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Creina Day�

The Australian National University

October 2, 2006

Abstract

Using a general three sector growth model, this paper derives general conditions
for positive growth in the economy along a balanced growth path under the alterna-
tive assumptions of a static population and a growing population. The framework
is general enough to replicate endogenous and semi-endogenous R&D based growth
models. This paper challenges the conventional wisdom that (non-)linearity is syn-
onymous with (semi-)endogenous growth. CES technology is introduced to human
capital accumulation to obtain positive balanced growth with or without population
growth.
Keywords: (Semi-)endogenous growth; linearity; population; R&D; CES
JEL classi�cation: O30, O41

1 Introduction

Total population of the OECD today may be one and half times what it was in 1950, but
it is expected to be static for the next �fty years (United Nations 2005). This projection
takes into account immigration and moderate fertility assumptions. In fact, depopula-
tion is anticipated if fertility remains constant. The prospect of zero population growth
in the world�s hub of research and development (R&D) has generated a �urry of R&D
based growth models establishing feasibility of long run economic growth in the absence of
population growth.

This new branch of the literature is largely derived from semi-endogenous growth models
that assume strictly positive population growth. The precedent Romer (1990) type models
treat population as an exogenous constant and would therefore seem pertinent to the
current theoretical challenge. However, such models have been overlooked because they
typically assume linearity in the accumulation of knowledge. Linearity implies that the

�The �nancial support of the Australian Research Council and The Productivity Commission through
the Postgraduate Award (Industry) is gratefully acknowledged. Special thanks to Professor Steve Dowrick
for his feedback and encouragement.
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output of new knowledge will double whenever we double the existing stock of knowledge.
Semi-endogenous growth models feature the more palatable assumption of diminishing
marginal returns to knowledge. This paper examines the tenability of this association
between (non-)linearity and (semi-)endogenous growth.

The objective of this paper is two fold. First, to establish general conditions for
positive growth in output per capita along a balanced growth path under the alternative
assumptions of a static population and a growing population. Second, to construct a
speci�c model that delivers long run growth in the economy with or without population
growth, using the most realistic application of these general conditions.

Since Romer�s (1990) seminal paper, models of R&D-based growth have become increas-
ingly sophisticated. A recent paper (Strulik 2005) comprises 48 equations, not including
those contained in the appendix. The new breed of semi-endogenous growth models typi-
cally comprise two aspects of R&D or endogenous fertility. In a decentralized setting, the
assumptions that are critical to positive and balanced growth are obscured by the intricacy
of these models. Often, simplifying assumptions that make these models tractable, for
example, the absence of physical capital, are costly in terms of realism. We overcome such
di¢ culties by abstracting from the microeconomic foundations of R&D and modelling the
decision making of a central planner.

This paper introduces a general model comprising three sectors (�nal output, R&D
and human capital accumulation) in order to prove the following assertions. First, in any
model, positive growth along a balanced growth path requires restrictions in terms of a
matrix of structural elasticities. Second, if strictly positive population growth is assumed,
the notions of diminishing marginal returns and semi-endogenous growth are logically in-
dependent. Third, if zero population growth is assumed, linearity in the accumulation of
knowledge is not necessary for endogenous growth.

Interested in contributing to the literature, rather than utilizing existing assumptions
that deliver perpetual growth with a static population, the general model in this paper
assumes one aspect of R&D, exogenous population growth and allows for all inputs to
be productive in all sectors. The general model also allows for heterogenous labor, an
assumption which has been absent from the literature since Romer (1990).

Previous generalized models (Eicher & Turnovsky (1999), Christiaans (2004) and Steger
(2005)) comprise two sectors, �nal output and R&D. By including a third sector, human
capital accumulation, we obtain richer results. More importantly, this is the �rst general-
ized model that allows for either a growing or static population. In doing so, this paper
provides a simple, uni�ed treatment of endogenous and semi-endogenous growth models.
This paper further contributes by exploring asymptotic linearity in either R&D or human
capital accumulation as a general condition for endogenous growth.

The bene�ts of this work are manifold. This paper contributes to the literature both by
establishing conditions for positive economic growth with or without population growth in
a general three sector growth model and by constructing a speci�c model where Constant
Elasticity of Substitution (CES) technology describes the accumulation of human capital.
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This paper also provides a useful framework for summarizing the two main strands of the
literature and a methodology for obtaining central planner solutions for endogenous and
semi-endogenous growth models alike.

2 Background

Let y denote income per capita, L the total population, H the stock of human capital and
let gx denote the long run growth rate of any variable x. We classify models of R&D-based
growth into two broad types: those that assume population is an exogenous constant and
those that allow for population to grow over time.

Models of the �rst type, exempli�ed by Romer (1990), Aghion & Howitt (1992) and
Grossman & Helpman (1991), are widely condemned for their scale e¤ect: long run per
capita output growth is proportional to population size. The implication that the growth
rate of the economy will rise exponentially over time should population grow at a constant
rate is not supported by empirical evidence. It is, in fact, a slight misrepresentation of
Romer (1990) and Aghion & Howitt (1992) to say that gy is proportional to L. By allowing
for heterogeneous labor, both predict:

gy = a:H (1a)

where all constant parameters are summarized by the term, a > 0. Thus, long run
growth per capita growth is proportional to the skill employed in R&D. However, to the
extent that the skill is embodied in the population, long run growth of the economy is still
proportional to the size of the population.

Regardless, presenting the prediction in its original form shows how existing models
are derivative of these seminal models of R&D-based growth. The stock of labor in these
models can be homogenized into either the stock of human capital or total population.
Most literature stems from the latter assumption. However, an example of a model
that assumes the former is Funke & Strulik (2000). They retain the assumption that
population is an exogenous constant and are therefore a �rst-type model. By endogenizing
the accumulation of human capital, they remove the empirically inconsistent scale e¤ect
from the long run growth rate of the economy:

gy = a (1b)

All these �rst type models share the common feature of sectoral linearity in a knowl-
edge accumulation equation, whether knowledge be non-rivalrous ideas or rivalrous human
capital. And so, sectoral linearity has become synonymous with endogenous growth mod-
els that treat population as an exogenous constant. Like the scale e¤ect, linearity in
the accumulation of knowledge is widely condemned. Jones (2001) argues that, with the
exception of the population equation, the assumption of linearity is ad hoc. This brings

3



us to R&D-based growth models of the second type, that introduce a linear population
equation.

Early examples of second-type models are Jones (1995), Kortum (1997) and Segerstrom
(1998). Their common feature is diminishing marginal returns to ideas (or knowledge
spillovers of degree less than one) in the creation of new ideas. Diminishing marginal
returns in the stock of ideas requires increasing e¤ort to create an idea. This increasing
e¤ort can come from more researchers. Since the fraction of the labor force engaged in
R&D is constant in steady state, strictly positive population growth satis�es the increasing
e¤orts needed for strictly positive growth in technology and the overall economy. This is
the intuition behind semi-endogenous growth. Jones (1995) coined the phrase, which
basically means technological change is endogenously determined, but long run growth in
the economy requires growth in a factor exogenous to the model, population. And so,
diminishing marginal returns to knowledge has become synonymous with semi-endogenous
growth.

Population growth is the engine of long run economic growth in these models:

gy = cgL (1c)

where all constant parameters are summarized by the multiplicative term c > 0. On
the �ip side, long growth of the economy is inextricably dependent on population growth.
To establish feasibility of long run economic growth in the absence of population growth,
recent literature adapts second-type models. Two main branches have emerged.

