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Abstract  

This paper analyses the effect of knowledge spillovers from academic research on 

regional innovation. Spillovers are localized to the extent that the underlying mechanisms 

are geographically bounded. However, university-industry collaboration - as one of the 

carriers of knowledge spillovers - is not limited to the regional scale. Consequently, we 

expect spillovers to take place over longer distances. The effect of university-industry 

collaboration networks on knowledge spillovers is modelled using an extended 

knowledge production function framework applied to regions in the Netherlands. We find 

that the impact of academic research on regional innovation is mediated not only by 

geographical proximity but also by social networks stemming from collaboration 

networks.  
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1. Introduction 

Regional differences in the rate of innovation are currently an important topic in 

economic geography and in policy debates on regional development. The possible 

determinants of regional differences in innovation have been analysed in many studies 

over the years (see Döring and Schnellenbach 2006 for an overview). The presence of 

public research organisations such as universities is generally assumed to have a large 

impact on regional innovation due to localized knowledge spillovers resulting from their 

research. Within the literature, various empirical studies have suggested the presence of 

localized academic knowledge spillovers for the USA (Jaffe 1989, Anselin et al. 1997, 

Adams 2002) and various European countries (Florax 1992, Autant-Bernard 2001, 

Andersson et al. 2004, Fritsch and Slavtchev 2007). In line with these insights, many 

countries have implemented regional innovation policies based on the presence of 

universities and research institutes in a region.  

 

Research on academic knowledge spillovers on the micro-level finds that the different 

mechanisms through which spillovers occur, are indeed localized to a large extent. 

Besides the importance of local labour markets and spin-off dynamics, studies have 

emphasized the role of networking between individuals and between organisations as a 

mechanism for knowledge spillovers. Informal networking often takes place at the 

regional level, and as a result, knowledge spillovers are localized to the extent that these 

networks are (Breschi and Lissoni 2003, 2006). Formal networks of research 

collaboration are an important mechanism of knowledge spillovers as well. However, 

empirical research on the geographical dimension of these networks has suggested that 
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these are not limited to the regional scale. Rather, formal research collaboration occurs 

largely at the national or even the international scale (McKelvey et al. 2003, Ponds et al. 

2007). As a result, knowledge spillovers through research collaboration are expected to 

occur over long distances. This implies that, especially in industries where formal 

research collaboration frequently occurs, the structure of collaboration networks needs to 

be taken into account to fully understand the impact of academic knowledge spillovers.  

 

The goal of this paper is to analyse the relative importance of both collaboration networks 

and geographical proximity for academic knowledge spillovers and their effect on 

regional innovation. We propose a novel approach to measuring academic spillovers by 

incorporating the geographical structure of research collaboration networks between 

universities and industries into a regional knowledge production function framework. We 

cover seven science-based industries in the Netherlands, where academic research and 

university-industry collaboration are especially important. The paper is structured as 

follows. In the second section, we review the existing literature on academic knowledge 

spillovers and the roles of geographical proximity and collaboration networks. In the third 

section, we describe the data and our extended knowledge production function 

methodology. Section four discusses the econometric results, and section five concludes. 

 

2. Academic knowledge spillovers and the role of geography and networks 

Differences in innovative performance between regions are often explained by 

agglomeration economies, which are advantages that firms obtain from being located in a 

region with a geographical concentration of similar firms and of knowledge institutes. A 
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key element in the concept of agglomeration economies are localized knowledge 

spillovers, which reflect the advantages firms can have in accessing knowledge that, 

intentionally or unintentionally, ‘spills over’ from other firms and knowledge institutes. 

The existence of localized knowledge spillovers is generally treated as one of the most 

important explanations for regional differences in innovation (Jaffe et al. 1993).
2
 It is 

often argued that localized knowledge spillovers give rise to increasing returns, which 

further induce innovative activities to cluster within specific regions exhibiting these 

agglomeration economies. The importance of geographical proximity for knowledge 

spillovers for firms and organizations is also emphasized in concepts like regional 

innovation systems (Cooke et al. 1997) and learning regions (Morgan 1997).  

 

The literature on knowledge spillovers pays special attention to the role of academic 

research institutes and especially universities (for recent examples, see Audretsch et al. 

2005, Del-Barrio-Castro and Garcia-Quevedo 2005, Fritsch and Slavtchev 2007). 

Universities are assumed to be important sources of localized knowledge spillovers due 

to their explicit focus on the generation and diffusion of knowledge. Nonetheless, the 

importance of academic research for innovation differs strongly across industries 

(Klevorick et al. 1995, Cohen et al. 2002). The results of academic research are especially 

important for firms in the so-called science-based industries. The notion of science-based 

industries was introduced by Pavitt (1984) in his classification of industries based on 

differences in their sources of innovation and characteristics of the processes of 

                                                
2
 There is a large body of literature on the issue of whether a specialized or diversified regional economic 

structure is more beneficial for the occurrence and magnitude of localized spillovers (see for an overview 

Rosenthal and Strange 2004). It is, however, beyond the scope of this paper to elaborate further on this. 
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innovation. Science-based industries, such as biotechnology and semiconductors, are 

characterized by the importance of scientific knowledge for their innovative activities. As 

a result, firms in these industries invest relatively heavily in R&D and collaborate 

intensively with academic organizations such as universities. Given the importance of 

scientific research, it can be assumed that the presence of knowledge spillovers from 

academic research is especially important for explaining regional differences in 

innovation in science-based industries.  

 

Academic knowledge spillovers are localized to the extent that the mechanisms 

underlying such spillovers take place at the regional level. Within the literature, three 

major mechanisms of knowledge spillover have been distinguished. First, spin-offs form 

an important mechanism of commercialisation of academic knowledge. Spin-offs and 

start-ups tend to locate in proximity to the parent organization, resulting in a geographical 

concentration of these firms around universities and research institutes (Zucker et al. 

1998, Klepper 2007). Second, by moving from one organisation to another, the 

knowledge embodied in individuals is transferred. Labour mobility can thus be 

considered another important mechanism of knowledge spillovers (Almeida and Kogut 

1999). Since labour mobility is a regional phenomenon to a considerable extent, 

knowledge spillovers through labour mobility are often localized as well. Third, informal 

knowledge exchange is an important mechanism for knowledge spillovers (Breschi and 

Lissoni 2003, 2006, Singh 2005). Informal knowledge exchange often takes place 

through social networks, which are to a large extent localized as well.  
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Besides informal social networks, formal networks of research collaboration also form an 

important mechanism of knowledge spillovers. This is especially the case in science-

based industries, where collaborative networks are considered to be crucial for innovation 

(Powell et al. 1996, Stuart 2000). Though research collaboration can be considered as 

simple co-production of knowledge where inputs are transformed into outputs, 

knowledge spillovers will occur as a by-product of such processes. Moreover, following 

the line of reasoning of Breschi and Lissoni (2003, 2006), collaborative research can lead 

to enduring social relationships between researchers over longer distances. As such, 

research collaboration is likely to lead to future spillovers in the sense that researchers 

who have collaborated in the past are likely to continue to exchange knowledge 

informally. This is especially important in science- and engineering-based industries 

where informal knowledge exchange is commonplace due to the professional norms of 

communities of engineers and researchers (Von Hippel 1994, Lissoni 2001). The 

importance of this form of knowledge exchange is apparent from the fact that 

collaboration is increasingly important within processes of knowledge creation in both 

academia (Wagner-Doebler 2001) and the private sector (Hagedoorn 2002). Here, we 

focus on university-industry collaboration as a channel for academic knowledge 

spillovers in science-based industries (Etzkowitz and Leydesdorff 1996).  

 

Research on the geographical dimension of university-industry collaborations shows that 

these linkages are not limited to the regional level; rather, they occur mostly on the 

national or even the international scale (McKelvey et al. 2003, Ponds et al. 2007). These 

findings are in line with the increasing attention to the non-regional dimension of 
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knowledge flows (Bunnell and Coe 2001, Faulconbridge 2006). Geographical proximity 

itself is neither necessary nor a sufficient condition for inter-organisational knowledge 

spillovers to occur (Boschma 2005). In the case of research in science-based industries, 

collaboration is more likely to be based on the presence of specific knowledge of 

potential partners than on geographical proximity (Moodysson et al. 2008).  

 

Altogether, this body of literature argues that knowledge flows and knowledge spillovers 

can occur at different geographical scales. This implies that knowledge spillovers from 

universities can also occur over longer distances between regions. If this is the case, it is 

unlikely that the relationship between academic knowledge spillovers and regional 

innovation is fully captured by taking only the regional dimension of spillovers into 

account. Rather, if networks of formal research collaboration are an important mechanism 

of knowledge spillovers, it is necessary to include the structure of these networks when 

analysing academic knowledge spillovers. The objective of our empirical analysis is to 

capture and weight this effect of formal collaboration networks between university and 

industry, as a channel for academic knowledge spillovers, on regional innovation.  

 

3. Research design 

A large number of empirical studies on knowledge spillovers have been based on the 

application of a regional knowledge production function as introduced by Jaffe (1989), 

who analysed the presence of localized academic knowledge spillovers at the level of US 

states. In a regional knowledge production function framework, regional knowledge 

inputs (such as R&D expenditures) are expected to contribute to regional innovation 
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output (such as number of patents or new products). Based on Jaffe’s seminal 

contribution, various authors have refined this approach by using a smaller geographical 

scale (Audretsch and Feldman 1996) and distinguishing between different industries 

(Anselin et al. 2000). Whereas in an early stage most of this research was based on US 

data, more recent studies on European countries have produced similar findings.
3
 

Whereas the largest part of this research has focussed on the roles of different R&D 

inputs and the presence of knowledge spillovers for innovative output, several studies 

have tried to account for region-specific conditions that influence the innovative output as 

well (see, for example, Rodriguez-Pose and Crescenzi 2008, Crescenzi et al. 2008). It 

was found that conditions such as human capital or demographic structure significantly 

influence the innovative output. This suggests that there is a need to take these regional 

‘contextual conditions’ into account within empirical studies of regional differences in 

innovation.  

 

We test the importance of geography and collaborative networks for knowledge 

spillovers from academic research using an extended regional knowledge production 

function framework. The innovative output of a region depends on the size of its own 

private and university R&D expenditures and the size of such expenditures in other 

regions to the extent that these inputs are accessible to a region. We assume that external 

R&D can be accessed through localized mechanisms and through social relationships 

over longer distances stemming from formal research collaboration. This means that the 

size of these spillovers depends on the geographical distance to other regions in case of 

                                                
3
  See, for example, Autant-Bernard (2001) for France, Fischer and Varga (2003) for Austria, Del Barrio-

Castro and Garcia-Quevedo (2005) for Spain, and Fritsch and Slavtchev (2007) for Germany.  
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localized spillovers, and on the intensity of collaboration with universities in other 

regions in the case of spillovers from research collaboration. Maggioni et al. (2007) 

explored such an approach, but, in contrast to their study, we will include the two sources 

of spillovers simultaneously as independent variables.
4
 Possible regional differences in 

conditions that might influence innovative output are taken into account in two different 

ways. Following Rodriguez-Pose and Crescenzi (2008), several variables that measure 

different technology-specific regional conditions are included in the first set of models. 

The second set of models includes regional fixed effects, which control for unobserved 

regional heterogeneity in factors (see Fritsch 2001 for a related approach) affecting 

innovation output in general. A third set of models includes both regional fixed effects 

and the variables measuring technology specific regional conditions.  

 

3.1 Data 

We analysed the relative importance of geography and networks for academic knowledge 

spillovers for seven science-based technologies in the Netherlands at the level of NUTS3 

regions. Within the Netherlands, NUTS3 regions are defined as labour market regions or 

functional regions around a central city. Innovation at the regional level was measured by 

the average of the number patents applied for by firms at the European Patent Office 

between 1999 and 2001. Patents are one of the few innovation indicators that have a 

regional, temporal, and technological dimension, and are therefore often used in 

empirical studies. Nonetheless, the use of patents as indicators for innovation is not 

                                                
4
 Previous studies by Greunz (2003) and Moreno et al. (2005) included technological proximity in the 

knowledge production function next to spatial proximity. Technological proximity matrices take into 

account to what extent two regions have similar technological specialisations. We do not include 

technological proximity because our analyses are carried out at the level of individual technologies. 
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undisputed. Most importantly, not all patents are innovations, and not all innovations are 

patented (on this topic, see Griliches 1990). Furthermore, the rate of patenting differs 

systematically between industries and technologies due to differences in the relative 

importance of patents as a means of appropriating an invention. The latter problem, 

however, is ‘solved’ by the focus on science-based technologies, where patents do form 

an important appropriating mechanism (Pavitt 1984). 

 

We classified patents into technologies according to the IPC-technology concordance 

table developed by FHG-ISI, OST, and INPI.
5
 To select science-based technologies, we 

followed Van Looy et al. (2003) and Verbeek et al. (2002), who used the relative number 

of citations in patents to the scientific literature as a measure of the interaction between 

science and technology (see also Schmoch 1997). The higher the share of citations to the 

scientific literature, the more science-based the technology is considered to be. The 

technologies with the most intensive interactions with science were agriculture and food 

chemistry, biotechnology and organic fine chemistry (three life-sciences based 

technologies), and optics, information technology, semiconductors and 

telecommunications (four physical science-based technologies). Appendix A shows the 

relevant scientific fields for each technology. Patents were assigned to the different 

NUTS3 areas based on the addresses of the inventors. Patents with multiple inventors 

were proportionally distributed across different regions.  

 

                                                
5
 Fraunhofer-Institut für System- und Innovationsforschung in Karlsruhe, L'Observatoire des Sciences et 

des Techniques in Paris, and l’Institut National de la Propriété Industrielle in Paris. 
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Figures 1 and 2 show the geographical patterns of patents in one life-science technology 

(biotechnology) and one physical science-based technology (optics). Within 

biotechnology, some regions exhibit a relatively large number of patents. Besides the 

larger cities of Amsterdam and Utrecht, these are the regions of Leiden and 

Veluwe/Wageningen, two regions that host life-sciences clusters in the Netherlands, 

fuelled by the presence of their respective universities. In the case of optics, the relatively 

high number of patents in the Southern region of Eindhoven is striking. This is caused by 

the location of the research laboratories of Philips, a large multinational in electronics, 

and several related firms nearby.  

  

Figures 1 and 2. Number of patents in biotechnology and telecommunications in NUTS3 

regions in the Netherlands 

 

Private and university R&D expenditures are used as indicators for knowledge inputs. 

Regional private R&D expenditures are measured by the sum of the private wages for 

R&D employees for each technology.
6
 University R&D expenditures are only available 

for broad science fields as defined by the Ministry of Education and Science, which can 

be linked to either physical sciences or life sciences. Within both types of technologies, 

university R&D expenditures were assigned to each technology in proportion to its share 

                                                
6
 Data on technology specific R&D wage sums at the regional level are provided by the Ministry of 

Economic Affairs and are based on information from the tax deduction scheme for R&D personnel. This 

measure overlooks R&D investments in capital, e.g. specific scientific equipment, leading to an 

underestimating of the total R&D expenditures for each technology. Nonetheless, it is reasonable to assume 

that this indicator forms a fair proxy for regional differences in R&D expenditures in general, since there is 

no specific reason to assume that the share of R&D expenditures dedicated to wages within a specific 

technology significantly differs across regions. By using technology dummies in the estimations, we 

control for the possible differences between technologies in the share of R&D expenditures dedicated to 

wages 
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of the total number of scientific publications in the life sciences or physical sciences.
7
 In 

line with other studies (Fischer and Varga 2003, Fritsch and Slavtchev 2007), a time lag 

of three years between R&D expenditures and patenting is assumed. The R&D variables 

refer to the average value between the years 1996 to 1998. 

 

In the first set of empirical models, three different variables have been included to 

account for technology-specific regional conditions that might influence the innovative 

output of regions next to R&D inputs and spillovers. To avoid endogeneity, all three 

variables refer to the year 1998. First, a dummy variable is included, which indicates the 

presence of a branch of the semi-public contract research organisation TNO in either the 

physical sciences or life sciences. TNO is a multi-branch organisation with the explicit 

goal to bridge scientific research and innovation activities in different industries. As such, 

TNO can be compared with the Fraunhofer Institute in Germany. Following insights from 

case studies using a regional innovation system approach (see e.g Cooke et al., 1998), the 

presence of a ‘bridging’ organisation such as TNO is expected to increase the size of the 

spillovers within a region. Based on the analysis of annual reviews and the corporate 

website, the activities of each TNO branch in the Netherlands were determined and 

related to one of the science-based technologies. Second, the size of the employment 

within industries related to the specific technologies has been included as an indicator for 

human capital. A higher stock of technology-specific human capital is assumed to 

increase innovative output (Rodriguez-Pose and Crescenzi 2008). The selection of the 

industries is based on the concordance table developed by Schmoch et al. (2003). 

Appendix B shows the relevant industries for each technology.  

                                                
7
 See the appendix for the relevant scientific subfields for each technology. 
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Third, based on size of the employment and the number of firms per region in each of 

these industries, regional differences in the average firm size in the industries related to 

each technology are included. Following Bode (2004), one wish to control for regional 

differences in average firm size as firm size may systematically affect innovation output 

(compare Licht and Loz 1999 and Cohen and Klepper 1996).  

 

3.2 Defining interregional spillovers 

We expect academic knowledge spillovers to occur between regions through 

geographical proximity and/or research collaboration networks. Geographically localized 

knowledge spillovers from academic research are assumed to take place through various 

mechanisms, such as labour mobility or spin-offs. The occurrence of such spillovers is 

assumed to decay over geographical distance. A spatial weight matrix based on a distance 

decay function is assumed to reflect the geographical structure of these mechanisms.  

 

The weight matrix for spillovers through research collaboration is based on the intensity 

of collaboration between universities (including academic hospitals) and firms for each 

pair of regions. We consider formal collaboration between universities and firms as a 

direct knowledge flow from academia to industry and consequently as a prime form of 

academic knowledge spillover. Co-publications are frequently used as an indicator of 

research collaboration (see, for example, Cockburn and Henderson 1998, Zucker et al. 

1998, Wagner-Doebler 2001). The appearance of multiple authors and/or multiple 

organisations on a scientific publication can be used as an indicator of collaboration in 
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the research leading to the knowledge that is published. Within science-based industries, 

firms are actively involved in scientific publishing (Rosenberg 1990). Therefore, co-

publications with both an academic affiliation and a corporate affiliation can be 

considered meaningful indicators of university-industry collaboration. Since individuals 

and their affiliations are generally only mentioned on a publication after a substantial 

contribution, publications with multiple authors and multiple organisations are considered 

good indicators of collaborative research (for an extensive overview of these arguments, 

see Glänzel and Hubert 2004 and Katz and Martin 1997). Whereas (almost) all co-

publications might be considered to represent some form of collaboration, not all 

collaboration in research ends up in a co-publication, and consequently, not all research 

collaboration is measured by co-publications. Laudel (2001) showed that this most often 

occurs in collaborative research between individual researchers within the same 

organisation. Research collaboration with other organisations, on the other hand, 

generally does lead to a joint publication (Laudel 2001). As such, publications with 

multiple organisations can be considered valuable indicators of collaborative research. 

The underlying assumption is that a co-publication reflects formal research collaboration 

between the organisations involved and that knowledge has been exchanged between 

these organisations. Next to this, collaborative research is assumed to form an indicator of 

spillovers through social relationships, resulting from the notion that researchers who 

have collaborated in the past are likely to continue to exchange knowledge and advice.  

 

All publications between 1993 and 1995 with at least two addresses in the Netherlands 

were selected from Web of Science in the scientific fields that are relevant for each 
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technology. Based on the address information of the organisations on a co-publication, 

each organisation was assigned to a NUTS3 region. This was done on the basis of full-

counting, meaning that each pair of organisations on a co-publication was counted as a 

collaboration. By aggregating these collaborations, a matrix was constructed with the 

number of collaborations between each pair of regions as an indicator of the intensity of 

formal collaboration. Based on the names of the organisations on the publication, 

universities, firms, and governmental research organisations were distinguished. 

Collaborations between universities and firms were selected to create the university-

industry collaboration weight matrix. This resulted in an asymmetric weight matrix 

(without values on the diagonal) for each technology, with directed relationships from 

regions with universities towards regions with firms collaborating with these universities. 

From now on, this matrix will be referred to as the network weight matrix. It must be 

noted, though, that this matrix consists strictly of bilateral relationships and cannot be 

considered a ‘true’ network in the sense that indirect relationships are also taken into 

account. The focus on the Netherlands implies that, although a considerable part of 

research collaboration occurs at the international level, international knowledge flows 

have been excluded from this analysis. This might lead to an underestimation of the role 

of research collaboration for knowledge spillovers which will be taken into account in the 

discussion of the results. The values of the interregional network weight matrix are based 

on co-publications from the years 1993 to 1995, whereas the R&D data are from the 

period of 1996-1998. As such, the network weight matrix is considered an indicator for 

the presence of social relationships between researchers in the period 1996-1998 based on 

collaborative research in the period 1993-1995.  
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As two examples, figures 3 and 4 show the geographical structure of interregional 

research collaboration between universities and firms in biotechnology and optics, 

respectively. In both technologies, university-industry research collaboration takes place 

between nearby regions and over longer distances. As a result, research collaboration 

cannot be attached to a specific geographical scale. Rather, Figures 3 and 4 show that it 

takes place at both the regional and national levels.  

 

Figures 3 and 4. Geographical structure of interregional university-industry research 

collaboration in biotechnology and optics - 1993-1995 

 

In the following, we use weighted R&D expenditures in other regions as an additional 

explanatory variable, rather then as a mean to deal with spatial autocorrelation. 

Nonetheless, the use of accessibility variables can eliminate the problem of spatial 

autocorrelation as well (see Andersson and Karlsson 2007). Such explanatory variables 

are also referred to as accessibility or connectivity measures (Anderson and Grasjo 2009) 

and indicate the potential of opportunities for interaction (Weibull 1976, 1980). High 

accessibility between two regions implies a high level of interaction opportunities and, 

consequently, a high level of potential spillovers between two regions. Accessibility 

measures for region i are generally based on the weighted average of variable x in all 

other regions j, where the weights are based on the size of the possible interaction 

between regions i and j. The size of the possible interaction is generally based on the 

physical distance between regions (see e.g., