curve is doubled10. The 

simulations show that as the transport time lengthens the average amount of storage increases, the 

fraction of time that one centre has zero inventories increases, and thus the variance of the spatial 

price difference increases.   

 

The Two Centre Model with a Dominant Exporter 

There are two cases to note when one centre is a dominant exporter: first, when the asymmetry 

between the centres is small, so that both centres still regularly export; and secondly, when 

                                                 
10 It is assumed that there is only one shipment per period no matter the length of the transport period. This 
method of varying the time period has been chosen as it requires minimal programming changes. The 
exercise is not harmless, however. It implicitly assumes that output is evenly distributed through time 
during the period and that there is no depreciation within a period.  
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production is sufficiently specialised that trade almost always flows from one centre to other. 

These cases are modeled by lowering the mean production level in centre A progressively from 

100 to 95 to 70 while maintaining total production in the two centres at a mean level of 200. 

Various moments of the solution are presented in Table 3.  Note that the dominant exporter model 

best describes the U.S. corn market analyzed in section 5, as corn was transported from Chicago 

to New York but never in reverse.  

 

When 95=AX and 105=BX , there is only a weak tendency for net exports to flow from one 

centre to the other, and the solution is similar to the symmetric case.  Storage adjustment remains 

the dominant means by which price fluctuations are smoothed, and while storage is higher in 

centre B than A it is positive in each centre over 96 percent of the time. Centre B is the dominant 

exporter, exporting 27 percent of the time, but centre A exports 8 percent of the time. (In contrast, 

when the centres are equal each centre exports 14 percent of the time.) The mean spatial price 

difference is 1.9 or less than the transport cost because cheap storage technology is used much 

more frequently than expensive transport technology to arbitrage prices. 

  

The asymmetry in the solution becomes more pronounced as output in centre A is reduced to 70. 

Exports from B to A occur more than 80 percent of the time, while exports in the reverse 

direction take place less than 0.1 percent of the time. Mean trade volumes from B to A are 27 

units, or close to the level that would prevail if there were no uncertainty. Although total storage 

declines as the production asymmetry becomes larger, it is increasingly held in the exporting 

centre. When 70=AX , the total of average storage plus trade in both centres is only 76 percent 

of average storage plus trade when the centres were equal, but centre B has storage 98 percent of 

the time. As production in centre A declines further, total storage declines to the level of storage 

in the combined centre model.  

 

4. Conditional Moments of the Prices 
In this section several conditional moments that are commonly estimated in cointegration models 

of spatial prices are calculated numerically11. The first of these conditional moments is 

, where 1[ |t tE z z+ ] A B
t t tz P P= −  is the spatial price difference between the two centres. 

Typically when two regional price series are tested for cointegration, the difference in prices is tz

                                                 
11 Of course, since output in the model is stationary, prices are stationary unless there is general inflation.  
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calculated, and the first order unconditional autocorrelation coefficient ρ in the regression 

1t tz z e 1tρ+ = + +

t

 is estimated and tested to see whether or not it equals 1. Implicitly this 

formulation implies 1[ | ]t tE z z zρ+ = . When the conditional mean associated with this model is 

calculated from the set of equations 6a - 6d, however, it proves not to be linear (see Figure 2). 

The basic shape reflects the pattern of prices when either both centres store (with or without one 

exporting) or one centre stores and exports but the other centre has zero inventories, for one of 

these combinations occurs most of the time. When there is storage in each centre,  ( )T SK K− −

( T S
t )z K K≤ ≤ + −  and according to equation 10 the price in each centre is expected to increase 

by a factor of 1
1

r
δ
+
− . Because  is primarily in the range when 

storage in each centre is positive

tz ( ) ( )T S T S
tK K z K K− − ≤ ≤ + −

12, 1
1[ || | ]
1

T S
t t

r
tE z z K K z

δ+
+

≤ −
−

. In contrast, at a 

point where centre B has positive inventories and is exporting, but centre A has zero 

inventories, 

ty

( T S
t )z K K> −  and equation 11b holds: 1[ | ]t tE z y+ =  1

1 ( T Sr K Kδ
+
− − ) . Since this 

is the dominant reason why T S
tz K K> − , 1

1[ | ] (
1

T S T S
t t

r )E z z K K K K
δ+

+
> − −

−
13.  

Similar considerations mean that 1
1[ | ( )] (
1

T S T S
t t

r )E z z K K K K
δ+

+
< − − − −

−
. The model 

therefore provides a structural justification for the use of threshold autoregression models to 

estimate the process of dynamic spatial price adjustment. Unlike the model of Obstfeld and 

Taylor (1997), however, the speed of adjustment parameters are known.  

 

The conditional mean has the same form irrespective of the parameters of the model. This is not 

true for the conditional variance , however. In particular the shape of the conditional 

variance depends on whether trade is symmetric or not. If each centre is the same the conditional 

variance is symmetric and “U” shaped, and much higher outside the range 

1[ |t tVar z z+ ]

( )T S
tK K z− − ≤ ≤

                                                

 

 

) S

12 In some rare circumstances stocks in each centre will be zero and output will be very low but similar so 
that prices are high in each centre but no storage or trade takes place.  
13 When there are no stocks in either centre it is possible that both | | and  

: in Figure 3, these occasions are the cause of the spikes in the region . On 
these occasions, one centre will export to the other but not keep any stocks itself; the spatial price 
difference in the next period is expected to be greater than the transport cost as prices are expected to fall 
by different amounts in both centres in the next period. 

T S
tz K K> − 1[| || ]t tE z z+ >

( T SK K− | | T
tz K K> −
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( T SK K+ − )

S

 than inside it. The conditional variance outside this range is high because at least 

one centre has zero inventories and there is a reasonably high probability of having zero stocks 

and thus high prices in the subsequent period14. If trade is not symmetric, the conditional 

variance, while basically “U” shaped, is rather more complex. If centre B normally exports to 

centre A, the conditional variance is high outside the range  and 

“tick” shaped within the bands, reaching a minimum close to 

( ) ( )T S T S
tK K z K K− − ≤ ≤ + −

T
tz K K= − . The conditional 

variance of  is high when is small or negative because output in centre B is unusually low 

in these circumstances and prices in centre B are volatile. 

1tz + tz

 

In addition to testing spatial price differences for cointegration, an “error correction” regression is 

normally estimated to find out how prices change through time: 1 1
i i

t tP z uα i
t+ +∆ = + , i=A,B. 

This formulation also implies the conditional mean is a linear function of . 

However, when the conditional means are calculated they are not linear either (see Figure 3). 

When both centres have storage, the price difference is in the range 

1[ |i
t tE P z+∆ ] tz

( )T S
tK K z− − ≤ ≤

)

 

and in each centre the price is expected to increase to compensate for the costs of 

storage: 

( T SK K+ −

 1
1[ ] ,

1 1
i i S

t t t
r rE P P K i A Bδ

δ δ+
+ +

∆ = + =
− −

.  

In the diagram  as the average price is 100 and the weekly interest and 

depreciation rates are both 0.01

1[ | ] 0i
t tE P z+∆ ≈ .2

15. 

