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1 Introduction

Multivariate modelling of conditional heteroskedasticity has been an important
research problem ever since ARCH models were introduced by Engle (1982).
Full multivariate generalization of a GARCH model involves the specification
of a system of dynamic equations for the elements of a conditional variance-
covariance matrix subject to positive definiteness constraints (see Engle and
Kroner 1995). Fully general models model involve many parameters even when
the number of variables that are modelled jointly is only moderately large, and
the computational difficulties and uncertainty caused by estimating too many
parameters often outweighs the benefits of multivariate modelling. This has led
researchers to consider various restricted versions of the general model, such as
the constant conditional correlation model of Bollerslev (1990) or the dynamic
conditional correlation model of Engle (2002). Researchers have also considered
various restrictions that relate the evolution of variances and covariances to a
reduced number of underlying factors. Our paper fits into this second stream
of the literature.
It is easy to motivate factor models in financial applications. Theoretical

asset pricing models often relate the dynamics of prices of different assets to a
small number of underlying factors. Engle, Ng and Rothschild (1990) propose
a factor ARCH model for the term structure of interest rates. King, Sentana
and Wadhwani (1994) consider a multifactor model for aggregate stock returns
for 16 countries. These models specify the complete conditional distribution
of all variables, so that they deliver internally consistent forecasts of means,
variances and covariances. On the other hand, authors such as Harvey, Ruiz
and Shephard (1994) develop explicit multivariate models of just the logarithms
of squared returns, and then they consider the possibility of common random
factors in the variances of their return series. Engle and Marcucci (2004) adopt
a similar approach. Motivated by applications in which only the forecasts of
variances are of interest, these authors specify a long-run pure variance model
of thirty Dow Jones stocks in which just the conditional variances of returns are
modelled jointly, leaving other aspects of the joint distribution (and in particular
the covariances) unspecified. This is achieved by assuming that squared returns,
or certain transformations of squared returns have a common long-run feature.
In their model, the volatility of each asset depends on a small number of common
factors and an idiosyncratic factor, and their analysis compares and contrasts the
performance of canonical correlation and principal component based estimators
of these common factors.
Recently with the increased availability of high frequency data and improved

data storage and computing capabilities, and also with advances in theory and
empirics of continuous time finance, there has been renewed interest in using
high frequency returns between period t−1 and t to obtain a consistent estimator
of volatility for time t. This measure of volatility, known as “realized volatility”,
was first used by French, Schwert and Stambaugh (1987) and has been strongly
promoted in recent work by Andersen, Bollerslev, Diebold and Labys (2003).
Here, we use realized volatility to develop a pure variance model for the returns
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of twenty one highly traded Australian stocks. Our goal is to investigate whether
a parsimonious multivariate model can do better than simple univariate models
with respect to forecasting the realized volatility of Australian stocks.
The first stage in the development of a factor model is to determine the num-

ber of common factors. Engle and Kozicki (1993) show that if common factors
are implied by some common statistical feature, that is, if the common factors
have a statistical feature that is absent from the idiosyncratic factors, then as
long as the number of variables is not too large, one can design common feature
tests to determine the number of common factors (under the assumption that N
is fixed and T goes to infinity). This is not very difficult when one is modelling
the conditional mean of a multivariate data set, (see, e.g., Anderson and Vahid,
1998), but it becomes quite complicated in the case of conditional variances (see
Doz and Renault, 2004). One advantage of pure variance models is that they
are more convenient for developing common features tests for determining the
number of common factors. Non-normality and heteroskedasticity will usually
imply that the usual canonical correlation based test statistics will not be useful
in these circumstances (see Engle and Marcucci, 2004), so that one has to turn
to more robust tests for common features (see Candelon, Hecq and Verschoor,
2004). However, even under ideal conditions (i.i.d. normal errors), the perfor-
mance of such tests in finite samples will deteriorate as the number of variables
N becomes large.
When common and idiosyncratic factors have similar statistical properties,

one can determine the number of factors by comparing the fit of estimated
models that each use a different number of common factors. This is somewhat
cumbersome, because it requires the complete specification and estimation of
each model. Alternatively, one can make constructive use of the cross sectional
dimension, as in the approximate factor models of Chamberlain and Rothschild
(1983). Connor and Korajczyk (1993) provide a test for the number of factors
and Bai and Ng (2002) suggest several model selection criteria that produce
consistent estimates of the number of common factors when N and T go to
infinity.
In this paper we argue that the presence of jumps in time series of realized

volatilities can distort inference relating to common factors, and then we out-
line modifications to model selection criteria that are likely to be more robust
to jumps. We also argue that since jumps are unpredictable, there is little to
be gained by including them in forecasting models. We therefore remove jumps
from our data by using the procedures discussed in Barndorff-Neilsen and Shep-
hard (2004), and then we build factor models for the forecastable component of
volatility.
The structure of the rest of this paper is as follows. Section 2 provides a

description of our data. Section 3 briefly explains approximate factor models
and the determination of the number of factors in these models. Section 4
contains a discussion on how jumps can affect inference in approximate factor
models, and it then suggests a procedure for choosing the number of factors that
is robust to the presence of jumps. This section also suggests using realized "bi-
power variation" (i.e. realized volatility minus the jumps) instead of realized
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volatility for developing forecasting models, and explores the properties of bi-
power variation of the returns of Australian stocks. Section 5 develops univariate
and multivariate models for forecasting the log-volatilities in our data set and
compares their out of sample performance. Section 6 concludes.

2 Data

We base our analysis on price data for stocks traded on the Australian Stock
Exchange (ASX).1 Institutional details relating to trading on the ASX may be
found on their web site (www.asx.com.au). Trading is on-line and is conducted
through the Stock Exchange Automated Trading System (SEATS), which con-
tinuously matches bids and offers during normal trading hours from 10.00am
to 4.00pm (EST) on Monday to Friday (public holidays excluded). Opening
times for individual stocks are staggered but all stocks are trading by 10.10,
and at the end of the day additional trading at volume weighted prices may
continue until 4.20pm. Our data records the last price observed during every
five minute interval within each working day for six years starting on January
1st 1996, but since there are too many five minute intervals in which there are
no trades and hence no recorded price, we work with fifteen minute returns and
restrict our attention to just twenty one frequently traded stocks. The names of
the companies, their stock codes and their GICS (Global Industry Classification
Standard) industry group are provided in Table 1.
Realized variance is calculated as the sum of all squared ∆-period returns

between time t and t+1. That is, given the discretely sampled ∆-period returns
defined by rt,∆ = p(t)−p(t−∆) where p(t) is the natural logarithm of the price
and ∆ is small, realized variance is

RVt+1(∆) ≡
1/∆P
j=1

r2t+j∆,∆. (1)