The �rst new branch of second type models assume two aspects of R&D in the one
model. Examples are Young (1998), Dinopolous & Thompson (1998), Peretto (1998)
and Li (2000). In brief, R&D may involve either the creation of new products, so that
technological improvement is measured by increased variety of intermediate goods (Romer
1990) or the improvement of existing products as in Aghion & Howitt�s (1992) quality-
ladder model. We refer to these two aspects as simply variety R&D and quality R&D.
Li (2000) shows that if there are no knowledge spillovers in variety R&D and spillovers of
degree one (or linearity) in quality R&D then the long run growth rate of the economy is
an additively separable function of population growth and a constant term:

gy = b+ cgL (1d)

where all constant parameters are summarized in the terms b and c. The absence of
knowledge spillovers in variety R&D implies a one-to-one correspondence between variety
growth and population growth. This explains the second term of equation (1d). If
population is static, the variety of intermediate goods stays constant. However, endogenous
technological change is still possible through improving existing products, since linearity in
quality R&D implies quality growth is proportional to the population size. This explains
the �rst term of equation (1d). Consequently, the long run growth rate of the economy
can be strictly positive without strictly positive population growth. To obtain this result,
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note that these models move away from diminishing marginal returns to knowledge in the
form of quality improvement. Thus, the strong association between diminishing marginal
returns and semi-endogenous growth prevails.

The second branch of second type R&D-based growth models endogenize either popu-
lation (Jones 2001) or human capital (as in, Strulik (2005) and Dalgaard & Kreiner (2001))
or both (Galor & Weil 2000). Just as Funke & Strulik (2000) removes the "strong" scale
e¤ect from the early endogenous growth models, these models remove the "weak" scale
e¤ect from semi-endogenous growth models by endogenizing the culpable variable. They
predict a long run rate of growth in the economy:

gy = d (1e)

where d is a constant term summarizing, for example, exogenous e¢ ciency parameters. In
a decentralized setting, these models are intricate. Simplifying assumptions prevent the
models from being unwieldy. Examples of such assumptions are the absence of physical
capital in �nal production in Dalgaard & Kreiner (2001) and a reduced form speci�cation
of R&D in Galor & Weil (2000). There is a trade-o¤ between sophistication and realism.

Thus, to establish feasibility of long run growth in the economy in the absence of
population growth, existing literature extends semi-endogenous theory by either modelling
two aspects of R&D or endogenizing fertility. To explore the reasoning behind founding
this development in semi-endogenous growth theory, this paper establishes conditions for
perpetual growth in a generalized setting. To be inclusive of the early endogenous growth
theory, we allow for population growth to be either zero or strictly positive. Interested
in exploring new ways to establish long run growth in the economy without population
growth, we assume one aspect of R&D and exogenize population growth.

3 A General Three Sector Growth Model

The model is general in four aspects: Firstly, two types of labor, skilled and unskilled,
accumulate.1 The allowance for both types of labor, albeit as exogenous constants, ap-
pears in Romer (1990), but has been absent from the R&D based growth literature since.
Secondly, the economy consists of three sectors (�nal goods, the accumulation of ideas and
the accumulation of human capital) enabling us to replicate the features of a wide variety of
R&D-based growth models. Only the accumulation of physical labor alone is exogenized.
Thirdly, each factor of production is allowed to be productive in each sector. Finally,
non-parameterized general production functions are employed. Restrictions on parameters
and functional forms are introduced only when necessary.

1The assumption of heterogeneous labor confers realism to the model. Explored in a follow on paper,
a secondary motivation for this assumption is the possibility of rising research intensity along a balanced
growth path.
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We model the decision making of a central planner over our three generalized sectors.
In doing so we abstract from issues related to the microfoundations of R&D-based growth
models, such as household decision making, the patenting of ideas, monopoly power in the
intermediate goods sector and perfect competition in �nal goods sector. In the words of
Eicher & Turnovsky (1999) (p.397),

We make these abstractions, not because we feel that such issues are unim-
portant, but to facilitate the identi�cation of the characteristics common to
alternative approaches.

All the models presented in this paper, whether original or central planner versions of
existing models, can be given microfoundations, and in each case the equilibrium growth
rates in the corresponding decentralized economy can be derived. It is worth noting that
growth rates derived for a corresponding decentralized economy di¤er only by the absence
of terms, such as a monopoly markup, that capture the negative spillovers that a central
planner internalizes.

The economy produces two goods, �nal output (Y ) and change in technology (the stock
of which is denoted by A), and accumulates stocks of physical capital (K), human capital
(H) and physical labor (L). H is measured by total, not average, years of education
attained by a pool of workers, so that L is measured by a count of people in the labor
force.2 Alternatively, H could refer to the number of skilled workers and L to the number
of unskilled workers. Under either interpretation, H can vary separately from L and
replicating a given pool of workers requires that both H and L double.

Consider the following general three-sector production structure:

Y = F (aYA; hYH; lY L; kYK) (2a)
_A = J (aAA; hAH; lAL; kAK) (2b)
_H = Q (aHA; hHH; lHL; kHK) (2c)

where the xi (x = a; h; l; k; i = Y;A;H;L) assume values to re�ect general assumptions,
that are both intuitive and standard in endogenous growth models. We start with the
broad assumption that, with the exception of physical labor, which is used only in human
reproduction and the production of �nal output, inputs may be productive in all sectors.
If
P
i xi = 18i, the respective input is private. If xi = 18i, the input is non-rivalrous in

use. Thus, we distinguish rivalrous private knowledge (H) from non-rivalrous knowledge
(A). Letting h denote the average skill level, we note that H = hL. Finally, since physical
labor is non-rivalrous in its employment in �nal production and human reproduction, let
li denote the portion of human capital (or equivalently, the portion of labor with a given
average skill level) allocated to sector i.

2Physical labor can be thought of as brawn and basic skills that do not need to be taught, such as,
eye-hand co-ordination.
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Assume _L = nL, where n � 0. By allowing for either a growing or static population,
our generalized framework can be used to analyze the two main branches of existing R&D-
based literature.

After imposing the general assumptions, the generalized production structure simpli�es
to:

Y = F (A; (1� lA � lH)H;L; (1� kA � kH)K) (3a)
_A = J (A; lAH; kAK) (3b)
_H = Q (A; lHH; kHK) (3c)

The representative agent of the economy derives utility solely from the consumption
of the �nal output good, so their preferences are used only to derive the Euler equation.
As is standard in the existing literature, the representative agent of the economy has
intertemporal utility of isoelastic form:R1

0 e��t c
1��

1�� dt � > 0; � > 0

where c denotes consumption per capita, to be replaced by aggregate consumption, C,
when n = 0. In the absence of depreciation, physical capital accumulates as a residual
after aggregate consumption needs have been met:

_K = Y � C (3d)

The central planner chooses consumption, and the fractions of labor and capital em-
ployed in each sector so as to maximize intertemporal utility of the representative agent
subject to the production and accumulation constraints, equations (3a) - (3d). For the pur-
poses of this paper, we note that the following discussion is premised on sectoral allocations
of factors that are strictly positive and constant, as required for balanced growth.3

4 Balanced Growth Equilibrium

De�nition 1 A balanced growth path is a path along which all real variables grow at con-
stant, though not necessarily equal, rates.

The balanced growth rates of the real variables (Y;K;A;H) are obtained by total
di¤erentiation of the production functions (3a) - (3c), noting that constant growth rates
requires gY = gK ,4 g _A = gA and g _H = gH . The resulting system of equations can be

3First optimality conditions are used to solve for sectoral allocations of factors in a follow on paper.
4The growth rate in physical capital, given by gK =

_K
K
= Y

K
� C

Y
Y
K
, is constant if Y ,K and C grow at

the same rate.

7



expressed in matrix form:24(1� �K) ��A ��H
��K (1� �A) ��H
�!K �!A (1� !H)

3524gKgA
gH

35 =
24�Ln0
0

35 (4)

where �i � Fii=F > 0, �i � Jii=J > 0 and !i � Qii=Q > 0; i = K;A;H denote the struc-
tural elasticities in the production, technology and human capital sectors, respectively.

The system of linear equations in (4) is non-homogeneous (Ax = d in matrix form) or
homogenous (Ax = 0) depending on whether the population is growing or static, respec-
tively.

4.1 Conditions for Positive and Balanced Growth with a growing popu-
lation

First, consider the case where population growth is strictly positive. The system of equa-
tions in (4) jointly determine the growth rates of real variables as functions of population
growth and the structural elasticities:

gK =
�L [(1� �A) (1� !H)� !A�H ]n

jAj (5a)

gA =
�L [�K (1� !H) + !K�H ]n

jAj (5b)

gH =
�L [�K!A + !K (1� �A)]n

jAj (5c)

4.1.1 Strictly Positive Growth and Diminishing Marginal Returns

Proposition 1 (Conditions for Positive Growth)
For strictly positive population growth, jAj > 0 and �K < 1, �A < 1 and !H < 1, together
with �K > 0 and/or !K > 0 are necessary and su¢ cient for strictly positive growth in
output, capital, consumption, technology and human capital.

Consider each of the conditions for strictly positive growth, in turn.
It is a rudimentary result of linear algebra that a non-homogeneous system of linear

equations has a unique non-trivial solution if jAj 6= 0. Further, stability of the underlying
dynamic system requires jAj > 0.

The next three conditions, �K < 1, �A < 1 and !H < 1, imply diminishing marginal
returns to capital, human capital and technology in the sector that produces each input,
respectively. On �rst inspection of (5a) - (5c), diminishing returns to capital in the
production of �nal output (�K < 1) does not seem a condition for positive growth, but
it implies and is implied by (1� �A) =�H > !A= (1� !H) in combination with jAj > 0
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and the other conditions.5 The equivalent condition (1� �A) =�H > !A= (1� !H), as
required by (5a), relates the returns to scale to technology and human capital across the
R&D and human capital accumulation sectors. If, for instance, we have decreasing returns
to technology and human capital in the R&D sector, this condition implies we must also
have decreasing returns to technology and human capital in the accumulation of human
capital.

Examining (5a) - (5c), diminishing returns to technology and diminishing returns to
human capital in their respective sectors (�A < 1 and !H < 1) is clearly su¢ cient for pos-
itive growth, but is it necessary? From (5a), we can rule out �A = 1 or !H = 1, although
�A > 1 and !H > 1 is not inconsistent with strictly positive growth in output, capital and
consumption. However, if �A > 1 and !H > 1; additional conditions would be required
for strictly positive growth in technology and human capital.

Certainly, the three conditions �K < 1, �A < 1 and !H < 1 are provided by the
Hawkins-Simon conditions: a necessary and su¢ cient condition that the stationary so-
lutions to Ax = d be all strictly positive is that all principal minors of the matrix A are
strictly positive. Denoting jDij as the ith principal minor of matrix A, jD1j > 0, �K < 1,
together with jD2j > 0 ) �A < 1 and jD3j = jAj > 0 ) !H < 1. Hawkins & Simon
(1949) assume all elements of the vector d are strictly positive, to simplify the statement of
their theorem and its proof. They note, however, that elements of vector d may be weakly
positive, as in the system (4), without any essential loss of generality.

The �nal condition �K > 0 and/or !K > 0 says that physical capital must be productive
in either R&D or human capital, to obtain positive growth in either sector. This condition
results from our allowance for heterogeneous labor and the assumption that physical labor
is employed only in the production of �nal output. Exogenous growth in population or raw
labor therefore drives growth in �nal output and physical capital, and, indirectly, R&D and
human capital only if physical capital is employed in these sectors. Introducing a Lucas
(1988) speci�cation for human capital accumulation (with diminishing returns) and a Jones
(1995) type R&D sector to our four sector growth model implies zero growth in both types
of knowledge and therefore would be redundant. There is a trade-o¤between the realism of
heterogeneous labor and the simplicity of single input knowledge accumulation equations.
Existing literature opts for the latter and we introduce the restriction of homogeneous labor
later in the paper to illustrate these models as special cases of our general model.

Corollary 1 (to Proposition 1) A further su¢ cient condition for strictly positive growth
in per capita output and capital is �L > (1� �K).

5 (1� �K) [(1� �A) (1� !H)� !A�H ] > �A [�K (1� !H) + !K�H ] + �H [�K!A + !K (1� �A)]
, jAj > 0
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From equation (5a),6 the economy grows at the per capita rate:

gy = f�L � (1� �K)g
gK
�L

+ �A
gA
�L

+ �H
gH
�L

(6)

where �L > (1� �K)) gy > 0, given the above conditions for positive growth in output,
physical capital, technology and human capital are satis�ed. Eicher & Turnovsky (1999)
obtain the same condition for a general two sector growth model with homogeneous labor.
Thus, the condition has generality. It implies increasing returns to scale in the �nal output
sector, since �L + �K > 1, together with non-negativity of �i, implies

P
�i > 1. Note

that this condition is su¢ cient but not necessary for strictly positive growth in per capita
output. That is, growth in per capita output may still be strictly positive if �L � (1� �K).
For instance, if �L+�K = 1, growth in per capita output is strictly positive, given strictly
positive growth in technology and human capital.

4.2 Balanced Growth and Cobb-Douglas or Constant Returns to Scale
Technology

While positive growth is provided by Proposition 1, balanced growth requires constancy
of the growth rates in (5a)-(5c), which, in turn, requires constant population growth and
constant multiplicative terms.

The multiplicative terms in (5a)-(5c) are constant if the structural elasticities are con-
stant (as for Cobb-Douglas production functions). In this case, the constancy of the
multiplicative terms is independent of the returns to scale, so that output, technology
and human capital may grow at di¤erent rates. If the structural elasticities are not
constant (as for Constant Elasticity of Substitution (CES) production functions), bal-
anced growth requires that production in each sector exhibit constant returns to scale (i.e.P
�i = 1;

P
�i = 1;

P
!i = 1), in which case the multiplicative terms reduce to unity and

all sectors grow at the common rate: gY = gK = gA = gH = n.7

Thus, for a constant rate of population growth, Cobb-Douglas production technology or
constant returns to scale in all sectors are su¢ cient conditions for balanced growth. This
result is known, albeit for a two sector generalized growth model (see Eicher & Turnovsky
(1999), who also discuss a third condition, that of homogeneously separable forms). Ac-
cordingly, this paper does not state these conditions in a formal proposition. However,
since these conditions are widely used, but obscured in sophisticated models, we note some
of their implications.

Constant returns to scale, particularly in the production of �nal output, is unlikely.
When non-rivalrous knowledge is employed, �nal production most likely exhibits increas-
ing returns to scale (Romer 1990). Moreover, constant returns to scale in all sectors implies

6gy = gK � n = f�L�(1��K)g[(1��A)(1�!H )�!A�H ]+�A[�K(1�!H )+!K�H ]+�H [�K!A+!K(1��A)]
jAj n

7To aid the reader in verifying this, if
P
�i = 1;

P
�i = 1;

P
!i = 1 then jAj =

�H f!K�H + �K (!A + !K)g.
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zero growth in per capita output. This may explain why Cobb-Douglas technology most
commonly appears the literature, but this is not without its limitations, since it assumes
input shares are exogenous constants. An all or nothing approach is not required. For in-
stance, we may assume Cobb-Douglas technology in one sector, CES technology in another
or even CES technology nested within Cobb-Douglas production function.

Notwithstanding these caveats, the main problem with these su¢ cient conditions for
balanced growth is the implication that (positive) balanced growth seems inextricably
dependent on a (positive) constant population growth. We now establish that positive,
balanced growth arises without positive population growth if growth in either technology
or human capital asymptotes to a positive constant.

4.2.1 Does Strictly Positive and Balanced Growth require Strictly Positive
Population Growth?

Di¤erentiating (3a) with respect to time, and noting that constant gK requires that Y and
K grow at the same rate, yields:

gY = gK =
�A

1� �K
gA +

�H
1� �K

gH +
�L

1� �K
n (7)

When both gA and gH depend on gK , equation (7) reduces to equation (5a). However,
if either gA or gH are independent of gK , then gY is an additively separable function of
two terms, only one of which is a function of population growth. Hence, strictly positive,
balanced growth no longer requires strictly positive population growth.

Assuming that physical capital is not employed in one knowledge sector does not imply
gA or gH are independent of gK . To illustrate, if physical capital is used in human capital
accumulation but not in R&D, under normal conditions, gA is still a function of gK because
human capital is used in R&D. This raises the question, under what condition(s) is either
gA or gH independent of gK? The answer lies in the asymptotic nature of gA or gH .
For instance, if either asymptotes to a positive constant that exceeds gK , then gY is an
additively separable function, as required.

Equations (3b) and (3c) describe the accumulation of non-rivalrous ideas and rivalrous
human capital, respectively. The accumulation of each type of knowledge is a function
of its own stock, the stock of the alternative knowledge and the stock of physical capital.
As a result, there are several ways by which asymptotic limits may imply growth in one
type of knowledge is independent of growth in physical capital. To simplify, we con�ne
our analysis to the case where knowledge accumulation is a function of its existing stock
of knowledge and one other input.8 In order to generalize the following proposition, we

8The following section introduces CES technology to illustrate the implications of positive asymptotic
limits. Whilst it is neater to discuss the degree of substitutability between two inputs, we could apply CES
technology to three inputs or nest a CES technology (with two inputs) within a Cobb-Douglas production
function (with a third input).
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could de�ne two generic types of knowledge. However, this is a redundant exercise if we
consider that certain input combinations are implausible. For instance, can innovation
occur through the interaction of existing ideas and physical capital? Researchers are most
likely an essential input in R&D. Accordingly, from equations (3b) and (3c), the two types
of knowledge grow at the rates:

gA =
J (A; lAH; )

A
� j (A;H;�A) (8a)

gH =
Q (lHH; kHK)

H
� q (H;K;�H) (8b)

where �A and �H are shift parameters encapsulating, respectively, lA and lH ; kH . The
growth rates asymptote to:

lim
A!1

j (A;H;�A) = �j (H;�A) (9a)

lim
H!1

q (H;K;�H) = �q (K;�H) (9b)

where �j and �q are constants, that may depend on the shift parameters.

Proposition 2 (Condition for Positive, Balanced Growth and Population)
Strictly positive balanced growth may arise without population growth if �q (K;�H) > 0.

Strictly positive balanced growth requires strictly positive, constant population growth
if �q (K;�H) = 0, unless �j (H;�A) > 0.

The �rst part of Proposition 2, refers to the case where gH asymptotes to a positive
constant. If this positive constant exceeds gK , then gH does not depend, indirectly on
n. Thus, the accumulation of human capital features an endogenous stock of knowledge.
Curve 1 in Figure 1 illustrates such a case. Substituting �q for gH in equation (7) then,
regardless of whether or not gA is a function of gH , gY is an additively separable function
of two terms, one of which does not depend on population growth.

If gH asymptotes to zero, as in the second part of Proposition 2, then gH depends on gK
in steady state (see Curve 2 in Figure 1). Two possibilities arise. If gA asymptotes to zero,
implying gA is a function of gH , then growth in both types of knowledge requires growth
in physical capital. Substituting for gA and gH in equation (7) gives unambiguous semi-
endogenous growth: strictly positive, constant growth in output requires strictly positive,
constant population growth. However, if gA asymptotes to a positive constant that exceeds
gH , then gA is independent of gH . Substituting �j for gA in equation (7) yields an additively
separable function for gY , so that strictly positive balanced growth does not require strictly
positive, constant population growth.

This proposition provides a basis for distinguishing endogenous and semi-endogenous
growth, often synonymous in the literature with scale and non-scale growth, respectively,
which in turn are strongly associated with sectoral linearity and diminishing marginal
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Figure 1: Asymptotic Growth in Human Capital
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returns, respectively. Endogenous growth di¤ers from semi-endogenous growth in that
economic growth does not require strictly positive growth in an exogenous factor, such as
population. Proposition 2 reminds us that endogenous growth requires only that growth
in knowledge asymptote to a strictly positive constant. Both curves in Figure 1 are
monotonically decreasing, re�ecting diminishing marginal returns to knowledge in the ac-
cumulation of knowledge. However, Curve 1 implies endogenous growth, while Curve
2 implies semi-endogenous growth. Thus, the association between diminishing marginal
returns and semi-endogenous growth is tenuous.

4.2.2 CES technology - which sector?

Pitchford (1960) and Barrro & Sala-i-Martin (1999) demonstrate the capacity for endoge-
nous growth with CES technology in the standard neoclassical growth model.9 More re-
cently, this has been extended to a Romer (1990) type R&D-based growth model by Zuleta
(2004), where the production function for �nal output is a CES combination of physical
capital and labor. Whereas Zuleta (2004) introduce CES technology to the production
of �nal output, Proposition 2 suggests introducing CES technology to the accumulation
of knowledge: the growth in knowledge will asymptote to zero or a positive constant, de-
pending on whether the elasticity of substitution between inputs is less than one or greater
than one, respectively. To which knowledge accumulation sector do we introduce CES
technology?

Taking inspiration from Dalgaard & Kreiner (2003), we could introduce CES technol-
ogy to the accumulation of non-rivalrous knowledge, J (A; lAH; ). Because they assume
physical labor rather than human capital is employed in the production of new ideas, their
application of CES technology addresses a direct relationship between gA and n. Except
for the fact that the relationship between gA and n is indirect in our model, therefore,
introducing CES technology to J (A; lAH; ) would e¤ectively replicate existing literature.
This is not to suggest that simply by introducing CES technology to an alternative sector
we contribute to the literature. In the following section, we introduce CES technology
to the accumulation of human capital Q (lHH; kHK) not only because it hasn�t been done
before, but also because it is the more plausible application of CES technology.

Applying l�Hopital�s rule10 to equation (8b),

lim
H!1

q (H;K;�H) = lim
H!1

QH (10)

where QH is the marginal product of human capital in the generation of new human
capital. Thus, another interpretation of Proposition 2 is that endogenous growth arises if
the marginal product of knowledge in producing new knowledge tends to a positive constant

9Technically, endogenous growth may arise in the neoclassical growth model when the marginal product
of capital is bounded below by a positive constant, as demonstrated by Jones & Manuelli (1990).

10 lim
x!a

�
m(x)
n(x)

�
= lim

x!a

�
m0(x)
n0(x)

�
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as the stock of knowledge tends to in�nity. This suggests one criterion for introducing
CES technology.

Dalgaard & Kreiner (2003) argue that while the marginal product of physical capital
most likely tends to zero as the stock of physical capital becomes in�nite, the marginal
product of knowledge is bounded below by a positive constant. In their words,

...why would a new piece of information be completely unproductive in pro-
ducing new ideas even if there did in fact exist in�nitely many other pieces of
information?

They make a good point. Ideas are boundless. On this criterion, our application
of CES technology to human capital accumulation is closer to Barrro & Sala-i-Martin�s
(1999) application, since human capital is embodied knowledge. However, this is not the
only criterion for introducing CES technology.

Positive asymptotic limits arise with CES technology only when the elasticity of sub-
stitution exceeds one. This suggests we should look to de�ne CES technology over inputs
that, a priori, we expect may be highly substitutable. In this sense, Barrro & Sala-i-
Martin�s (1999) application of CES technology has an intuitive appeal that Dalgaard &
Kreiner (2003) lacks. There are several real world examples, such as the demise of the
typist pool, where physical capital has replaced physical labor in the production of �-
nal output. Moreover, empirical evidence supports an elasticity of substitution between
physical capital and labor higher than one (Du¤y & Papageorgiou 2000).

In contrast, it is hard to think of examples where ideas have replaced researchers in the
process of innovation. A scientist works with an existing idea, say e = mc2, to create new
ideas, suggesting a high degree complementarity between the two inputs in R&D. The
notion that ideas may be increasingly substituted for physical capital in the process of
R&D may be more palatable. Contrast the physical capital requirements of a modern
researcher with those of, say, Thomas Edison. Or better still, consider the way the idea
to use silicon in a microchip means researchers no longer require computers that take up
a �oor of a building. There are examples of physical capital complementing ideas in the
process of R&D. The notion that knowledge can be substituted for physical capital is more
plausible than the notion that knowledge can be substituted for researchers in R&D.

We could broaden Proposition 2 to the case of three inputs and introduce CES tech-
nology to the employment of ideas and physical capital in R&D. However, we need not do
this if we consider that just as non-rivalrous knowledge (ideas) may replace physical capital
in the process of R&D, private knowledge may replace physical capital in the process of
learning. For instance, as an economy�s stock of human capital accumulates, increased
reliance on self-education may be consistent with rivalrous knowledge replacing physical
infrastructure. The degree of complementarity between human capital and physical capi-
tal in the accumulation of human capital may be high or low, whereas, a priori, the degree
of complementarity between human capital and ideas in R&D is high. This reasoning
suggests introducing CES technology to Q (lHH; kHK) rather than J (A; lAH).
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4.3 A Model of Endogenous Growth with or without population growth

Consider an economy comprised of three sectors with the following production technologies:

Y = A�A ((1� lA)H)�H L�L ((1� kH)K)�K (11a)
_A = A�A (lAH)

�H (11b)
_H = [(�1H)

� + (�2kHK)
�]1=� (11c)

where � (the substitution parameter) determines the constant elasticity of substitution
between human capital and physical capital in the accumulation of human capital, given
by � = 1= (1� �) : � > 0; � 6= 0. De�ne �1 � �1=� and �2 � (1� �)1=�, where � 2 (0; 1) is
the distribution parameter.11 The parameters satisfy 0 < n � gK < �1.

We keep the model as close as possible to the generalized production structure in (3).
For simplicity, physical capital and the stock of technology are dropped as inputs to R&D
and human capital accumulation, respectively, but these assumption can be relaxed without
loss of generality.12 Also for simplicity, we assume lH = 1, meaning human capital is as
a private input allocated to the production of �nal output and R&D, while at the same
time being used in the accumulation of human capital. This assumption is not critical. If
we relax the assumption, steady state growth in human capital will be a function of lH ,
but the presence of this term is innocuous since sectoral shares of labor and capital are
constant along a balanced growth path.

Di¤erentiating gH with respect to time and recognizing that !H = (�1=gH)
� and

!K = 1� (�1=gH)� (see Appendix for detail), we obtain:

_gH = gH (gK � gH)
�
1�

�
�1
gH

���
(12)

This equation has three steady states: gH = 0, gH = gK and gH = �1. Referring
to Figure 2, gH converges to either gK or �1, depending on whether � is less than one or
greater than one, respectively. In the case where � > 1, the growth in human capital is
bounded below by �1.

Thus, when � > 1, human capital grows permanently, independent of and at a higher
rate than physical capital. As suggested in the previous section, the intuition for this

11When Dalgaard & Kreiner (2003) introduce CES technology to the interaction of A and lAL in R&D,
they assume the equivalent parameter to �1 is not a function of � and � and impose the restriction �1 2 (0; 1).
In a standard CES production function, such as equation (11c), �1 � �1=� ? 1, depending on � 2 (�1; 1);
� 6= 1. A standard CES production is consistent with a growth rate less than 1, since gK only converges
to �1 when � > 0, implying gK = �1 < 1.

12By dropping physical capital from R&D, our solution for gK more closely resembles (7). Also,
this aids derivation of research intensity, measured by lA, in a follow up paper. Allowing for physical
capital as an input to R&D, the long run growth rate of output is still independent of n when � > 1:

gY =
1

(1��K)��A�K

hn
�A�H
(1��A)

+ �H
o
�1 + �Ln

i
.
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(a) Dynamics when � > 1

(b) Dynamics when � < 1

Figure 2: Dynamics of Growth in Human Capital
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result lies in the fact that human capital is increasingly substituted for physical capital as
the accumulation of human capital proceeds.

To solve for the growth rates of the other real variables in the model, we note that when
� > 1, we cannot use the solutions given by (5a) and (5b), obtained by Cramer�s Rule,
since gH = �1 implies !H = 1 and !K = 0, which in turn imply jAj = 0 for the matrix
system (4). We therefore proceed with total di¤erentiation of (11b) and substitution for
gA and gH in (7). The balanced growth rates in physical capital, output and consumption
on the one hand and technology on the other are:

gK = ��1 + �n

gA =
�H

(1��A)
�1

9=; if � > 1 (13a)

gK =
�

�
1��

�
n

gA =
�H

(1��A)
gK

9>=>; if � < 1 (13b)

where � = �A
(1��K)

�H
(1��A)

+ �H
(1��K) and � =

�L
1��K . When � < 1, strictly positive rates

of growth requires (1� �) > 0, as implied by jAj > 0.13 When � > 1, strictly positive
growth in output no longer requires strictly positive population growth n. This is the key
result. Note that the restriction gK < �1 requires that �i and �i satisfy

�
1�� <

�1
n . As

an illustration, if we assume constant returns to scale in �nal production and R&D (i.e.P
�i = 1;

P
�i = 1) this restriction simpli�es to �1 > n.

The long run per capita growth rate of the economy is given by:

gy =

8><>:
��1 + (� � 1)n�

�
1�� � 1

�
n

if � > 1

if � < 1
(14)

where � > 1 is su¢ cient for positive per capita growth, as per Corollary 1 to Proposition
1.

Thus, growth in the economy does not require growth in the population, when knowl-
edge is highly substitutable for physical capital in the accumulation of knowledge.

4.4 Conditions for Positive Growth with a static population

Consider now the case where population is static. If n = 0, vector d in matrix system (4)
is a null vector.

13 jAj = [(1� �K) (1� �A)� �A�H � �H (1� �A)]!K
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Proposition 3 (Condition for Positive Growth)
For a static population, jAj = 0 is necessary for strictly positive growth in output, capital,
consumption, technology and human capital.

It is a well known result of linear algebra that a homogeneous linear system of equations
(in matrix form Ax = 0) has non trivial solutions i¤ jAj = 0. So the existence of a
solution with positive growth rates implies jAj = 0. However, jAj = 0 does not imply
positive growth since a non trivial solution may be one of negative growth. Thus, for
a static population, jAj = 0 is necessary for strictly positive growth in output, capital,
consumption, technology and human capital.

Corollary 2 (to Proposition 3) Sectoral linearity is a su¢ cient but not necessary con-
dition for jAj = 0.

A su¢ cient condition for jAj = 0 is that each of the entries in one or more of the
rows or columns in matrix A is zero. Existing models with a static population commonly
assume that either (3b) or (3c) are single input linear equations (as in a Romer (1990) type
R&D equation (�A = 1) or a Lucas (1988) speci�cation for human capital accumulation
(!H = 1)). This sectoral linearity assumption implies each of the entries in either the
second or third rows of the coe¢ cient matrix in the system (4) is zero. Thus, sectoral
linearity is introduced to a knowledge accumulation equation in order to solve for strictly
positive rates of growth in the real variables of the model. This assumption is widely
criticized. To quote Jones (2001) (p.5),

The linearity in existing models is assumed ad hoc, with no motivation other
than that we must have linearity somewhere to generate endogenous growth.

It is therefore worth considering whether we can solve for strictly positive rates of
growth under an alternative, more palatable assumption.

Another su¢ cient condition for jAj = 0 is that one row (column) is a linear combination
of the other rows (columns) of the matrix. To explore this further, letting vi denote the
ith column vector of the coe¢ cient matrix A, the system Ax = 0 can be written as the
vector equation:

gKv1 + gAv2 + gHv3 = 0

where

v1 =

0@(1� �K)��K
�!K

1A ; v2 =

0@ ��A
(1� �A)
�!A

1A ; v3 =

0@ ��H
��H

(1� !H)

1A (15)

jAj = 0, as required to obtain a strictly positive solution to the system, if the three vectors
are linearly dependent:

v1 = av2 + bv3 a < 0; b < 0 (16)
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The easiest and most obvious case to consider is that of constant returns to scale to
growing factors (a = b = �1). Note that, because we have physical labor employed in
the production of �nal output, this case corresponds to increasing returns to scale in �nal
production (

P
�i > 1).

However, we can move away from constant returns to scale to growing factors and still
obtain jAj = 0. In the case where a = b = �k, we have increasing or decreasing returns to
scale to growing factors in the �nal output sector, when k is less than or greater than one,
respectively, with ambiguous returns to scale in the other sectors. We can solve for strictly
positive growth rates in the physical capital, technology and human capital with varying
degrees of returns of scale across sectors, so long as the vectors are linearly dependent.

Example 1 Consider a Cobb Douglas economy where (1� �K) = �A = �H = 0:66; �K =
�A = �H = 0:25; !K = !A = !H = 0:25. These values suggest increasing returns to scale
in �nal output and decreasing returns to scale in both knowledge accumulation sectors. The
three column vectors are linearly dependent: v1 = �0:5v2 � 0:5v3, as required to obtain a
strictly positive solution to the system.

To demonstrate that linear dependence and sectoral linearity are both su¢ cient for
jAj = 0, as required for strictly positive growth, we can use the generalized setting to
describe the decentralized two sector R&D-based growth models of Romer (1990) and
Rivera-Batiz & Romer (1991). With no accumulation of human capital and population an
exogenous constant, the system of equations which determine positive growth rates reduces
to: �

(1� �K) ��A
��K (1� �A)

� �
gK
gA

�
=

�
0
0

�
(17)

Both papers assume the same Cobb-Douglas speci�cation for the production of �nal
output, which in a centralized decision making model is given by:

Y = �(�H+�L)�1A�H+�L ((1� lA)H)�H L�LK1�(�H+�L) (18a)

where � is a constant term that, in a decentralized setting measures the units of foregone
consumption (or equivalently, physical capital) required to create one unit of any type of
intermediate good.14 The term lA is absent in Rivera-Batiz & Romer (1991) but, since
the allocation of inputs between sectors is constant along a balanced growth path, this is
a harmless omission.

The modelling of the R&D sector is the major distinction between the two papers.
Romer (1990) assumes neither physical capital nor physical labor are productive in R&D:

_A = � (lAH)A (18b)

14 In a decentralized setting, A determines the range of intermediate goods that can be produced.
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where � is a constant e¢ ciency parameter. Rivera-Batiz & Romer (1991), on the other
hand, allow for both physical capital and physical labor to be productive inputs in R&D.
They propose the lab equipment model of R&D:

_A = �A�H+�LH�HL�LK1�(�H+�L) (18c)

Substituting for the sectoral elasticities from (18b) in (17):�
(�H + �L) � (�H + �L)

0 0

� �
gK
gA

�
=

�
0
0

�
(19)

where Romer�s assumption of sectoral linearity implies jAj = 0. We can therefore solve
the system for strictly positive rates of growth in physical capital and technology. From
(19), we have one equation with two unknowns: gK = gA. Because jAj = 0, we employ a
di¤erent solution method to that used in Section 4.1. From (18b), gA = � (lAH), where �
and H are exogenous constants and lA, the portion of human capital allocated to R&D, is
constant, as required for balanced growth.15

Substituting for the sectoral elasticities from (18c) in (17):�
(�H + �L) � (�H + �L)

(�H + �L)� 1 1� (�H + �L)

� �
gK
gA

�
=

�
0
0

�
(20)

where v1 = �v2, su¢ cient for jAj = 0. Thus, instead of introducing sectoral linearity to
the accumulation of knowledge, Rivera-Batiz & Romer (1991) assume diminishing marginal
returns to the stock of existing ideas in the creation of new ideas (�A < 1). Constant
returns to scale to physical capital and ideas, the growing factors, is su¢ cient for strictly
positive rates of growth. From (20), we have one equation with two unknowns which again
is simply gK = gA.

Thus, we have demonstrated that static population R&D-based growth models can be
solved for strictly positive growth without introducing sectoral linearity to the accumulation
of knowledge. Note that while Rivera-Batiz & Romer (1991) have assumed constant
returns to scale to the growing factors, we know from our discussion of Corollary 2 and
the numerical example that we could have varying returns to scale across sectors in a three
sector model.

5 Homogeneous Labor

In order to evaluate existing R&D based growth models as special cases of our general
three sector model, the restriction of homogeneous labor is introduced. We assume all
labor is skilled, in order to analyze both endogenous and exogenous labor accumulation.

15A follow on paper derives a generalized expression for lA from the �rst order conditions.
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5.1 Endogenous Labor

If the accumulation of skilled labor is endogenized, we obtain a homogeneous form (in
matrix algebra, Ax = 0) of the system of equations in (4).

5.1.1 Illustration of Proposition 3

Funke & Strulik (2000) model the development to an innovative economy. We simplify their
model only by removing an exogenous productivity parameter and a distinction between
the stock intermediate goods and physical capital which, in an innovative economy, are one
and the same. Their decentralized model is detailed, comprising forty six equations. We
can use our generalized model to reveal the salient features of their innovative economy.
The production structure is:

Y = A1�� ((1� lA � lH)H)1��K���� (21a)
_A = � (lAH) (21b)
_H = � (lHH) (21c)

where � and � are constant e¢ ciency parameters.
As per Proposition 3, Funke & Strulik�s (2000) assumption of sectoral linearity in the

human capital accumulation equation implies positive rates of growth in physical capital,
(output, consumption) and technology and human capital, as jointly determined by the
system: 24(1� �) � (1� �) � (1� �)

0 1 �1
0 0 0

3524gKgA
gH

35 =
2400
0

35 (22)

Because jAj = 0, we employ a di¤erent solution method to that used when there is an
exogenously growing factor. Sectoral linearity in the human capital accumulation equation
gives us two equations with three unknowns, which Funke & Strulik (2000) reduce to one
equation with two unknowns by assuming no physical capital is employed in R&D. From
(22), gK = 2 gA = 2 gH . Referring to the Appendix, we use the �rst order optimality
conditions to solve. Final output and the two types of knowledge in the economy grow at
the rates:

gY =
���
� ; gA = gH =

���
2�

(23)

5.2 Exogenous Labor

Since H = hL, where h is the average skill level, skilled labor accumulates over time due to
growth in the average skill level (measured by growth in average educational attainment,
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e) and/or growth in the labor force (measured by population growth, n). The system of
equations which determine positive and balanced growth rates reduces to:�

(1� �K) ��A
��K (1� �A)

� �
gK
gA

�
=

�
�H (e+ n)
�H (e+ n)

�
(24)

Despite empirical evidence that a signi�cant portion of income growth (equivalent to
gK in (24)) is attributable to growth in educational attainment, e is absent from existing
models of R&D-based growth. The reason for this is best articulated by Jones (2001):

...roughly 80 percent of post-war US growth is due to increases in human
capital investment rates and research intensity and only 20 percent is due to
the general increase in population (Jones 2002). However, ... neither educa-
tional attainment nor the share of labor force devoted to research can increase
forever. So unless there is an ad-hoc Lucas-style linearity in human capital
accumulation, population growth remains the only possible source of long run
growth...

Introducing the restriction that skilled labor accumulates at the exogenous rate of
population growth, n, yields the general two-sector growth model analyzed by Eicher &
Turnovsky (1999). Note that the generalized growth rates of real variables, jointly deter-
mined by (24), are not obtained by setting !i = 0 in (5a) and (5b). However, the rates
of growth of physical capital, output and consumption, on the one hand, and knowledge,
on the other, are readily obtained (see p. 400 of Eicher & Turnovsky (1999) for a full
analysis).

Whilst the general model encompasses several well known non-scale R&D-based growth
models as special cases, this paper focuses on the dependency of economic growth on
population growth and we discuss an example from the literature that best re�ects this
focus, namely, a re-parameterization of Jones (1995), suggested by Proposition 1 (Corollary
1).

5.2.1 Illustration of Proposition 1 (especially Corollary 1)

The model of Jones (1995) is well known. He obtains non-scale growth by introducing
diminishing marginal returns to the stock of ideas in R&D (�A < 1) to a homogenized
labor version of Romer (1990). The production structure is:

Y = (A (1� lA)H)�K1�� (25a)
_A = �A�A (lAH)

�H (25b)

where _H = nH, so that population growth is the only exogenous source of growth in the
economy.
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As per Proposition 1, diminishing marginal returns implies positive rates of growth of
physical capital, output and consumption, on the one hand, and knowledge, on the other,
as jointly determined by the system:�

� ��
0 (1� �A)

� �
gK
gA

�
=

�
�n
�Hn

�
(26)

Technology and per capita output, physical capital and consumption grow at a common
rate determined by population growth and the shares of labor and stock of knowledge in
the R&D sector:

gA = gy =  n (27)

where  = �H= (1� �A). Constant population growth and Cobb-Douglas technology
imply balanced growth.

Of most interest, however, is the implication of Jones�s (1995) �nal production para-
meter restrictions for the rate of growth in per capita output. In the general two sector
growth model, per capita rates of growth of physical capital, output and consumption are
given by:

gy =
[f�H � (1� �K)g (1� �A) + (�H + �K)�A]

[(1� �K) (1� �A)� �K�A]
n (28)

By introducing the restriction �H = (1� �K) = �A = �, together with �K = 0, Jones
(1995) obtains a long run growth in per capita output that is determined by relative factor
shares in the R&D sector, as encapsulated in the parameter  .

Jones (2002) provides estimates of  for the United States (U.S.) economy, ranging
from a low value of 0:05 to a high value of 1=3. These estimates suggest a long run rate
of growth of per capita output that is less than a third of the rate of population growth,
from which Jones (2002) draws two inferences. Firstly, growth rates in the U.S. for the
last century are not indicative of steady state. Secondly, we should anticipate a future
slowdown as the economy transits to a long run rate of growth that is lower than the rate
of population growth.

Would alternative parameter restrictions suggest a less pessimistic outlook for long run
growth of the U.S. economy? The restriction �H > (1� �K) = �A = �, by Corollary 1 to
Proposition 1, is su¢ cient for positive per capita growth in output:

gy = (�+  � 1)n (29)

where � = �H= (1� �K). Since � > 1, our re-parameterization of Jones (1995) yields a
higher long run rate of growth in per capita output. Moreover, if (�� 1) > (1�  ), a
restriction which does not violate any of the conditions for positive and balanced growth16,
the economy will transit to a long run rate of growth that is higher than the rate of
population growth.

16 jAj > 0 is the only condition that relates relative factor shares in the R&D sector to relative factor
shares in the �nal output sector: jAj > 0) 1��K

�A
> �K

1��A
.
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6 Seven Principles for Model Construction

We bring together the formal propositions of this paper in a set of principles for constructing
a model of either endogenous or semi-endogenous growth. These principles were derived
using a generalized model where physical capital and two types of knowledge grow endoge-
nously and the optimization problem is that of a central planner. Because the principles
are general, they can be applied to any R&D-based growth model with speci�c microfoun-
dations and decentralized decision making. They are equally applicable to models with
two or three endogenous factors; homogeneous labor or heterogeneous labor. Recognizing
the two broad approaches in the literature, we tailor the principles to the treatment of
population as a growing or static factor.

If you want to allow for the possibility that population can grow at exogenous rate, we
propose �ve principles for constructing a model:

1. To obtain strictly positive growth in output, capital, consumption, technology and
human capital, it is necessary and su¢ cient to assume diminishing marginal returns
to each input in its productive sector and a relationship between the structural elas-
ticities such that jAj > 0.

2. In terms of obtaining a balanced growth path, Cobb-Douglas production functions
have the bene�t of allowing for varying degrees of returns to scale. Constant returns
to scale must be assumed if you use CES production functions.

3. For strictly positive per capita growth in the economy, it is su¢ cient to assume
increasing returns to scale to physical capital and physical labor in the production of
�nal output.

4. Strictly positive balanced growth may arise without population growth if growth in
knowledge (either non-rivalrous ideas or human capital) asymptotes to a positive
constant. CES technology is one such production technology for which this possible.

5. The notions of diminishing marginal returns and semi-endogenous growth are log-
ically independent. Given our fourth principle, diminishing marginal returns to
knowledge is consistent with both endogenous growth (i.e. growth in the economy
without exogenous population growth) and semi-endogenous growth.

The �rst three principles are known, albeit for two sector R&D-based growth models,
but are often hidden behind the complexity of the decentralized solutions to these models.
With the introduction of additional sectors, such models become increasingly complex.
This paper demonstrates the generality of these principles to multi-sector growth models,
even when we allow for heterogenous labor. Even if these principles are known for two
sector R&D-based growth models, they are not always fully utilized. This is demonstrated
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in the previous section, by applying the third principle to a well-known model to achieve
a more general result.

The last two principles are based on new results obtained in this paper. Introducing
CES technology to a knowledge accumulation equation to obtain endogenous growth is
more than a mathematical peculiarity. We recommend that CES technology be introduced
where the inputs are, a priori, highly substitutable. A CES combination of human capital
and physical capital in the accumulation of human capital, as analyzed in Section 4.3 is
such a plausible application.

If you start out with the assumption that population is static, we propose two principles:

1. To obtain strictly positive growth in output, capital, consumption, technology and
human capital, it is necessary to assume jAj = 0.

2. Diminishing marginal returns to existing knowledge in the accumulation of knowledge
is consistent with strictly positive growth. Sectoral linearity is su¢ cient for jAj = 0.
However, constant returns to scale to growing factors is also su¢ cient. Moreover,
we can move away from constant returns to scale, so long as the degree of returns to
scale vary across sectors such that the column or row vectors of matrix A are linearly
dependent.

These two principles are also based on new results in this paper and shed new light on
early R&D-based growth models. Being able to construct such models without resorting
to sectoral linearity, theorists may rediscover early endogenous growth theory in their
endeavour to establish strictly positive long run economic growth with a static population.

7 Conclusion

Positive and balanced growth in an economy cannot be obtained without knife edge condi-
tions, whether growth is endogenous or semi-endogenous. By construct of a general three
sector growth model, these conditions can be expressed in terms of a matrix of structural
elasticities and tailored to the treatment of population as a growing or static factor.

If population grows at a positive, exogenous rate, as in semi-endogenous growth models,
diminishing marginal returns and a positive determinant are necessary and su¢ cient for
positive growth in real variables of the models. However, diminishing marginal returns
is consistent with endogenous growth if growth in human capital asymptotes to a positive
constant. If population is static, the necessary condition for positive growth is singularity
of the matrix, which is achieved by imposing either sectoral linearity, constant returns to
scale to growing factors or returns to scale that vary across sectors such that vectors of the
elasticity matrix are linearly dependent.

Since our general three sector growth model allows for heterogeneity of knowledge and
labor, the conditions are universal. That is, they apply to growth models with either
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R&D or human capital accumulation or both and either physical labor or human capital
augmented labor or both.

The key conditions challenge the convention in growth theory that diminishing marginal
returns is synonymous with semi-endogenous growth and linearity is synonmymous with
endogenous growth.

Semi-endogenous growth models are premised on the possibility that population grows
at a positive rate. However, endogenous growth, or growth independent of the growth
rate of population, may arise in such models if growth in human capital asymptotes to a
positive constant. This is consistent with diminishing marginal returns to human capital
as human capital accumulates. Admittedly, the tendency of growth in human capital to
a positive constant implies linearity, albeit asymptotic.

Perhaps the more powerful result of this paper pertains to the early endogenous growth
models which assume population is static. We establish that diminishing marginal returns
to knowledge in the accumulation of knowledge is consistent with singularity of the matrix
of structural elasticities, the only necessary condition for strictly positive rates of growth in
real variables. Endogenous growth models, premised on the assumption of zero population
growth, can be solved for a strictly positive growth rate in the economy without imposing
the restriction to sectoral linearity.

Thus, whether population is growing or static, strictly positive long run economic
growth, driven by knowledge accumulation, can be obtained under the more palatable
assumption of diminishing marginal returns to knowledge in the accumulation of knowl-
edge.

All this suggests that concerns of zero long run economic growth due to forward projec-
tions of zero population growth in the world�s hub of R&D may be missplaced. Such fears
generate pressure on public policy to boost fertility and immigration rates. To the extent
that, under reasonable assumptions, the long run growth rates of economies engaging in
R&D may be strictly positive without population growth, these policy reforms are, at best,
innocuous.

Because the knife edge conditions for positive growth along a balanced growth path are
in terms of structural elasticities, we provide a neat and concise framework for analysing
the long run central planner solutions for endogenous and semi-endogenous growth models
alike. CES production function are sometimes characterized as cumbersome and di¢ cult
to manipulate (Sato 1987). However, using our framework, we solve for the growth rates
of all real variables along a balanced growth path in a three sector economy where CES
technology desribes the accumulation of human capital in less than one page. Similarly,
we solve a central planner version of Funke & Strulik (2000) from a single matrix system
and four optimality conditons.

A simple, uni�ed framework for analysing the solutions along a balanced growth path
has several bene�ts. Firstly, we can apply our conditions to well-known models to achieve a
more general result, such as, our reparameterisation of Jones (1995). Secondly, we can select
the most realistic application of conditions to construct original models to address empirical
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anomalies, such as, our introduction of CES technology to human capital accumulation to
establish the result that growth in the economy does not require growth in population.

All the models presented in this paper, whether original or central planner versions of
existing models, can be given microfoundations, and in each case the equilibrium growth
rates in the corresponding decentralized economy can be derived. It is worth noting that
growth rates derived for a corresponding decentralized economy di¤er only by the absence
of terms, such as a monopoly markup, that capture the negative spillovers that a central
planner internalizes.

We can improve the analysis of our general three sector growth model with a static
population by formally de�ning the relationship between returns to scale across sectors,
as implied by equation (16). Mulligan & Sala-i-Martin (1993) and Rebelo (1991) analyze
a similar relationship for two sector endogenous growth. We may also �esh out the
stability of the system by reference to the �rst order optimality conditions and analyze the
transitional dynamics.

As it is straightforward to generalize conditions in terms of determinants to higher
dimensions, the model is readily extended model along the lines suggested by Papageorgiou
(2003), which allows for technological imitation in addition to innovation.

A Appendix

A.1 Derivation of equation (12)

gH =
_H

H
=
Q (H; kHK)

H

Di¤erentiating gH with respect to time,

_gH =

�
QkH

_kH +QH _H +QK _K
�
H �Q (H; kHK) _H

H2

Noting that _kH = 0 and !H � QHH
Q and !K � QKK

Q , we obtain:

_gH = gH f!HgH + !KgK � gHg

Substituting for !H and !K :
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!H =
(�1H)

�

[(�1H)
� + (�2kHK)

�]

=

 
(�1H)

[(�1H)
� + (�2kHK)

�]1=�

!�

=

�
�1
gH

��
!K =

(�2kHK)
�

[(�1H)
� + (�2kHK)

�]

=
(�1H)

� + (�2kHK)
� � (�1H)�

[(�1H)
� + (�2kHK)

�]

= 1�
�
�1
gH

��
gives us equation (12).

A.2 Solution to Section 5.1.1

For the production structure (21a)-(21c), the �rst order optimality conditions relevant to
solving the model are:

C�� = � (4a�)

�(1� �) Y

(1� lA � lH)H
= � (4b�)

_� = ��� � Y
K
� (4d�)

_ = � � � (4f�)

Total di¤erentiation of (4a�) with respect to time, after inserting (4d�) gives Euler�s
equation: gC = 1

�

�
� YK � �

�
. As shown in the beginning of Section 4, the growth rate in

physical capital is constant when gK = gY = gC . Di¤erentiating (4b�) with respect to
time, we obtain _� (1� �) Y

(1�lA�lH)H = _�, so that from (4d) and (4f), we get � YK = �.

Substituting for � YK = � in Euler�s equation yields:

gY = gK = gC =
� � �
�
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