 

Outside this range there is an asymmetry. If centre A has no inventories but centre B has 

inventories and exports to A, ( )A B T
t t t tP P K K− > − S and  

1[ ] ( )
1 1

A A B T T
t t t t t

r r B
tE P P P K K Pδ δ

δ δ+
+ +

∆ = − − − + +
− −

 

                                                 

2 ]

14 In Dumas(1988), the conditional variance is also “U” shaped when the centres are symmetric. He does 
not calculate the non-symmetric case, however. 
15 It should be emphasised that the price change is not directly related to the spatial price difference but to 
the level of prices in each centre. It is not necessarily the case that for two points in the state space y1 and y2 
with  that1 1 2( ) ( ) ( ) ( )A B A BP y P y P y P y− = − 1 1 1 2[ | ] [ |i i

t tE P y E P y+∆ = ∆ + , i=A,B because the 
level of prices associated with y1 and y2 can be quite different. 
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1 1
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t t
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tE P P Kδ
δ δ+

+ +
∆ = +

− −
 

The converse relationship holds if A is the exporting centre and B the importing centre. 

In combination, therefore, a threshold regression of 1
A

tP+∆  against A B
tP P− t should have a value of 

approximately zero if A B
tP P− t )

)

is less than , and the value of minus one if it exceeds 

, while a threshold regression of 

( T S
t tK K−

( T S
t tK K− 1

B
tP+∆  against A B

tP P− t should have a value of one if 

A B
tP P− t ) is less than and zero if it exceeds . ( T S

t tK K− − ( )T S
t tK K− −

 

These results stem from the interplay of both storage and trade. A
tP  is unusually high when there 

is a stock-out in centre A, and in this case prices are expected to fall in the subsequent period 

because of supplies arriving from centre B. The price in centre B will already have increased in 

period t, however, when the goods are removed from the local market. 

 

While the conditional variances of 1
A

tP+  and 1
B

tP+ (and hence 1
A

tP+∆ and 1
B

tP+∆ ) can easily be 

calculated, they are difficult to summarise. When the centres are symmetric, the conditional 

variances are “U” shaped, with when and 

 when . When B mainly exports to A, the conditional 

variances also cross, but at a point closer to 

1 1[ | ] [ |B A
t t t tVar P z Var P z+ +> ] A

t

] A
t

B
tP P>

1 1[ | ] [ |B A
t t t tVar P z Var P z+ +< B

tP P<

T SK K− . 

 

The shapes of the conditional moments stem directly from the structural 

assumptions of the model, and can be contrasted with the ad-hoc price adjustment moments 

usually postulated in empirical models. The implication that price adjustment should be 

dominated by a reduction in the price in the higher priced centre is examined in section 6.  

1[ |i
t tE P z+∆ ]

 

5. The Late Nineteenth Century U.S. Corn Trade.  
Trade between Chicago and New York, 1878-1890  

In the late nineteenth century, corn was predominantly consumed where it was produced, 

primarily as animal feed. Only a small fraction of the total crop was transported any distance, 
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most of which was shipped east and south from the main producing area, the Great Plains states16. 

Chicago was the preeminent inland shipping centre, receiving and shipping an average of 67 

million bushels per year between 1878 and 1890. Much of the grain was sent to east coast ports 

prior to export. New York was the most important of these ports, receiving an average of 34 

million bushels per year and exporting as much as Boston, Baltimore, and Philadelphia combined. 

Both Chicago and New York had active markets and elaborate physical infrastructure to handle 

the large volumes of corn and other grains.  

 

Corn was first sent by rail and canal to Chicago, and then sent to New York using one of three 

transportation methods. The slowest and least expensive method was to send grain to Buffalo by 

ship via the Great Lakes, and then to forward it to New York along the Erie Canal. This method, 

which took approximately three weeks, was not available between November and late April, 

however, as both the canal and the Great Lakes froze. A faster and more expensive method, 

taking 10 days, was to ship grain over the Great Lakes to Buffalo and then send it by rail to New 

York. The fastest and most expensive method was to send grain to New York by rail, a trip that 

took 3 or 4 days. Between 1881 and 1891, when average annual costs were reasonably stable, the 

average cost of shipping a bushel of corn from Chicago to New York was 7.7 cents by lake and 

canal, 10.3 cents by lake and rail, and 14.6 cents by rail17. The average price of a bushel of corn in 

Chicago during this time was 45 cents.  

 

Between 1878 and 1890, an average of 45 million bushels of corn per year was shipped from 

Chicago by lake, and 22 million was transported by rail. Of the latter, however, 15 million 

bushels were “through-shipments” ⎯ shipments that started west of Chicago, that were routed 

through Chicago, but that were never sold or handled in Chicago18. Unfortunately, the through-

shipments were included in all of the annual and weekly shipping statistics, creating a misleading 

picture of the true extent of rail shipments of grain that was sold in Chicago. When the through 

shipments are excluded, the fraction of corn transported from Chicago that was shipped across the 

Great Lakes increases from 67 per cent to 86 per cent. Lake transport was even more dominant 

during the open water season. Of the 7 million bushels of corn shipped by rail that were processed 

                                                 
16Nebraska, Iowa, and Illinois produced a third of the total U.S. crop, with Illinois alone producing some 
225 million bushels annually. In contrast, combined production in New York, New Jersey, and 
Pennsylvania was 75 million bushels per year.  
17 Chicago Board of Trade, 1892, p122.  
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in Chicago, only 2.7 million bushels were shipped between April and November. Consequently, 

95 per cent of corn that was transported in the open water season was shipped by lake19. Figure 4 

indicates the seasonal pattern of the three types of shipments. 

 

While it is straightforward to establish that 95 per cent of the grain leaving Chicago in the 

summer went across the Great Lakes, it is more difficult to calculate how much of it went to New 

York, and by which transport mode. Most Chicago corn was shipped through Buffalo, however, 

and since most corn arriving in New York came from Buffalo it is possible to establish the link 

indirectly. Unfortunately detailed shipping statistics for New York are not available for the whole 

period, although annual data is available for the years 1878-1881 and 1888- 1890. During these 

years, an average of 39 million bushels of corn were shipped by lake from Chicago to Buffalo, 

and another 10 million bushels were sent by rail along the Michigan Central and the Lake Shore 

and Michigan railroads to the same city20. From Buffalo, most of the corn was sent to New York 

either by canal boat or by one of four railroads. On average New York received 40 million 

bushels of corn, of which 21 million arrived by canal boat, 16 million arrived on trains coming 

from Buffalo, and 3 million came from elsewhere. It is established below that almost all of the 

grain sent by rail from Chicago to Buffalo was forwarded to New York by rail, meaning that at 

most 6 million bushels of the grain arriving in New York by rail could have arrived in Buffalo by 

ship. Consequently, of the 27 million bushels of corn that arrived in Buffalo by water and were 

sent to New York, 21 million (or 78 per cent) were forwarded by canal. The dominance of the 

lake and canal route over the lake and rail route is even greater than this fraction suggests, 

however, because the lake and canal season was typically 3 weeks shorter than the lake and rail 

season. Since the season typically lasted 30 weeks, the lake and canal route accounted for some 

                                                                                                                                                 
18 The through shipments are calculated as the total of the monthly through shipments on the Chicago and 
Northwestern, Illinois Central, Chicago, Burlington, &Quincy, Chicago, Rock Island, & Pacific and 
Chicago and Alton railroads that are reported in the Chicago Board of Trade Annual Reports each year.  
19Unless it is recognised that most rail shipments were through shipments two puzzles arise. First, rail 
shipments and lake shipments took place simultaneously even though rail shipment was considerably more 
expensive than lake shipment. There are some reasons why shippers would prefer to send grain by rail ⎯ it 
was faster, and there was less risk of additional heat damage if the grain were already damaged, for 
instance ⎯ but these do not seem to have justified the additional cost. Secondly, rail shipments during 
winter took place when the price difference between New York and Chicago was lower than the rail cost. 
20 The data are from the annual reports of the Chicago Board of Trade. Only 70 per cent of corn sent by 
ship from Chicago went to Buffalo. Since comparable New York data for 1882-1887 are unavailable, the 
averages are calculated for the years 1878-1881 and 1888-1890. For the full period 1878-1890, an average 
of 32 million bushels was sent from Chicago to Buffalo by lake, and 9 million by rail. 
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87 per cent of the grain arriving in New York during the period that the lake and canal route was 

open21.  