Given that the ASX is open for six hours in a normal working day, there are
usually 120 fifteen minute time intervals in a five day week so that most of our
weekly measures of realized variance are based on 120 raw data points, and ∆ =
0.00825 (1/120). Some of our returns relate to shorter weeks that include public
holidays (Easter Friday, Christmas, New Year, etc.), or trading halts that the
ASX calls when firms are about to release price sensitive information (these halts
can last anywhere between ten minutes to two days). In all cases involving less
than 120 intra-week observations, we scale the measures of variance computed
on the basis of the available fifteen minute returns up, so as to make them
compatible with those measures computed from a full week of data.
We report summary statistics for weekly stock returns in Table 2. The

most interesting aspect of this summary is that there is no evidence of ARCH
in the weekly returns for most (14 out of 21) companies. The first column

1The data is provided by the Securities Industry Research Centre of Asia and the Pacific
(SIRCA).
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of Table 3 shows p-values for LM tests of the null hypothesis that there is
no serial correlation in realized variance. Again, there is mixed evidence of
predictability in volatility, with no evidence of predictability being found in 7
out of the 21 cases. These initial results suggest a very limited scope for pooling
this data set to improve the forecastability of conditional variances, but after
contrasting this evidence with the forecastability of filtered realized variance
in Section 4, our interpretation is that significant idiosyncratic jumps in the
volatilities of stock prices of Australian companies are responsible for giving
the impression that conditional variances are constant or very dissimilar across
different stocks. The jumps are large and are therefore very influential when
one is estimating parameters, but they are also quite unpredictable and hence
generate the impression that volatilities are unpredictable.

3 Factor models of realized volatility

Raw intuition and more formal theories in finance suggest that underlying mar-
ket factors drive the movement of all asset returns. This prompts the use of
information on all asset returns to extract a few common reference factors, and
it is natural to think of principal component analysis as a technique that might
be used for this purpose. This motivates the approximate factor literature in
finance, originating in the work of Chamberlain and Rothschild (1983). This
model is given by

Yt
(N×1)

= A
(N×r)

Ft
(r×1)

+ ut,
(N×1)

(2)

where the Yt are assumed to have mean zero for simplicity, the vector Ft contains
r common factors, and ut contains N idiosyncratic factors that are independent
of Ft. Chamberlain and Rothschild (1983) show that the r largest eigenvalues

of 1T
PT

t=1 YtY
0
t will go to infinity as N and T go to infinity, while the (r+1)th

eigenvalue remains bounded. Intuitively, the result holds because each addi-
tional cross sectional unit provides additional information about the common
factors, but only local information about an idiosyncratic factor. Therefore, as
N →∞, the information in the data about the common factors will be of order
N, while the information about idiosyncratic factors will remain finite.
Bai and Ng (2002) use these results to develop four consistent model selection

criteria for choosing the number of factors in approximate factor models. These
are

PC1 (r) =
ESS (r)

NT
+ r × ESS (rmax)

NT
× N + T

NT
ln

µ
NT

N + T

¶
,

PC2 (r) =
ESS (r)

NT
+ r × ESS (rmax)

NT
× N + T

NT
ln (min {N,T}) ,

IC1 (r) = ln

µ
ESS (r)

NT

¶
+ r × N + T

NT
ln

µ
NT

N + T

¶
, and

IC2 (r) = ln

µ
ESS (r)

NT

¶
+ r × N + T

NT
ln (min {N,T}) ,
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where ESS (r) =
PT

t=1

PN
i=1(Yit − â0iF̂t)

2, F̂t are the r estimated common
factors and rmax is the largest possible r considered by the researcher. The
first two criteria compare the improvement (i.e., decrease in the error sum of
squares) relative to a benchmark unrestricted model as r increases, while the
last two criteria work on the basis of the percentage improvement in the error
sum of squares as r increases. Bai and Ng (2002) use the principal component
estimator of factors and factor loadings, which minimizes the sum of squared
errors.
We apply these criteria to the square root of our realized variance measures2

for various values of rmax. The results for rmax = 5 are

r PC1 (r) PC2 (r) IC1 (r) IC2 (r)
0 2.043 2.043 -7.887 -7.887
1 1.361 1.363 -8.197 -8.193
2 1.015 1.019 -8.443 -8.435
3 0.944 0.950 -8.477 -8.465
4 0.881 0.889 -8.539 -8.523
5 0.874 0.884 -8.539 -8.519

.

For our data set the first two criteria always choose rmax number of common
factors. The last two criteria choose five and four common factors respectively.
The observation that these model selection criteria select a large number of
common factors relative to N when N is small has been noted in the simulation
study of Bai and Ng (2002) and in the empirical study of Engle and Marcucci
(2004). Here, we would like to argue that the relatively large number of common
factors chosen in real data sets can be caused by large idiosyncratic jumps in
asset prices.
Figure 1 illustrates how outliers can affect principle components.3 The plots

show the five largest eigenvalues of 1T
PT

t=1 YtY
0
t as N is increased from 5 to 21,

where Yt is the demeaned square root of realized variances. Diamonds, plus-
signs, triangles, squares and circles respectively represent the first to fifth largest
eigenvalues. The feature of interest is that the largest eigenvalue seems to be
due to the variance of a single asset (LLC), because as soon as this asset is added
to the set of N variance measures, the diamond plot jumps to a value of around
2, and then stays at that value. This is clearly a symptom of small N , and the
eigenvalue that is influenced by a single firm would eventually cease to dominate
the analysis once N → ∞. However, we show below that the variance process
for LLC is clearly dominated by jumps, and we argue that by purging these
jumps and other jumps, and by also considering alternative estimators that are
more robust to jumps, one can get better estimators for common factors.

2We take the square root of our realized variance series to conform with the finance litera-
ture, where "volatility" usually refers to the standard deviation. Results based on our realized
variance series are qualitatively the same.

3This visual method is suggested by Forni et al (2000), who work with a more general
factor model.
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Figure 1: The largest five eigenvalues of the variance matrix as N
increases

4 Jumps

Many researchers have noted that models of asset returns that incorporate jumps
fit the data better than models that don’t allow for jumps (see Andersen et al,
2003, and the reference therein). Standard "jump" models are based on the
assumption that the logarithm of an asset price follows a continuous time jump
diffusion process given by

dp(t) = µ(t)dt+ σ(t)dW (t) + κ(t)dq(t),

where µ(t) is a continuous function, σ(t) is a strictly positive volatility process,
and κ(t)dq(t) is a jump process that allows for rare discrete jumps of size κ(t)
whenever dq (t) equals 1. Under this assumption the realized variance defined
in equation (1) converges to

RVt+1(∆) ≡
1/∆P
j=1

r2t+j∆,∆
p→

t+1R
t

σ2(s)ds+
P

t<s<t+1
κ2(s)

as ∆→ 0. That is, the realized variance includes all jumps that have occurred
between t and t+1. Since jumps are unpredictable, realized variance may seem
to be unpredictable even if σ(t) is predictable. Further, when analyzing the
realized variances of multiple assets, large jumps can potentially mask the fact
that the σ(t) of different assets depend on a small number of common factors.
We explore two ways of removing the influence of jumps on our analysis.

Our first approach treats the jumps as a kind of measurement error, and uses
instrumental variable methods to alleviate their effects. Our second approach
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uses a consistent estimate of
R t+1
t σ2(s)ds, which is the predictable component

of realized variance, and then develops forecasting models for these components.

4.1 Instrumental variable estimators of common factors

Consider the model of the N mean subtracted “volatilities”:

Yt
(N×1)

= A1
(N×r1)

Ct
(r1×1)

+ AJ

(N×r2)
Jt

(r2×1)
+ jt

(N×1)
+ ut

(N×1)
(3)

where Ct are the “continuous” common factors and Jt are the common jump
factors. The idiosyncratic components are jt + ut, where jt are idiosyncratic
jumps and ut are idiosyncratic dynamic factors. If factor loadings A1 and A

J are
not the same, then it is likely that the factors corresponding to largest principal
components will be those identified by the common jumps. While these factors
explain a large proportion of contemporaneous variation of volatilities, they will
not be useful for forecasting since the jumps are unpredictable. Moreover, in
practice, idiosyncratic jumps can also be quite large, and in finite samples the
principal component procedure may identify those variables with the largest
jumps as the common factors.
Consider the linear projection of Yt on Yt−1 (note that we are using Yt−1,

and not the entire history of information), and denote all linear projections on
this space by the subscript ‘| t− 1’. We have

Yt|t−1 = A1Ct|t−1 + ut|t−1, (4)

since jumps are not predictable from the past, and this implies that Jt|t−1 =
jt|t−1 = 0. If the idiosyncratic factors ut are serially correlated, then the number
of common factors cannot be identified by a serial correlation common feature
(SSCF, Engle and Kozicki, 1993) test, because ut|t−1 will be a non-trivial func-
tion of Yt−1. With fixed N, one solution within the common feature framework
is to assume that common factors are autoregressive, while idiosyncratic factors
are m-dependent, i.e. they have finite memory, as in Gourieroux and Peaucelle
(1988) or Vahid and Engle (1997). In such a case, the projection on Yt−m−1
will only include the common factors, i.e.,

Yt|t−m−1 = A1Ct|t−m−1,

and we can use a GMM test for codependence to determine the rank ofA1 (Vahid
and Engle, 1997). However, one may not want to make such an assumption in
financial applications.
As in Bai and Ng (2002), we can make constructive use of the large cross

sectional dimension to develop model selection criteria for the determination of
the common factor rank, without imposing m-dependence on the idiosyncratic
factors. We need to choose a penalty function such that the addition to the fit
generated by modelling the idiosyncratic components (i.e., increasing the rank
of the parameter matrix that links Yt−1 to Yt beyond r1) becomes negligible as
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N →∞. In a way, such a set-up can be viewed as instrumental variable estima-
tion, with Yt−1 taken as instruments for Ct. Ordinary principle components can
be viewed as least squares estimates of Yt on linear indices made from Yt. These
indices are proxies for Ct. The combination of large jumps and small N , makes
these proxies unreliable. Treating the jumps as being similar to measurement
errors, one can use Yt−1 as instruments to obtain better proxies for Ct. While
each of the idiosyncratic components is correlated with one of the instruments,
the average (over N) correlation of each idiosyncratic component with all in-
struments goes to zero, while the average correlation between the instruments
and the r common factors does not go to zero.

Proposition 1 A consistent estimator of the forecastable common factors un-
der the assumption that N,T −→ ∞ with N < T is Â01Yt, where Â1 consists

of the eigenvectors corresponding to the r1 largest eigenvalues of ŶŶ
0
and Ŷ is

the orthogonal projection of Y on Y−1. Here, Y = (Yp+1, ..., YT ) is N × (T −p)
and Y−1 is the Np× (T − p) matrix of lagged values, i.e.,

Y−1 =

 Yp
...
Y1

, ...,

YT−1
...

YT−p


for any p > 0. Subject to the usual normalization that A01A1 = Ir1 , this estimator
of Â1 is also the ordinary least squares reduced rank regression estimator of A1
in

Y = A1B1Y−1 +U (5)

that minimizes tr
¡
UU0¢ . This is also the ordinary least squares reduced rank

estimator of A1 in
Ŷ = A1B1Y−1 +U∗. (6)

Proof: The approximate factor structure is preserved after linear projection
on lagged Yt, but with only r1 forecastable factors, as can be seen from equa-
tion (4). This does not depend on the number of lags in the projection ma-
trix, and the factor loadings in A1 also stay the same if the lag structure
in the projection matrix is changed. Therefore, under appropriate regular-
ity conditions, the principal component of the variance covariance matrix of
Yt|t−1,...,t−p produces consistent estimates of Ct|t−1,...,t−p and A1, as N −→∞.

Since Ŷt is a consistent estimator of Yt|t−1,...,t−p, the eigenvectors of the first r1
eigenvalues of ŶŶ

0
are consistent estimators of A1. Note that Ŷ =YP where

P = Y0
−1
¡
Y−1Y0−1

¢−1
Y−1 is the orthogonal projection matrix on the space of

lagged Y. Since P is symmetric and idempotent, it follows that ŶŶ
0
= YPY0 =

YY0
−1
¡
Y−1Y0−1

¢−1
Y−1Y0. The fact that the eigenvectors corresponding to the

largest r1 eigenvalues of this matrix are the estimates of A1 in the reduced rank
regression of Y on Y−1, is another well known result in multiple regression
theory (see Lütkepohl, 1991, Proposition A.5). Finally, the last part follows

because YY0
−1
¡
Y−1Y0−1

¢−1
Y−1Y0 = ŶY

0
−1
¡
Y−1Y0−1

¢−1
Y−1Ŷ0.
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Corollary 2 We can determine the number of forecastable factors r1, by design-
ing model selection criteria that are analogous to those in Bai and Ng (2002).
In these new criteria, ESS (r1) will be the error sum of squares of the estimated
reduced rank regression (5), which will be equal to tr

¡
YY0¢ minus sum of the

r1 largest eigenvalues of ŶŶ
0
. Also ESS (rmax1 ) will be the error sum of squares

of the full rank regression, which is equal to tr
¡
YY0¢− tr(ŶŶ

0
).

Figures 2 plots the largest 5 eigenvalues of ŶŶ
0
for realized volatilities

√
RV .

Comparing Figure 2 with Figure 1, it is clear that the projection on one lag has
eliminated the effect of idiosyncratic jumps.

Figure 2: The largest five eigenvalues of ŶŶ
0
for
√
RV

Although the linear projection of Ct on one lag can separate jumps and
determine the number of forecastable factors, its implied forecast of Ct is not
the best possible forecast given the entire past information set. If it is reasonable
to assume a parsimonious autoregressive dynamic model for Ct, then one can
include the relevant lags in Y−1 and use the reduced rank regression (5) to
deliver a “leading indicator” for forecasting Yt. One can then make individual
forecasting equations for each asset, using the leading index as an explanatory
variable. This is one of the forecasting procedures that we pursue in this paper.
There is possible serial correlation in the residuals of equation (5) (where

ut is the t-th column of U) and the variances of uit and ujt can be different.
Also, since these remainders can contain common jumps, they can be contem-
poraneously correlated. However, the factor structure implies that Eutu0t−s is
diagonal for s > 0, or that it will be block diagonal if we allow the idiosyncratic
components of assets in the same industry group to be correlated. Hence, an
appropriate GLS correction would take account of all of these considerations
and would involve the complete specification of the entire structure. In that
case, one may as well estimate the entire system jointly. A partial GLS correc-
tion that ignores the serial correlation in the errors and only corrects for cross
sectional heteroskedasticity and contemporaneous correlation among the errors,
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leads to the canonical covariate estimators of the common components. If the
idiosyncratic components are not serially correlated and the errors are normally
distributed, then this estimator would be the maximum likelihood estimator of
the common factor and its best prediction given the information in Y−1. These
results are stated in the next proposition.

Proposition 3 If the idiosyncratic components are not serially correlated, then
the variables in Yt have r1 common serial correlation features. Then, (i) the GLS
estimator of the reduced rank regression is MLE under the assumption that the
errors are normal; and (ii) this estimator minimizes

¯̄
UU0 ¯̄ .Under the normal-

ization that A01A1 = Ir1 , the columns of A1 consist of the eigenvectors corre-

sponding to the r1 largest eigenvalues of
¡
YY0¢− 1

2 YY0
−1
¡
Y−1Y0−1

¢−1
Y−1Y0 ¡YY0¢− 1

2 ,

which correspond with the eigenvalues of
¡
YY0¢−1YY0

−1
¡
Y−1Y0−1

¢−1
Y−1Y0.

These eigenvalues are the squared sample canonical correlations between Yt and
Yt−1, Yt−2, ..., Yt−p.

Proposition 4 If the factor structure is correct but the idiosyncratic compo-
nents are serially correlated, then the canonical variates corresponding to the r1
largest eigenvalues of

¡
YY0¢−1YY0

−1
¡
Y−1Y0−1

¢−1
Y−1Y0 need not provide a

consistent estimator of A1.

All parts of Proposition 3 are well-known results in multivariate statistics
(see, e.g, Anderson, 1984, and Vahid and Engle, 1993), but Proposition 4 needs

some explanation. The eigenvalues of
¡
YY0¢− 1

2 YY0
−1
¡
Y−1Y0−1

¢−1
Y−1Y0 ¡YY0¢− 1

2

are, by construction between zero and one, and they show the highest, the sec-
ond highest, ... squared correlation between every possible linear combination
of Yt and the past. Under the assumed factor structure, the r1 largest eigen-

values of 1
TYY

0
−1
¡
Y−1Y0−1

¢−1
Y−1Y0 increase to infinity at rate N, and at

least the r1 largest eigenvalues of
1
TYY

0 increase to infinity at the same rate.
This implies that the r1 smallest eigenvalues of

¡
1
TYY

0¢−1 go to zero at rate
N−1. However, this does not tell us if the largest eigenvalue of the product of
these matrices still reflect any information about the common factor. Canoni-
cal correlations procedures will always reveal if the dimension of the dynamic
system is smaller than N, but a common factor structure with predictable idio-
syncratic components need not have reduced rank dynamics. This does not
mean that the canonical correlation procedure “does not work”. It only tells us
that the canonical correlation procedure cannot be used to identify the common
and idiosyncratic components, when both types of components have the same
feature.
We close this section by comparing our estimator with two other estima-

tors of common factors in the literature. Firstly, Forni et al (2000) consider
a more general dynamic factor model, in which each series may be affected
by a different lag of the common factor. They transform their structure to
the frequency domain and determine the number of common factors from the
eigenvalues of spectral density matrices at different frequencies. Then they use
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the eigenvectors corresponding to their estimated eigenvalues to combine the
spectral coordinates of the N variables and hence obtain an estimate of the
spectral density of the common factors. Then, through the inverse transform to
the time domain, they find the weights of the filters that deliver the common
factors. Since these filters are two-sided filters, they are not useful for forecast-
ing. To overcome this problem, Forni et al (2003) find the projection of the
factors on the past history to determine a one-sided estimate that can be used
for forecasting. Our method can be viewed as a direct attempt to estimate the
reduced form that is compatible with the factor structure. The advantage of
the Forni et al (2003) methodology is that their method delivers estimates of
the covariances of the common and idiosyncratic factors, and using these, one
can derive the parameters of an h-period ahead leading index for the common
factors for any h. Our method would need to first specify h, and then choose
the lags in Y−1 so as to deliver an h-step ahead leading indicator ( the most
recent information in Y−1 would be Yt−h).
Secondly, our method is closely related to methods of dimension deter-

mination in linear systems theory, such as those in Akaike (1976), Havenner
and Aoki (1988) and Aoki and Havenner (1991). Recent work by Kapetan-
ios and Marcelino (2004) has extended the last of these to the case with large
N. Their approach determines the dimension of the state space that links the
past to the current and future by examining the singular values of the co-
variance matrix between the past and the future. If “the future” is left out
and one looks at the relationship between current and the past, then this
method will be the same as examining the eigenvalues and eigenvectors of¡
YY0¢−1YY0

−1
¡
Y−1Y0−1

¢−1
Y−1Y0. Kapetanios and Marcelino (2004) re-

place
¡
YY0¢−1 with an identity matrix stating that under the assumptions

of their model, in which the number of lags in Y−1 also increases to infinity,
this substitution does not affect the consistency of their estimator for common
factors. Here, we cannot get that result.

4.2 Forecastable component of realized variance

Another way to attenuate the effects of jumps is to remove them from the data.
Barndorff-Nielsen and Shephard (2004) show that a properly normalized sum
of the absolute value of adjacent ∆-period returns converges to the integral of
quadratic variation excluding the contribution of jumps. That is, as ∆→ 0,

BVt+1(∆) ≡ π

2

1/∆P
j=2

|rt+j∆,∆|
¯̄
rt+(j−1)∆,∆

¯̄ p→
t+1R
t

σ2(s)ds. (7)

The BV term in equation (7) is called the realized bi-power variation, and this
equation shows how a consistent estimator of the quadratic variation of the
continuous path process of 1-period returns can be calculated from ∆-period
returns. Equation (7) also implies that a consistent estimator for the jumps
between times t and t+ 1 is given by
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RVt+1(∆)−BVt+1(∆)
p→ P

t<s<t+1
κ2(s).

Since the difference between realized variance and bi-power variation is not
always positive, a preferred estimator for jumps is given by

Jt+1(∆) = max {RVt+1(∆)−BVt+1(∆), 0} . (8)

Barndorff-Nielsen and Shephard (2004) establish that for a process that has
no jumps, RVt+1 is a slightly better estimator for quadratic variation than
BVt+1. However, since jumps are commonly believed to be present in asset
volatilities, it is reasonable to expect that unless they are purged from the data,
they will have a distortionary effect on the specification of any time series mod-
els developed to forecast realized volatility. Also, since jumps are not typically
considered to be forecastable, it seems sensible to concentrate on building fore-
casting models for BV, since BV will be the only forecastable component of RV.
Andersen et al (2003) show that realized jumps in exchange rate data that are
computed using equation (8) have no forecasting power for realized volatility,
whereas bi-power variation in (7) has considerable forecasting power.
We calculate weekly bi-power variation and jumps for our 21 Australian

stocks using the fifteen minute returns as before. There are large estimated
jumps in almost all of the 21 stocks, and Figure 3 shows the calculated time
series of realized variance, bi-power variation and jumps for the AMCOR cor-
poration (AMC), the Commonwealth Bank (CBA) and the Lend Lease Corpo-
ration (LLC). The realized variance and the jump time series are plotted with
the same scale, while the bi-power variation plots have a different scale for a
better visualization. The plots show that some but not all of the large outliers
in realized volatilities have been identified as jumps.4 A user familiar with Aus-
tralian company histories would know that some of these large price changes
were caused by buy-backs, bonus share issues or other forms of capital restruc-
turing that cause a one-time jump in the share price without having any bearing
on its volatility. For example, Lend Lease Corporation issued a well publicized
one for one bonus share issue on 12 December 1998, which brought their share
price down from around 38 to around 19 Australian dollars. However, it is not
always obvious if a price movement that follows some capital restructuring is
purely a jump. Comparison of the realized variance with the realized bi-power
variation provides a simple way to isolate pure jumps.

4Barndorff-Neilson and Shephard (2004) develop tests of the significance of jumps, but we
do not apply them here, given that our primary purpose is simply to use bipower variation as
a basis for forecasting realized volatility.

13



.00

.01

.02

.03

.04

.05

.06

.07

.08

.09

1996 1997 1998 1999 2000 2001

RV_AMC

.00

.01

.02

.03

.04

.05

.06

.07

.08

.09

1996 1997 1998 1999 2000 2001

J_AMC

.000

.002

.004

.006

.008

.010

.012

1996 1997 1998 1999 2000 2001

BV_AMC

.000

.002

.004

.006

.008

.010

.012

.014

1996 1997 1998 1999 2000

RV_CBA

.000

.002

.004

.006

.008

.010

.012

.014

1996 1997 1998 1999 2000

J_CBA

.000

.001

.002

.003

.004

.005

.006

.007

1996 1997 1998 1999 2000

BV_CBA

.0

.1

.2

.3

.4

.5

1996 1997 1998 1999 2000 2001

RV_LLC

.0

.1

.2

.3

.4

.5

1996 1997 1998 1999 2000 2001

J_LLC

.000

.002

.004

.006

.008

.010

.012

.014

.016

1996 1997 1998 1999 2000 2001

BV_LLC

Figure 3: Realized variance (RV_), jumps (J_) and bi-power
variation (BV_) for a mining (AMC), a banking (CBA) and a real

estate (LLC) company

Table 3 reports the serial correlation properties of realized variance, bi-power
variation and jumps for the 21 weekly return series. The entries in columns 2
to 5 of this table are the p-values of LM test for no serial correlation against
the alternative of fourth order serial correlation in the realized variance, jumps,
bi-power variation and the logarithm of the square root of the realized bi-power
variation5. The first point to note is that hardly any of the estimated jump com-

5Since ln
√
BV = 0.5 ln (BV ) , taking the square root is of no real consequence. However,

since the standard deviation rather than variance is the preferred measure of “volatility” in

finance, we work with ln
√
BV .
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ponents are serially correlated. The only clear exception is the jump component
of NAB, with MIM and RIO being borderline at the 5% level of significance.
The second point to note is that there is significant evidence of serial correlation
in nearly all of the realized bi-power variations, and in all of the logarithms of
the square root of the bi-power variations. We can then note that some of the
unfiltered realized variances show no significant sign of serial correlation. This
supports our earlier conjecture that large jumps in realized variance might be
diluting the evidence of forecastability in variance. The ARMA(1,1) model fits

all of the ln
³√

BV
´
series quite well. The estimated autoregressive parameters

in these ARMAmodels are all large, and the MA polynomials have roots slightly
smaller than the AR polynomials. Such ARMA models imply autocorrelations
that are small but persistent. This pattern in the volatility of financial assets
has been found in the past (regardless of how volatility has been measured),
and this has sometimes led researchers to model volatilities as fractionally in-
tegrated processes (see e.g. Baillie et al, 1996). We report our estimates of

the degree of integration estimated for each of the ln
³√

BV
´
series in the last

column of Table 36. While most are statistically significant at the 5% level,
none are numerically large, and hence we prefer to model this persistence using
parsimonious ARMA models, rather than taking explicit account of fractional
integration (and possible fractional cointegration).
Similarity between the univariate ARMA models that describe the log-

volatility series suggests that the multivariate modelling of these series may
be fruitful. For example, a VARMA model for a group of time series implies
univariate representations that all have the same autoregressive polynomial.
However, the proper identification of a 21-dimensional VARMA model is obvi-
ously quite difficult, and it is therefore natural to consider simple parsimonious
factor structures.

5 Empirical results

The ability to compute an estimate of volatility from high frequency data pro-
vides a readily available time series for this unobserved variable, and opens up
the possibility of modelling and forecasting it using standard methods that are
usually used for the conditional mean. Since the results of the previous section
indicate that bi-power variation is the only forecastable component of realized

variance, we investigate the multivariate modelling of the ln
³√

BV
´
series, and

use the term "log volatility" to denote ln
³√

BV
´
. We now focus on finding

good forecasting models for the log-volatility of Australian stock returns, and
to determine whether the incorporation of common factors will improve the fore-
casting performance of the model. All models are developed using data from
the first week of 1996 to the last week of 2000, and they are used to provide

6See Geweke and Porter-Hudak (1983) for computational details.
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one-step ahead forecasts of ln
³√

BV
´
for the 52 weeks of 2001. Absolutely no

information from the forecast period is used in the development of any of the
models. We report the square root of the mean squared forecast error (RMSE)
as our measure of forecast accuracy, and we also report some results of forecast
encompassing regressions for the out of sample period.

5.1 Univariate models

We estimate univariate ARMA models, single exponential smoothing models
and a pooled model for all 21 log-volatility series. The ARMA models are
chosen following the Hannan-Rissanen (1982) methodology, which finds pmax,
the order of the best fitting AR model chosen by AIC, and then considers all
ARMA models whose sum of the AR and the MA orders is less than or equal
to pmax chosen by the Schwarz criterion. All but six of the chosen models
are ARMA(1,1). As noted before, the fitted ARMA models have the common
characteristic that their AR parameter is large, and the roots of the AR and
MA polynomials are close. This is a parsimonious way of modelling a variable
with autocorrelations that are small but persistent.
Single exponential smoothing models are often promoted as the most time

effective method for forecasting a large number of time series. They are local
level models parameterized in terms of a “smoothing parameter” rather than
in terms of the signal to noise variance ratios (see Harvey, 1991, page 175).
The pooled model estimates all univariate equations by jointly restricting all
parameters (other than the mean) to be the same. If these restrictions are
correct, then the cross sectional variation leads to more precise estimates of
the parameters. In this approach, we allow the dynamics of each series to be
given by a long autoregression. The pooled data shows evidence for seven lags,
and in the pooled AR model the parameters of lags three to seven are small
and close to each other, which is typical of processes with small but persistent
autocorrelations.
Table 4 reports the root mean squared forecast error of these models for each

of the log-volatility series for the out of sample period. We can see that with only
two exceptions (FGL and WOW), ARMA models almost always produce better
forecasts than the exponential smoothing models. Also, there are only six out of
twenty one cases where the forecasts based on the pooled time series equations
have smaller RMSE than the ARMA forecasts. This is perhaps not surprising
because pooling (and also exponential smoothing) usually help when the time
series dimension is too small to allow the precise estimation of a univariate
model. Here, we have 260 observations for each variable in the estimation
sample and pooling simply imposes a blanket restriction that may not be true.
Of course we may have pooled too much. It may be that if we had only pooled
the log-volatility data of stocks of the same industry group, or if we had used a
data driven procedure for pooling such as that suggested in Vahid (1999), then
we may have obtained better results. We do not pursue these issues here, and
leave them for future research.
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5.2 Factor models

We find that when we apply the Bai and Ng (2002) criteria to realized variances,
they decline as the number of factors increase. However, once we purge the
jumps from individual variance series and analyze series of bi-power variation,
then model selection criteria based on the principal components choose just one
or two common factors. When we then use the criteria that use Yt−1 as an
instrument for Yt, all select a one factor model. If we assume that the dynamics
of this system can be well specified by a finite VAR and use the model selection
criteria used in Vahid and Issler (2002) to choose the lag and rank of the VAR
simultaneously, then we choose a lag of one and rank of two.
We report the forecasting performance of several multivariate models. The

first one is a one factor model that takes the simple average of the 21 ln
√
BV

series as the estimate of common factor. This is plotted in Figure 4. If there is
only one common factor, this provides a consistent estimate of the common fac-
tor. We add lags of this variable as regressors and allow for ARMA errors. Most
final models resemble the univariate models with the market variable included
as a regressor. This model is denoted by EqW (equally weighted) model.

-4 .0
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-3 .2

-2 .8

-2 .4

-2 .0

1996 1997 1998 1999 2000 2001

Figure 4: The sample average of all 21 log-volatilities

The second model is one that has two factors estimated by the principal
component procedure. We chose two factors because there was a conflict among
model selection criteria on whether there was one or two factors. We made
separate time series models for these factors and 21 time series models for the
remainders (i.e. the idiosyncratic components). We then forecasted each com-
ponent, and obtained forecasts of each log volatility by adding up the forecasted
idiosyncratic component and the estimated factor loadings applied to the fore-
casted factors. The two factors are plotted in Figure 5. The first factor is very
similar to the average factor plotted in Figure 4, while the second factor looks
like a slow moving underlying trend. The time series model fitted to the first
factor is an ARMA(2,1), while the fitted model for the second factor is an AR(4)
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model in which all AR parameters are constrained to be equal. This type of au-
toregressive model has been used quite recently, as an alternative for modelling
financial time series (see Andersen et al, 2003 and the references therein). The
models for the idiosyncratic components are all low order ARMA models.
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Factor 1

Factor 2

Figure 5: The first two principal components of log-volatilities

The third model uses the principal component analysis of the linear pro-
jection of Yt on Yt−1. All model selection criteria choose only one factor. As
described in the previous section, this analysis also provides a leading indicator
for the common factor, which is a linear combination of Yt−1. Rather than mak-
ing a separate ARMA model for the factor, we take this leading indicator and
use it as a regressor in the equation for each log-volatility. We call the resulting
models IVLI (instrumental variable-leading indicator) models. The leading in-
dex is plotted in Figure 6. As can be seen from this figure, the leading indicator
looks like a good indicator for the market factor plotted in Figure 4.
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Figure 6: The market leading indicator

The final model is the model assumes that variables can be adequately mod-
elled by a VAR, and uses model selection criteria to choose number of lags and
rank of the VAR. This procedure chooses one lag and rank of two. Of course
in a VAR with 21 variables it is unlikely that each equation will have white
noise errors, but their serial correlation is too weak to warrant the addition of
another lag (i.e., 441 parameters) to the VAR. We therefore check the errors
of each equation and allow for serially correlated when this is needed. These
models are denoted by CC (canonical correlation) models.
Table 5 reports the out of sample performance of the multivariate models.

It is evident that they outperform the univariate models in almost every case.
When comparing multivariate models with each other, the only remarkable re-
sult is how well the simple average factor model performs. This model, under
the heading of “EqW” performs best for 13 out of the 21 series, and performs
second best in another 4. Of course an equally weighted estimate is a consistent
estimator of the common factor when there is only one common factor in the
model. Its strong performance in out of sample forecasting suggests that there
is only one common factor in the Australian stocks. It also shows that our at-
tempts to get better estimates of this factor by using statistical procedures do
not really pay off.
As a final comparison of different forecasts, we have run forecast encom-

passing regressions (regressions of the actual log-volatility on different pairs of
forecasts for the out-of-sample period). If the parameters for each forecast are
insignificant, then the forecasts are equally good, meaning that given one, there
is no significant information in the other. If both are significant, then neither en-
compasses the other and there is scope for combining them. If one is significant
and the other is not, then the forecast with a significant coefficient encompasses
the other forecast. Detailed regression results are not provided here, but the
information revealed by these regressions is similar to the conclusions drawn by
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comparing RMSEs. First, and perhaps not surprisingly, these regressions tell us
that the multivariate models encompass the univariate models. The strongest
evidence is for the model with equally weighted (EqW) factor estimates. When
comparing factor models, at the 5% level of significance, the EqW model encom-
passes the instrumental variable leading indicator (IVLI) model in forecasting
four of the log-volatilities and is never encompassed by it. The EqW forecasts
only encompass the canonical correlation forecasts twice and are themselves en-
compassed only once. The (IVLI) and the (CC) forecasts appear to be equivalent
in all twenty one cases.

6 Conclusion

In this paper we argue that the principle component procedures that are typi-
cally used for factor analysis in approximate factor models can be misled by large
outliers (be it measurement errors or jumps). These methods may also deliver
factors that are non-forecastable. These concerns are particularly relevant when
forecasting the volatilities of asset returns, because the process includes jumps
and volatilities can only be measured with error. As a solution, we propose a
procedure that is based on principal component analysis of the linear projection
of variables on their past. We then note that the usual principal component pro-
cedure, the canonical correlation procedure and our suggested procedure can be
seen as different methods of estimating a reduced rank regression, and we give
our procedure an instrumental variable interpretation in this context.
We use these procedures to determine the number of forecastable factors in

the log-volatilities in the returns of 21 Australian stocks. Volatilities of weekly
returns are estimated from fifteen minute returns, and jumps are isolated and
removed by using the non-parametric method developed by Barndorff-Neilsen
and Shephard (2004). Once jumps have been removed, the model selection
criteria provide very similar estimates of the number of common factors.
We then ask whether these factors help in forecasting log-volatilties. The

answer is yes. More interestingly, our results show that an equally weighted
average of all log-volatilities can improve forecasts of log-volatility more than
principal component or canonical correlation estimates of common factors.
There are similar results about the superiority of equally weighted averages

over averages with estimated weights elsewhere in the forecasting literature. For
example, the business cycle coincident indicator of the Conference Board in the
US is a simple average of four standardized variables, and it has performed
remarkably well in post war history. Also, it is often found that simple averages
of forecasts that do not encompass each other often provide better forecasts
than do combinations that are based on estimated weights.
There are two caveats that must be noted in relation to our results. First,

our out of sample comparisons are based on only one year of weekly data (52
observation), so that the ordering of our models should be interpreted with
caution, especially since the RMSE figures in Table 5 are often the same until
three digits after the decimal. Second, we have only considered how well different
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models forecast the logarithm of volatility. The mapping from the forecast of
log-volatilities to volatilities involves conditional moments other than just the
conditional mean of the log-volatility process, and it is possible that the ordering
of different models might change after this transformation.
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Table 1: The 21 most frequently traded stocks on the Australian
Stock Exchange

(During the period from 1996 to 2001)

Stock Code Name of the Company GICS Industry Group

AMC AMCOR LIMITED Materials
BHP BHP BILLITON LIMITED Materials
CSR CSR LIMITED Materials
MIM MIM HOLDINGS LIMITED Materials
RIO RIO TINTO LIMITED Materials
WMC WMC RESOURCES LIMITED Materials
STO SANTOS LIMITED Energy
WPL WOODSIDE PETROLEUM LIMITED Energy

ANZ
AUSTRALIA AND NEW ZEALAND
BANKING GROUP LIMITED

Banks

CBA
COMMONWEALTH BANK OF
AUSTRALIA

Banks

NAB
NATIONAL AUSTRALIA BANK
LIMITED

Banks

SGB ST GEORGE BANK LIMITED Banks
WBC WESTPAC BANKING CORPORATION Banks

FGL FOSTER’S GROUP LIMITED
Food, Beverage and
Tobacco

SRP SOUTHCORP LIMITED
Food, Beverage and
Tobacco

BIL BRAMBLES INDUSTRIES LIMITED
Commercial Services
and Supplies

LLC LEND LEASE CORPORATION LIMITED Real Estate

MAY MAYNE GROUP LIMITED
Health Care Equipment
and Services

NCP NEWS CORPORATION LIMITED Media
QAN QANTAS AIRWAYS LIMITED Transportation

WOW WOOLWORTHS LIMITED
Food and Staples
Retailing

Notes:

* “GICS” stands for Global Industry Classification Standard.

** WMC has been recently changed to WMR.

*** MIM and NCP are no longer traded on the Australian Stock Exchange.
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Table 2: Summary statistics of weekly stock returns
(First week of 1996 to last week of 2000)

Stock Mean St.Dev. Skewness Kurtosis ARCH α+ β β

Mining
AMC 0.0023 0.0348 -0.5674 6.0796 0.0150 0.8581 0.7115
BHP 0.0000 0.0351 0.6086 4.8252 0.0011 0.9560 0.8741
CSR 0.0002 0.0358 0.1862 3.1434 0.7322
MIM -0.0018 0.0543 0.0395 4.1165 0.0204 0.9102 0.8460
RIO 0.0015 0.0386 0.3014 3.3472 0.0107 0.9858 0.9579
WMC -0.0005 0.0439 -0.4216 5.9406 0.1993
Energy
STO 0.0017 0.0350 0.2989 3.5078 0.9981
WPL 0.0028 0.0364 0.2438 3.5483 0.9467
Banks
ANZ 0.0031 0.0332 -0.2895 3.9104 0.6044
CBA 0.0040 0.0280 -0.4134 3.6174 0.6988
NAB 0.0032 0.0306 -0.3692 4.0922 0.9239
SGB 0.0023 0.0029 -0.1383 3.9486 0.0011 0.7400 0.6434
WBC 0.0031 0.0316 -0.4216 3.9681 0.0059 0.2293 0.1155
Food & Bev
FGL 0.0028 0.0294 0.3047 3.5074 0.2533
SRP 0.0018 0.0393 -0.4515 6.2919 0.0637
Other
BIL 0.0039 0.0337 0.2522 4.3419 0.8063
LLC -0.0007 0.0567 -6.7069 76.010 0.9998
MAY -0.0001 0.0433 -0.1888 6.1116 0.6088
NCP 0.0025 0.0542 0.3309 5.6748 0.0001 0.9921 0.9437
QAN 0.0017 0.0407 -0.0648 4.0001 0.4054
WOW 0.0036 0.0299 0.2084 3.3449 0.6091

Notes:

* Entries in the ‘ARCH’ column are p-values of the LM test for the null
hypothesis of no conditional heteroskedasticity against an ARCH(4) al-
ternative.

** α + β is the sum of estimated ARCH and GARCH parameters in a
GARCH(1,1) specification. β is the GARCH parameter. These esti-
mates are only provided if there is significant evidence of conditional het-
eroskedasticity. A GARCH(1,1) specification implies ARMA(1,1) dynam-
ics for the squared returns, i.e., r2t = ω+(α+ β) r2t−1−βυt−1+υt, where
υt is the expectation error, that is υt = r2t −E

¡
r2t | It−1

¢
.
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Table 3: Autocorrelation properties of weekly realized volatilities
(First week of 1996 to last week of 2000)

P-values of serial correlation LM test

Stock RV Jump BV ln
³√

BV
´

φ θ d

Mining
AMC 0.9721 0.9999 <0.0001 <0.0001 0.9491 0.6875 0.171
BHP <0.0001 0.1305 <0.0001 <0.0001 0.9092 0.5955 0.161
CSR 0.0004 0.5050 <0.0001 <0.0001 0.8977 0.5405 0.142
MIM <0.0001 0.0427 <0.0001 <0.0001 0.9770 0.7714 0.149
RIO 0.0011 0.0552 0.0017 <0.0001 0.9652 0.8042 0.118
WMC <0.0001 0.0705 <0.0001 <0.0001 0.8982 0.5632 0.128
Energy
STO 0.0399 0.7001 0.0002 <0.0001 0.8701 0.6266 0.127
WPL <0.0001 0.2676 <0.0001 <0.0001 0.9588 0.7006 0.138
Banks
ANZ 0.0119 0.4183 0.1184 <0.0001 0.7149 0.3470 0.118
CBA 0.0334 0.9848 0.0033 <0.0001 0.6962 0.4038 0.154
NAB <0.0001 0.0003 <0.0001 <0.0001 0.8454 0.5113 0.177
SGB 0.0872 0.8453 0.0011 <0.0001 0.7240 0.4642 0.157
WBC <0.0001 0.3286 <0.0001 <0.0001 0.8655 0.6044 0.146
Food & Bev.
FGL 0.0951 0.9541 <0.0001 <0.0001 0.7518 0.4478 0.123
SRP 0.9977 0.9722 0.9925 0.0037 0.7589 0.5996 0.122
Other
BIL 0.0068 0.9994 <0.0001 <0.0001 0.8822 0.6685 0.145
LLC 0.9999 0.9999 0.0086 <0.0001 0.9302 0.7336 0.105
MAY 0.7525 0.9989 0.0107 <0.0001 0.9639 0.7970 0.145
NCP 0.0140 0.5652 <0.0001 <0.0001 0.9743 0.8063 0.150
QAN 0.3494 0.5106 0.1332 <0.0001 0.8516 0.6441 0.112
WOW 0.0048 0.4436 <0.0001 <0.0001 0.8494 0.6477 0.132

Notes:

* Entries in columns 2 to 5 are p-values of the LM test for the null hypoth-
esis of no serial correlation against an AR(4) alternative for the realized
variance (RV ), the jump component (Jump), the realized bi-power vari-
ation (BV ) and the logarithm of the square root of bi-power variation

(ln
³√

BV
´
) respectively.

** φ and θ are the estimated autoregressive and moving average parameters
of the ARMA(1,1) model ln

¡√
BVt

¢
= c+ φ ln

¡p
BVt−1

¢− θ t−1 + t.

*** d is the estimated degree of fractional integration in ln
³√

BV
´
. The 5%

and 1% critical values for a test of H0: d > 0 are respectively d = 0.092
and d = 0.144 for a sample of 260.
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Table 4: Out-of-sample performance of univariate models

in forecasting ln
³√

BV
´

ARMA SES Pooled
Stock p, q RMSE α RMSE RMSE

Mining
AMC 1,1 0.2216 0.270 0.2265 0.2225
BHP 1,1 0.2844 0.320 0.2887 0.2824
CSR 1,1 0.2919 0.330 0.3002 0.2963
MIM 2,2 0.1673 0.224 0.1738 0.1683
RIO 1,1 0.2352 0.168 0.2383 0.2329
WMC 1,1 0.2672 0.322 0.2736 0.2685
Energy
STO 1,1 0.2652 0.112 0.2720 0.2670
WPL 1,1 0.3886 0.262 0.4024 0.3864
Banks
ANZ 1,1 0.2747 0.282 0.3057 0.2906
CBA 1,0 0.2529 0.176 0.2832 0.2531
NAB 1,1 0.2550 0.344 0.2724 0.2633
SGB 3,0 0.2679 0.232 0.2740 0.2724
WBC 1,1 0.2694 0.300 0.2839 0.2731
Food & Bev.
FGL 1,1 0.2468 0.140 0.2467 0.2450
SRP 1,0 0.2765 0.030 0.2930 0.2903
Other
BIL 1,1 0.4611 0.206 0.4668 0.4681
LLC 1,1 0.2932 0.198 0.3005 0.2843
MAY 2,0 0.3352 0.150 0.3614 0.3454
NCP 1,1 0.2685 0.174 0.2738 0.2610
QAN 1,0 0.4000 0.226 0.4062 0.3969
WOW 1,0 0.2686 0.192 0.2659 0.2610

Notes:

* p and q are the autoregressive and moving average order of ARMAmodels.

** The SES column reports the smoothing parameter (α) and the RMSE of
the single exponential smoothing model.

*** In the “pooled” model, all autoregressive parameters are restricted to be
the equal across equations.
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Table 5: Out-of-sample performance of factor models

in forecasting ln
³√

BV
´

RMSE of
Stock EqW PC IVLI CC

Mining
AMC 0.1956 0.1976 0.2025 0.2010
BHP 0.2724 0.2716 0.2660 0.2622
CSR 0.2792 0.2800 0.2811 0.2814
MIM 0.1647 0.1659 0.1637 0.1653
RIO 0.2268 0.2291 0.2353 0.2340
WMC 0.2548 0.2605 0.2615 0.2626
Energy
STO 0.2533 0.2717 0.2691 0.2711
WPL 0.3838 0.4172 0.3856 0.3898
Banks
ANZ 0.2645 0.2700 0.2725 0.2731
CBA 0.2498 0.2609 0.2539 0.2532
NAB 0.2480 0.2480 0.2561 0.2560
SGB 0.2650 0.2580 0.2767 0.2666
WBC 0.2622 0.2560 0.2609 0.2560
Food & Bev.
FGL 0.2367 0.2496 0.2395 0.2443
SRP 0.2875 0.2916 0.2919 0.2905
Other
BIL 0.4477 0.4433 0.4419 0.4438
LLC 0.3292 0.3091 0.3233 0.3331
MAY 0.3196 0.3261 0.3296 0.3265
NCP 0.2556 0.2607 0.2599 0.2608
QAN 0.3866 0.3879 0.3835 0.3898
WOW 0.2526 0.2544 0.2506 0.2500

Notes:

* EqW are models that incorporate an equally weighted index of all log-
volatilities. PC are models that incorporate the first two principal compo-
nents. IVLI are models that incorporate a leading index estimated from
a reduced rank regression using principal component analysis. CC are
models that incorporate two leading indices corresponding to two largest
canonical correlations. For more information refer to the text.

28