 

It can be demonstrated that grain sent by rail from Chicago to Buffalo went to New York by 

comparing the monthly shipments of corn along the railroads connecting Chicago and Buffalo 

with the monthly shipments along the railroads connecting Buffalo and New York during the 

years that such data exist, 1877 to 188122. New York receipts along these lines were fifty percent 

higher on average than rail shipments from Chicago to Buffalo, because the Hudson and Erie 

lines were used to rail some of the corn shipped to Buffalo on the Great Lakes23.  Nonetheless, as 

indicated in Figure 5, there was an almost one-for-one correspondence between the variation in 

rail flows from Chicago to Buffalo and flows from Buffalo to New York. Formally, a regression 

of New York rail receipts from Buffalo with Chicago rail shipments to Buffalo has a slope 

estimate of 1.20, with a ninety five percent confidence interval of 0.93 to 1.4624. 

 

(NY rail receipts)t  = -125000 + 1.20 (Chicago rail shipments)t + 0.087 (Lake shipments)t + et

                   (130000)  (0.131)                   (0.020) 

R2 = 0.67; 60 observations. 

 

Similar data can be used to show that most of this corn was part of a through shipment. Figure 5 

also suggests a near one-for-one correspondence between the variation in rail flows from Chicago 

to Buffalo and the through-shipments through Chicago. A regression of Chicago rail shipments to 

Buffalo against Chicago through-shipments has a slope estimate of 0.85, with a ninety five 

percent confidence interval of 0.72 to 0.9925.  

 

                                                 
21 i.e. 21 million out of the 24 million bushels that arrived in New York during the lake and canal season. 
22 Data for these years was published in the annual reports of the Chicago Board of Trade and the New 
York Produce Exchange, but I have been unable to find it for other years.  The Chicago data is the monthly 
shipments along the Michigan Central and the Lake Shore and Michigan Railroads. The New York data is 
the monthly shipments along the Erie and the New York Central and Hudson railroads. For information on 
through shipments, see footnote 17.   
23 The shipments to New York were also higher than those from Chicago in winter, when there was no 
water transport. Since little corn was stored in Buffalo, at least in the years for which I could find data, 
1882 – 1886, the winter shipments to New York must have originally come from elsewhere.  
24 OLS regression with standard errors calculated using the Newey-West method using 5 lags. The 
regression was also estimated using a feasible generalised least squares estimate that corrected for first 
order serial correlation and assumed the variance of errors was a linear function of Chicago shipments. In 
this case the slope estimate was 1.16 with standard error of 0.13.  
25 OLS regression with standard errors calculated using the Newey-West method using 5 lags. The feasible 
generalised least squares estimate (see footnote 23) was 0.95 with standard error of 0.10.  

 22 



(Chicago rail shipments)t  = 205000 + 0.85 (Chicago through shipments)t + et

                        (86000)  (0.067)                             

R2 = 0.65; 60 observations. 

 

These two regressions strongly suggest the corn sent by rail to Buffalo was forwarded to New 

York and that the corn originating in Chicago was part of a through shipment.  A third regression 

linking New York rail receipts to Chicago through shipments confirms this link26:  

 

(NY rail receipts)t  = 215000 + 1.127 (through rail shipments)t + 0.038 (Lake shipments)t + et

                   (180000)  (0.131)                  (0.024) 

R2 = 0.57; 60 observations. 

 

New York Receipts, Export Shipments, and Storage 

Inward and outward shipping activity occurred at New York throughout the year. When grain 

arrived in New York, it was first transferred to an elevator or a lighter and then either sold or 

delivered in fulfillment of a futures contract27. Grain was often stored temporarily, but the storage 

capacity was rarely fully utilised, even in winter28. Inventory levels never fell to zero, because the 

elevators always contained some grain in transit as they were used to transfer grain from arriving 

canal boats and rail cars to departing ocean vessels. The average of the five lowest inventory 

levels each year for the entire period was 260 000 bushels. Corn inventories typically fell to their 

low points each year in the middle of May, prior to the opening of the summer transport season, 

and in August. Storage quantities between 1881 and 1891 are shown in Figure 7. 

 

Corn inventories in Chicago had a marked seasonal pattern.  Receipts in Chicago were continuous 

throughout the year, but were higher than shipments between December and March, when the 

lakes were closed, and between August and September. Consequently, inventories built up to a 

late March peak averaging 4 million bushels on shore or 6.2 million bushels if corn loaded on 

board ships is included. Inventories reached seasonal lows in late July and November averaging 

1.4 million bushels.  

                                                 
26 OLS regression with standard errors calculated using the Newey-West method using 5 lags. The feasible 
generalised least squares estimate (see footnote 23) was 1.10 with a standard error of 0.15. 
27 Grain from canal boats could be unloaded to an elevator or be sold "afloat", whereupon it could be 
transferred directly to a ship using a lighter. 
28 In 1888 there were 24 million bushels storage capacity in New York and Brooklyn, and a further 3 
million in New Jersey. However, peak grain storage in New York and Brooklyn between 1887 and 1889 
was just over 16 million bushels, of which 11 million bushels were wheat and 4 million bushels were corn. 
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Storage charges varied little during the period (Goldstein (1928); Ulen (1982)). In 1888 it cost ⅝ 

cents per bushel to deposit grain in an elevator, including the cost of 10 days storage; thereafter, 

storage cost ¼ cents per bushel per ten days. There were additional charges for trimming from 

canal boats and for trimming into ocean boats. Charges in Chicago were similar. In addition to 

these direct charges, the cost of holding inventories included insurance and the opportunity cost 

of holding the grain. Working (1929) estimated that in 1913 these costs were approximately 1.4 

cents a bushel per month. 

 

Transport prices between Chicago and New York.  

There was a marked seasonal pattern in shipping costs (see Figure 6). Lake and canal and lake 

and rail prices were typically high at the opening of the season, but they then declined during the 

summer before rising towards the close of the season. On average, lake and canal rates increased 

by 0.2 cents per week between July and the end of the shipping season. Rail rates varied 

seasonally between winter and summer, particularly prior to 1886 when railroads competed 

aggressively with each other and with shipping lines for the grain business. The competition was 

sufficiently fierce to divert substantial quantities of the grain trade from the water route to rail, 

essentially by inducing “through shipments” from shipping agents west of Chicago (Tunell 

(1897), United States Treasury (1898)). This price competition is understated in the rail price data 

collected by the Chicago Board of Trade, as much of the business was transacted at lower, 

unrecorded prices, particularly during periods when the rail cartel broke down29. The seasonal 

pattern in rail prices declined after the passing of the Interstate Commerce Act 1887, which 

regulated rail transport and substantially reduced price competition between the rail lines.  
 

Market Prices  

Both New York and Chicago had well developed grain markets in which both spot and futures 

contracts were bought and sold. A standard contract was settled by the delivery of grain to a 

warehouse or elevator. The main contracts were for immediate delivery (the spot contract) or for 

delivery at any time within the current month, the next month, two months’ time, or in May of a 

particular year (the futures contracts). The seller had the option as to the date in a particular 

month the grain was delivered, so spot prices normally exceeded or were equal to the zero-month 

                                                 
29See the discussion by Nimmo in his reports on the internal commerce of the United States. (United States 
Bureau of Statistics, 1877, 1881, 1884). See Porter (1983, 1985) for a discussion of the price cutting wars 
that occurred prior to 1886.   
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future price. This paper uses the Wednesday closing price for all of the analysis. (See Appendix 2 

for the precise definition and source of the data.)  

 

6. Spatial Corn Price Arbitrage and Transport Costs, 1878-1891.  
Spot Prices, Spatial Arbitrage and New York Storage Volumes 

According to the model, the difference between the New York and Chicago spot prices on the day 

the corn was sent should have been equal to the transport cost minus the storage cost when there 

were positive inventories in New York, but it should have exceeded the transport cost minus the 

storage cost when inventories in New York were zero or very small.  To examine this implication 

of the model, in Figure 8 the spatial price difference  is plotted against the cost of 

lake and canal transport for each week that transport cost data is available, 1878 – 1891. 

Observations for which storage quantities in New York were less than 300,000 bushels are 

distinguished from those for which storage quantities exceeded 300,000 bushels.  

CH
t

NY
t PP −

 

Three features of the graph stand out. First, most of the observations lie above the 45 degree line, 

indicating that spatial price difference normally exceeded the transport cost.  While the spatial 

price difference need not have exceeded the transport cost each week, as corn may not have been 

shipped each week, it did so on 93 per cent of all weeks in the sample and 98 per cent of the 

weeks when New York storage was less than 600,000 bushels30. On only one occasion (not 

shown) was the spatial price difference negative, when there was a corner in the Chicago market.  

 

Secondly, the spatial price difference was far more likely to exceed the transport cost by a large 

amount when storage was less than 300 000 bushels than when storage exceeded that amount. In 

Table 4 the data are grouped by the level of storage and the distribution of the spatial price 

difference minus the transport cost is calculated. On 62 per cent of the 21 occasions when there 

was less than 150 000 bushels of corn in store, and 31 per cent of the 45 occasions storage was 

between 150 000 and 300000 bushels, the New York price exceeded the Chicago price plus 

transport cost by 5 cents or more. In contrast, the New York price was more than 5 cents above 

the Chicago price plus transport costs only 4 percent of the 224 occasions when storage exceeded 

600 000 bushels. The relationship between the spot price difference and inventory levels can be 

summarised by constructing a “spatial arbitrage-storage” curve that plots the difference between 

                                                 
30 In contrast, the spatial price difference exceeded the cost of lake and rail shipment only 63 per cent of the 
time.  
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the New York spot price and the Chicago spot price adjusted for transport costs against inventory 

levels (see Figure 10).  The scatter-plot of points in Figure 10 is accompanied by a non-

parametric kernel regression showing the average relationship between the future premium and 

the storage quantity31. 

 

To test whether these differences between groups were random, the data was split into six 

different storage categories, 0 – 150000 bu, 150001 – 300000 bu, 300001 – 600000 bu, 600001 – 

1000000 bu, 1000001 – 2000000 bu, and more than 2000000 bu, and Wilcoxon-Mann-Whitney 

test statistics were calculated. These statistics are used to test the hypotheses that the cumulative 

distribution functions of the spatial price difference minus the transport cost were the same for 

each storage category, against the alternative that one distribution lay above the other. The 

hypothesis that the distribution of the spatial price difference minus the transport cost was equal 

to that of the group that had the lowest storage was rejected for every storage category. In 

addition, it is possible to reject the hypotheses that the cumulative distribution functions of the 

first four storage categories were the same, although for the categories above 1000000 bushels the 

distributions were similar. Consequently, it is possible to conclude that the large spatial price 

differences that occurred when storage in New York was low were not due to simple random 

variation.  

 

Thirdly, the average spatial price difference increased at an almost one for one rate with the 

transport cost. The best regression line, estimated using feasible generalised least squares to take 

into account first order autocorrelation, is32:  

36769.045.0
)29.0()06.0()29.0(

)000,300(105.285.075.1)(

2
1 ==+=

+<++=−

− NReuu

uStorageCostTransportPP

ttt

ttt
CH

t
NY

t

 

where 1(Storage <300,000) is an indicator function that takes on the value one if inventories were 

less than 300,000 and zero otherwise. The slope of the line, 0.85, suggests that the average spatial 

price difference did not increase at an exactly one-for-one rate with transport costs, although as is 

shown below, when the New York spot price is replaced by the New York future price the slope 

coefficient is very close to and insignificantly different from 1. The positive and significant 

                                                 
31 The kernel regression is estimated with an Epanechnikov kernel with bandwith 300 000 bushels. 
32 The observation for 23 September 1884, when there was a corner in Chicago and the Chicago price was 
16 cents higher than the New York price, was omitted. When included, the autocorrelation coefficient was 
0.33, and the coefficient on the transport variable was 0.89 with a standard error of 0.061. 
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coefficient on the low inventory variable confirms that the New York spot price spiked upwards 

relative to the Chicago price and the transport cost when inventories were low.  

Future - Spot Prices Differences and New York Storage Volumes 

It is of interest to compare the above relationship with the relationship between New York 

inventories and the difference between the New York future price and the Chicago spot price plus 

the transport cost. According to equation 6c, the expected spot price in New York on the date 

when the corn was expected to arrive should have been equal to the spot price in Chicago three 

weeks earlier plus the cost of transport, independently of New York inventory levels.  Although 

the expected spot price in New York on the date that the corn was expected to arrive is not 

known, it is possible to use the price for future delivery in New York as a proxy. Since the seller 

had the option of delivering any time during the month, and the trip took three weeks, the price 

for delivery “this month” was used if the date of the month was before the eleventh, and the price 

for delivery in the subsequent month was used if the date occurred on or after the eleventh.  

 

The results for the New York future — Chicago spot price gap and the New York spot — 

Chicago spot price gap are quite different. This can be seen immediately by comparing Figure 8 

with a graph of the difference between the New York future price and the Chicago spot price  

plotted against the transport cost, Figure 9. While there is a similar one-for-one relationship 

between the spot-future price difference and the transport cost, the spikes in the New York spot 

price that occurred when New York inventories were low are conspicuously missing. The 

difference can be confirmed statistically in one of two ways. First, the best fitting regression line 

corresponding to the graph is:  

2
1

( ) 1.11 0.95 0.22 1( 300,000)
(0.23) (0.044) (0.22)

0.41 0.56 357

NY CH
t t t t

t t t

tF P Transport Cost Storage u

u u e R N−

− = + + < +

= + = =

 

The coefficient on the low storage variable is small and insignificantly different from zero, 

indicating that there was no systematic tendency for the future-spot price gap to be high when 

inventories were low. (Also note that the slope of the coefficient on the transport cost variable is 

very close to, and insignificantly different to 1, indicating a one-for-one relationship between the 

New York future – Chicago spot price gap and the transport cost.) Secondly, a set of Wilcoxon-

Mann-Whitney statistics can be calculated to test the hypothesis that the distribution of the spot-

future spatial price difference was independent of inventory levels; these are reported in Table 5. 

These also show that the New York future price did not spike upwards when inventories were 

low; indeed, it is not possible to reject the hypothesis that the cumulative distribution of the spot-
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future price difference minus the transport cost was different to that of any other group for any of 

the six inventory categories. These results clearly show that only the New York spot price spiked 

upwards when inventories were low, not the New York future price.  
 

Threshold Regressions  

Further support for the model is obtained by examining the relationship between the change in the 

price in each centre and the price difference between centres. According to the model, the spatial 

price difference would have been higher than the transport cost when there were low inventories 

in New York, and thus when the New York price was temporarily high. Consequently a 

regression of the price change in New York against the spatial price difference (adjusted for 

transport costs) should have a negative slope, while there should be no relationship between the 

spatial price difference and the change in Chicago price. This proves to be the case when the 

equations are estimated33: 
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In section 4 it was argued that the relationship between the change in the spot price and the spatial 

price difference ought to depend on whether or not the spatial price difference exceeded the 

transport cost.  Let . The following threshold regressions were estimated: T
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where 1(zt > γ) is an indicator function equal to one if zt > γ and zero otherwise. If all transport 

costs were known exactly and output were described by a first order autoregressive process, the 

threshold for the first equation would occur at γ=0, and the coefficients (α1,α1+α3) would equal 

(0,-1) respectively. However, because New York never exported to Chicago, there would not be a 

 
33 New West-corrected standard errors (with 3 lags) in parenthesis. The observation for 23 September 1884 
was omitted. If included, the coefficient for New York increased to –0.21 (0.11) and the coefficient for 
Chicago decreased to -0.005 (0.09).  
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threshold in the relevant data range for the second equation, so (β1, β1+β3) would equal (0,0)34. In 

practice not all components of the transport cost, such as the cost of transferring grain to an 

elevator, are known exactly and consequently the threshold parameters need estimation.  

 

The equations were estimated by conducting a grid search on the value of γ, with the parameters 

α(γ) or β(γ) estimated using OLS for each value of γ. The value of γ that minimised the sum of 

square errors, γ̂ , was selected; the estimates of α and β corresponding to γ̂ , and the associated 

Newey-West standard errors are reported below. Following Hansen (1996), separate Wald tests of 

the hypotheses that (α2, α3) =(0,0) and (β2,β3) = (0,0) were calculated. The distribution of the 

statistics are non-standard, so the sample statistic was compared to a simulated distribution. The 

grid search was initially conducted on a range that ensured that at least 15 percent of  the 

observations were on each side of the threshold, using an increment of 0.02 cents. Since the 

threshold was estimated to be close to the endpoints, they were re-estimated on a larger range that 

only required that at least 10 per cent of the observations were on each side of the threshold. The 

results are qualitatively similar, although the standard errors are larger.  

 

The New York equation is not particularly well behaved, as the value of the threshold that 

minimises the sum of squared residuals is not the same as the value that maximises the Wald 

statistic. This may be due to heteroskedasticity in the error process, or it could indicate more than 

one threshold.  The equation that minimises the sum of squared residuals is:  
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The estimated threshold is 4.46 cents, although this appears to be imprecisely estimated35. The 

spot estimates of α1 and α1+α3, (-0.08, -1.04), are very close to and insignificantly different to the 

                                                 
t t

34 The threshold for the second equation would occur when  or . There was 

only one observation for which .  
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35 A * indicates the coefficient is statistically different to zero at the five percent level. The thresholds were 
restricted to lie between 0.44 and 4.52, (i.e, so at least 15% of observations were on each side of the 
threshold), so this estimate is very close to the maximum permitted threshold. The estimate when the 
thresholds were restricted to lie between 0.18 and 5.50 (i.e, so at least 10% of observations were on each 
side of the threshold) is  
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When the threshold region was widened further, the best estimate of γ was 5.68.  
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predicted values of (0, -1). To test whether a threshold model was appropriate, an average Wald 

statistic was calculated (see Hansen (1996, p415)); the value of the statistic was 5.45, 

corresponding to the 95.3 percentile of the appropriate simulated distribution, and thus marginally 

statistically significant36.   

 

The best equation for Chicago prices is37: 
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The estimated threshold, 0.46 cents, is very close to zero, indicating that there was a different 

price dynamic in Chicago when the price was greater rather than less than the New York price 

minus transport costs. The spot estimate of β1+β3,  -0.01, is very close to and insignificantly 

different from the predicted value of zero. In contrast, the spot estimate of β1 is +1.34, close to 

and insignificantly different from 1.  It appears, therefore, that when prices were high in New 

York relative to Chicago, the Chicago price was independent of the spatial price difference, but 

when prices were relatively high in Chicago and the spatial price difference was less than the 

transport cost, Chicago prices were temporarily high and prices subsequently fell. The value of 

the average Wald test was 11.5, corresponding to the 99.8 percentile of the appropriate simulated 

distribution, and thus statistically significant at conventional levels. 

 

It is worth emphasizing that the Chicago threshold regression is not consistent with the model, for 

according to the model on most occasions when the spatial price difference was less than the 

transport cost (and the Chicago price was not so high that corn was imported from New York) 

both centres should have had storage, no trade should have taken place, and prices should have 

been expected to gradually increase in both centres to cover the cost of storage. This appears not 

to have been the case, however, as the estimated regression is consistent with a model in which 

                                                 

1+

36 One thousand series 368 observations long were generated, and for each series a threshold regression was 
estimated using a grid search on γ with 0.02 increments, with minimum and maximum values of γ selected 
so that at least 15 percent of the sample was on each side of the threshold region. In each case the average 
Wald statistic was calculated as a simple arithmetic average of the Wald statistic associated with each value 
of γ. The simulated series were generated to have the same properties as the sample properties of the real 
data. In particular, the data were generated by the following processes: 
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37 When the thresholds were restricted to lie between 0.18 and 5.50 rather than 0.44 and 4.52 the estimated 
equation was  
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the spatial price difference is normally less than transport cost because of a temporary local 

shortfall in Chicago, and a corresponding temporary price spike in Chicago. These results  

suggest that the stochastic process used in the model is not an appropriate description of output in 

this market.  

 

The Spatial Arbitrage – Storage Curve 

It is well known that if the difference between the spot price and the future price of a commodity 

is plotted against the quantity of storage, a “supply of storage” curve is generated. When storage 

volumes are low, the spot price is typically higher than the future price, but when storage 

quantities are high, the future price exceeds the spot price. It is possible to estimate a supply of 

storage curve for New York corn prices, using the difference between the spot price and the price 

for delivery the next month as the future premium. When this is done, it has the standard shape 

(see Figure 11).  

 

It is apparent that the supply of storage curve and the “spatial arbitrage-storage” curves have 

similar shapes. By plotting the future price premium , 1NY t NY
tF P+ − t  against the spatial price 

difference adjusted for transport cost , , it is possible to show that when the 

New York spot price exceeded the future price, the New York spot price also exceeded the 

Chicago price plus the transport cost (see Figure 12). The data in Figure 12 indicate that there was 

a strong positive correlation between the two variables when storage was less than 600 000 

bushels, and a somewhat weaker correlation when storage was higher than this level. More 

formally, when the variables are regressed against each other, the best fitting line is: 
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This regression confirms that in this case the supply of storage curve is closely related to the 

spatial arbitrage-storage curve38. The reason is that when storage was low, the spot price in New 

York temporarily increased and exceeded both the future price in New York and the spot price in 

Chicago plus the transport cost. While the set of equations 6a-6d suggests that these price spikes 

should have only occurred when storage was literally zero, in this case they occurred when 

storage was positive but small because the elevators were used to transfer grain to ocean going 

ships and thus always had some grain in transit.  

 

7. Conclusions 
This paper has attempted to enhance economists’ understanding of how spatial arbitrage occurs 

by examining how the interaction of storage and trade affects prices in different locations. Its 

theoretical contribution has been to link the economics literature analysing spatial price arbitrage 

with the logistics management literature analysing how the speed of transport determines 

inventory holdings. It has made the link by relaxing the standard assumption in models of spatial 

arbitrage that transport is instantaneous; in doing so it has emphasised the manner in which 

inventories are used to smooth price fluctuations. This role had long been recognised in the 

logistics management literature, but only at the level of the firm, rather than across competitive 

markets. Its empirical contribution has been to assemble a set of price, transport cost, and storage 

data that is detailed enough to detect how logistics issues have affected commodity prices in one 

specific market. It has shown that the spatial price difference frequently exceeded the cost of 

shipping goods, in a heavily traded commodity market in which there were large investments in 

logistics infrastructure and thick financial markets. In doing so, it has established that prices 

exceeded the transport cost when there were low supplies in the importing city, causing a 

temporary price spike followed by a price decrease when new supplies arrived from the exporting 

centre. The result can perhaps be best summarised by plotting a spatial arbitrage-storage curve 

that shows how the spatial price difference depends on inventory levels in the importing centre.  

 

The theoretical model suggests that the process of physical arbitrage is significantly more 

complex than has previously been recognised.  The central feature of the model is that the 

                                                 
38A similar relationship can be estimated between the Chicago future premium and the spatial price 
difference adjusted for transport costs. There were some occasions when the Chicago future price was less 
than the Chicago spot price at the same time that the New York spot price was higher than the Chicago spot 
price plus transport cost. Most of these occasions occurred in 1891 when storage quantities in both Chicago 
and New York were low. The corresponding regression has much less explanatory power, suggesting the 
relationship is specifically between the New York future premium and the spatial price difference.    
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quantity of goods arbitrageurs ship each period will not be the amount necessary to ensure that 

the spatial price difference is always equal to the cost of transport. Rather, in order to make 

normal profits on average, arbitrageurs will ship an amount such that that there will be 

insufficient supplies and high prices in the destination centre on a regular but infrequent basis. 

The profits they make on these occasions offset the small losses they make on the more frequent 

occasions that the exports arrive when local supplies are adequate. Put more starkly, traders make 

normal profits on average only by obtaining high prices and extraordinary profits on occasions 

that supplies in the importing market are low. If this phenomenon is generally true in practice, it 

provides an argument against governments attempting to stabilise prices in times of shortage. 

 

Three other implications of the model are of interest. First, prices in different centres should 

diverge when the spatial price difference is less than or equal to the cost of transportation 

(adjusted for the storage cost), for in these circumstances inventories in each centre are positive 

and prices in each centre should rise when inventories are positive. Secondly, the difference 

between prices in different centres should on occasion be greater than the cost of transportation 

because local price spikes occur when local inventories are exhausted. Thirdly, importing centres 

will typically but not always have small inventories of goods available, simply because when 

transport takes time the exporting centre cannot export precisely the correct amount to keep 

inventories equal to zero.  

 

If the price behavior evident in the New York and Chicago corn markets is representative of price 

behavior in other markets, there are five interesting implications. First, even though Deaton and 

Laroque (1992, 1996) showed that rational expectations models of storage do not explain annual 

frequency commodity price behavior at all well, their models and those solved by Williams and 

Wright (1991) may be consistent with micro-economic data. The model in this paper is a 

straightforward extension of these storage models, and appears to satisfactorily explain the 

relationship between New York and Chicago prices. Consequently, it may be the case that the 

empirical failure of rational expectations storage models to explain long term commodity price 

series is because the data is collected at a too aggregated level, as Wright and Williams (1989) 

suggested.  

 

Secondly, studies of market integration that assume that the spatial price difference is always 

equal to the transport cost need modification. For example, Spiller and Wood (1988) developed a 
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popular methodology to estimate spatial transactions costs from price data that is explicitly 

predicated on the assumption that the price difference is always equal to the cost of transport, but 

that the cost of transport is variable. If that methodology were used on this data set, it would 

overestimate the mean and variability of transport costs because it wrongly assumes that the large 

price differences that occurred when one centre had low storage were due to temporarily high 

transport costs.  

 

Thirdly, if cheap transport is slow, studies of market integration need to focus more on logistics 

issues ⎯ the way arbitrageurs use transport systems and storage to integrate markets ⎯ rather 

than just transport issues.  The logistics literature has shown that when companies ship goods 

between different plants, storage choices are as important as transport choices. The data analysed 

here, and the models of Williams and Wright, suggest that the interaction of storage and transport 

is key to understanding the short term behavior of commodity markets as well.  

 

Fourthly, the similarity of the supply of storage curve in New York and the spatial arbitrage curve 

between New York and Chicago suggests that spot prices exceed future prices in a centre when 

storage is low and new supplies cannot be quickly and cheaply reordered. If the supply of storage 

and spatial arbitrage curves are closely related in general, it suggests that the supply of storage 

curve exists because it most profitable to use slow, cheap transport systems to ship goods. If so, a 

rational expectations model of storage and trade incorporating slow transport may be the 

appropriate framework for investigating the phenomena of a supply of storage curve. Further 

research should be directed at establishing whether the spatial arbitrage-storage curve is as 

ubiquitous as the supply of storage curve.  

 

Lastly, this data supports Wright and Williams’ contention that a supply of storage curve can 

exist even when a commodity has no convenience yield.  According to the theoretical model, the 

spot price can temporarily exceed the future price in an importing centre if inventories fall to 

zero. The model further suggests that such occasions should occur regularly, explaining the 

frequency of occasions when prices are in backwardation. While the model does not explain why 

the spot price spikes upwards when inventories are low but not literally zero, the New York 

example suggests that inventories may never fall to zero because the elevators and warehouses in 

which they are held are dual use, being used in this case to transfer grain as well as to store it.  
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Appendix 1: Solving the Rational Expectation Model 
This appendix contains more details about the solution technique used to solve the model in 

Section 2. A solution is found by constructing an algorithm that calculates a series of successive 

approximations to the optimal storage and trade functions,  and , where k refers to ( )i
k tS y ( )i

k tT y

the kth approximation. The iteration process is as follows. First, given the kth value of these 

functions, the price functions for each centre are calculated at all grid points, using the inverse 

demand function , where ,( ) ( ( ))i D i i
k t k tP y P D y= ( ) ( )i i i i i

k t t k t k tD X M S y T y= + − − .  

 

Secondly, given the kth storage and trade rules  and , a schedule of the expected 

future price conditional on being at 
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t t t tM M X X+ +  the expected future price is calculated by multiplying the price 

functions by the transition matrix probabilities Π: 
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Thirdly, the values of the four complementary conditions associated with each of the equations 

6a-6d are calculated at each point . The value of the expected future price ty , 1[ |i
k t t ]E P y+  is 

equal to  and is 

calculated using linear interpolation of equation 13. Linear interpolation is used because it 

ensures that if a linear inequality restriction holds at contiguous grid points, it will also hold in 

between the grid points. If the value of the complementary condition is inconsistent with the 

value of the associated control variable, ─ for example, if in inequality 6a, but 

, 1[ | ((1 )( ( ) ( )), (1 )( ( ) ( )), , )]i A B B A A
X k t k t k t k t k t t tE P S y T y S y T y X Xδ δ+ − + − + B

0A
kS >

1
11 [ | ]A

t tr E P yδ−
++ ( ) 0A S

t tP y K− − ≠ , or  0A
kS = but 1

11 [ | ] ( )A A S
t t t tr E P y P y Kδ−
++ 0− − > ─ then the 

value of the control variable is recalculated at the grid point; otherwise, it remains unchanged. 

The new k+1th values of the control variables associated with the inconsistent inequalities are 

simultaneously calculated at the grid point using an optimising routine such as the Newton 

Rhapson or the secant method. The process is repeated at each grid point until and  are 

calculated over the whole domain. 

1
i
kS + 1

i
kT +
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The whole algorithm is repeated until the difference between successive values of the control 

values is small. It proved necessary to sacrifice accuracy at some points of the domain of 

simply to construct a four dimensional grid small enough to modeled by a computer; in the 

end, the grid structure consisted of some 20000 to 40000 points. The algorithm was solved on a 

personal computer using Gauss software. Typically convergence took 300 iterations to achieve 

acceptable accuracy. 

ty

 

The starting value for the algorithm was calculated by splitting the combined centre solution into 

two, that is by estimating storage functions AS and such that  

, where is the solution for storage in the 

combined centre problem. The initial value for the trade variables was zero.  

BS ( , , , )A A B A AS M M X X +

( , , , ) ( , , ,B A B A A A B A AS M M X X S M M X X= ) (.)S

 

The Invariant Distribution. 

The invariant distribution of the model is the unconditional probability of being at a particular 

grid point. Deaton and Laroque (1995) suggest a method for finding the invariant distribution as 

follows. Suppose Y is a vector of all possible grid points corresponding to the four state 

variables. Let the function 

1n ×

: ( )Y Yω × → R be the conditional transition probabilities of moving 

from one point one period to another in the next period:  

1 2 t+1 2 1( , )=Prob(Y ( ) | )ty y B y Y yω ∈ =  

where 2( )B y is a region around defined so that the regions form a partition of the space and 

only include one grid point. Let Ω be the n

2y

n× matrix of these probabilities, with 

( , )ij i jy yωΩ = . Ω has at least one unit eigenvalue, since all the rows of Ω sum to 1 and all 

elements of Ω are strictly less than 1 by construction. The eigenvector corresponding to this 

eigenvalue will be the invariant probability distribution of  .Y
 

Deaton and Laroque suggest that the eigenvalue and its corresponding eigenvector can be found 

by inverting the matrix Ω . This is not practical in this case as n typically exceeds 20000. 

The alternative method for finding the invariant distribution is simply to multiply an arbitrary 

initial distribution on Y by the transition matrix Ω' until some successive values of the product 

meet some convergence criteria. This method proves to be fast, for even though Ω has several 

hundred million elements, the vast majority of these are zeros and it is straightforward to devise 

n n×
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an algorithm that only uses the several hundred thousand positive elements in the iterative 

procedure.  

 

Appendix 2: Data Sources  
Six kinds of data have been assembled for this project: the spot price of corn in New York and 

Chicago; the future price of corn in New York and Chicago; transport costs between Chicago and 

New York; transport volumes between Chicago and New York; storage prices in Chicago and 

New York; and storage volumes in Chicago and New York.  

 

Spot Price of Corn. 

Prices were collected for Number 2 Yellow corn. Number 2 corn was the primary future grade 

and comprised a large fraction of the spot market. Grades were defined as follows. 

 

New York: “YELLOW CORN shall be sound, dry, plump and well cleaned; an occasional white 

or red grain shall not deprive it of this grade. No.1 CORN  shall be mixed corn of choice quality, 

sound, dry and reasonably clean. No.2 CORN  shall be mixed corn, sound, dry and reasonably 

clean. ” New York Produce Exchange (1882) p207 

 

Chicago: “No. 1 YELLOW CORN shall be yellow, sound, dry, plump and well cleaned. 

No. 2 CORN shall be dry, reasonably clean, but not plump enough for No. 1” Chicago Board of 

Trade (1882) p 79-80  

 

Spot prices for both cities were collected in the Thursday edition of the New York Times, 1878- 

1891. The prices were for the preceding Wednesday. If the Wednesday were a public holiday, the 

Tuesday price was collected. If the markets were closed on both Wednesday and Tuesday, the 

data was skipped for that week.  

 

Daily spot prices for New York are also available in some years in the Annual Report of the New 

York Produce Exchange. However, since The New York Times had to be used to collect the 

Chicago spot price and the New York future price, as well as the New York spot price in years 

where it was not reported in the Annual Report, the weekly New York Times data was used.  
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Future Price of Corn.  

Prices were collected for Number 2 Yellow corn. The Chicago future price was collected from the 

Annual Report of the Chicago Board of Trade. The quotes is for seller delivery: the seller could 

choose any day to deliver within the said month.  Wednesday quotes were collected. 

 

The New York Wednesday future prices were collected from the Thursday edition of the New 

York Times. The seller also had the option as to the delivery date. 

 

Corn Trade and Storage Data.  

Storage and trade data for Chicago was sourced from the Chicago Board of Trade Annual 

Reports. The New York data came from a variety of sources. Where possible, it came from the 

New York Produce Exchange Annual Reports, but these documents had little data between 1882 

and 1887. Storage data for these years came from the weekly Commercial and Financial 

Chronicle. Export data for several years came from the Chicago Board of Trade Annual Reports. 

Storage cost data come from the Chicago Board of Trade and New York Produce Exchange 

Annual Reports, and from Goldstein (1928).  

 

Transport Data 

The transport cost data were published by the Chicago Board of Trade and New York Produce 

Exchange Annual Reports. They are similar not identical to the data published in the Aldrich 

Report, (United States 52nd Congress 2nd Session (1893) Senate Report 1394: Wholesale Prices, 

Wages, and Transportation. Report by Mr Aldrich from the Committee on Finance March 3 1893 

Part 1. (Washington: Government Printing Office).  
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Table 1: Analytical results corresponding to equations 6a-6d. 
 

A
tS  B

tS  A
tT  B

tT  Prob(.) | |A B
t tP P−  1 1[| || ]A B

t tE P P y+ +− t  
 

>0 >0 =0 =0 68.1% ( )T SK K< −  1
1 ( )A Br

t tP Pδ
+
− −  

>0 >0 =0 >0 13.4% ( )T SK K= −  1
1 ( )T Sr K Kδ
+
− −  

>0 >0 >0 =0 13.4% ( )T SK K= −  1
1 ( )T Sr K Kδ
+
− −  

 
>0 =0 =0 =0 0.05% Uncertain Uncertain 
>0 =0 =0 >0 0.5% ( )T SK K= −  Uncertain 

>0 =0 >0 =0 1.4% ( )T SK K> −  1
1 ( )T Sr K Kδ
+
− −  

 
=0 >0 =0 =0 0.05% Uncertain Uncertain 
=0 >0 =0 >0 1.4% ( )T SK K> −  1

1 ( )T Sr K Kδ
+
− −  

=0 >0 >0 =0 0.5% ( )T SK K= −  Uncertain 
 

=0 =0 =0 =0 0.1% Uncertain Uncertain 
=0 =0 =0 >0 0.5% ( )T SK K> −  1

1 ( )T Sr K Kδ
+
−> −  

=0 =0 >0 =0 0.5% ( )T SK K> −  1
1 ( )T Sr K Kδ
+
−> −  

 
The table gives the absolute value of the price differential A B

tP P− t

t

and the expected future price 

differential  where they can be determined exactly by equations 6a - 6d, the arbitrage 

conditions describing storage and trade. The probabilities of each set of conditions occurring pertain to the 

baseline simulation for the two centre model with symmetric centres. 

1 1[| || ]A B
t tE P P y+ +−
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Table 2: Price, storage, and trade statistics corresponding to the model. 
(Identical centres, changing transport costs.) 

 
Statistic Combined 

Centre 
KT = 2.5 KT = 5 KT = 10 No 

Trade 
Prices  
Mean(PA) 100.2 100.2 100.3 100.3 100.4 
S. Dev.(PA) 8.5 8.6 8.5 8.6 10.4 
Mean(PA-PB) ─ 0 0 0 0 
S. Dev.(PA-PB) ─ 3.1 4.6 7.3 7.5 
% (| PA-PB| >KT-KS) ─ 2.9% 3.1% 3.1% ─ 
Storage  
Mean(SA) 186 227 261 315 422 
S. Dev.(SA) 157 232 251 285 291 
% (SA = 0) ─ 3.5% 3.1% 2.6% 1.0% 
% (SA, SB = 0) 3.1% 1.7% 1.1% 0.6% 0.0% 
Trade  
Mean(TA) ─ 3.9 3.2 2.3 ─ 
S. Dev.(TA) ─ 10.6 10.5 10.2 ─ 
% (TA = 0) ─ 80% 84% 90% ─ 
% (TA, TB = 0) ─ 61% 68% 81% ─ 
 
PA: the price in centre A. SA: storage in centre A. TA: trade from centre A to centre B. 
% (| PA-PB| >KT-KS): the fraction of time the price difference exceeds the difference between the trade cost 
and the storage cost. Note KT = 5 and KS=0 in these simulations. 
% (SA[TA] = 0): the fraction of time storage [exports] = 0. 
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Table 3: Price, storage, and trade statistics corresponding to the model. 
(Different centres, mean output changes across columns.) 

 
Statistic AX =  
               BX =  

100 
100 

95 
105 

90 
110 

80 
120 

70 
130 

Prices  
Mean(PA) 100.3 101.2 101.9 102.5 102.8 
S. Dev.(PA) 8.5 8.4 8.5 9.0 9.3 
Mean(PB) 100.3 99.3 98.6 97.9 97.7 
S. Dev.(PB) 8.5 8.7 8.8 8.8 8.7 
Mean(PA-PB) ─ 1.9 3.3 4.7 5.1 
S. Dev.(PA-PB) 4.6 4.4 3.8 2.7 2.0 
% (| PA-PB| >KT-KS) 3.7% 3.8% 3.2% 3.0% 2.1% 
Storage  
Mean(SA) 261 215 166 110 91 
S. Dev.(SA) 251 216 171 107 78 
% (SA = 0) 2.8% 3.1% 2.5% 2.4% 2.1% 
Mean(SB) 261 286 296 288 285 
S. Dev.(SB) 251 273 284 286 294 
% (SB = 0) 2.8% 3.8% 4.2% 7.7% 9.4% 
% (SA, SB = 0) 0.9% 1.3% 1.3% 1.8% 1.9% 
Trade  
Mean(TA) 3.2 1.7 0.8 0.1 0.0 
S. Dev.(TA) 10.5 8.0 5.4 2.2 0.5 
% (TA = 0) 86% 92% 96% 99% 99.9% 
Mean(TB) 3.2 5.7 9.1 17.7 27.4 
S. Dev.(TB) 10.5 13.0 15.1 18.8 23.1 
% (TB = 0) 86% 73% 61% 32% 19% 
% (TA, TB = 0) 72% 65% 56% 31% 18% 
 
PA: the price in centre A. SA: storage in centre A. TA: trade from centre A to centre B. 
% (| PA-PB| >KT-KS): the fraction of time the price difference exceeds the difference between the trade cost 
and the storage cost. Note KS=0 in these simulations. 
% (SA[TA] = 0): the fraction of time storage [exports] = 0. 
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Table 4: Distribution of spot price difference adjusted for transport costs 

by storage level ( NY CH TP P K− − )
Storage 
level  bu 

<150000 <300000 <600000 <1000000 <2000000 2000000 + 

N 
 

21 45 79 62 87 75 

% obs 
< 0 

0% 2% 2.5% 3% 10% 15% 

% obs 
0≤ x<5 

38% 67% 85% 90% 87% 83% 

% obs  
≥ 5 

62% 31% 12.5% 6.5% 2% 3% 

Mean 
 

6.01 3.84 2.70 1.73 1.45 1.10 

Std 
 

2.93 2.57 1.89 2.82 1.61 1.81 

WMW 
test 1 

 -2.77* -4.44* -5.23* -5.95* -5.96* 

WMW 
test 2 

 -2.77* -2.43* -2.52* -1.94 -1.03 

The table shows the fraction of observations in each group which are less than zero,  
between 0 and 5 cents, and more than 5 cents.  
The first Wilcoxon-Mann-Whitney test, WMW test 1, tests whether the distribution is  
the same as the distribution of the group for which storage is less than 150000 bushels. 
The second Wilcoxon-Mann-Whitney test, WMW test 2, tests whether the distribution  
is the same as the distribution of the group immediately to the left.  
The WMW test is asymptotically distributed as N(0,1) and a * indicates significance at the  
5% critical level i.e. that the two cumulative distributions lie above each other.  
 
 
Table 5:  Distribution of spot-future price difference adjusted for transport costs 

by storage level ( NY CH TF P K− − )
Storage 
level  bu 

<150000 <300000 <600000 <1000000 <2000000 2000000 + 

N 
 

19 44 77 60 84 74 

% obs 
< 0 

21% 7% 10% 8% 7% 11% 

% obs 
0≤ x<5 

74% 91% 86% 92% 92% 85% 

% obs  
≥ 5 

5% 2% 4% 0% 1% 4% 

Mean 
 

1.04 1.60 1.60 1.29 1.45 1.55 

Std 
 

2.12 1.33 1.76 3.03 1.12 2.09 

WMW 
test 1 

 1.00 1.07 0.92 0.73 0.90 

WMW 
test 2 

 1.00 0.07 -0.31 -0.49 0.56 

See Table 4.  The table shows the fraction of observations in each group which are less than zero,  
between 0 and 5 cents, and more than 5 cents.  
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 Figure 1 

Probability density of the spatial price difference
Transport cost KT = 5, storage cost KS = 0
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Figure 3 

 Conditional moments (ii) E[PA
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Figure 4 

 Seasonal  pattern of Chicago corn shipments 1878-1890
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Figure 5 

Monthly rail shipments through Buffalo,1877-1881 
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Figure 6 

Average transport costs, 1880 - 1891, by week
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Figure 7 

"Summer" Storage (May-November), New York,  1878-1891
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Figure 8 
NY spot and Chicago spot price difference versus transport cost

1878-1891
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Figure 9 

NY future minus Chicago spot price versus transport cost 1878-1891
New York future is "delivery this month" if date is before the 10th; otherwise "delivery next month" 
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Figure 10 

Spatial arbitrage - storage Curve
(PCH+KT-PNY ) versus storage 
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Figure 11 

Supply of Storage Curve
One month future premium versus storage 
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Figure 12 

Future premium versus Spatial arbitrage-transport cost gap
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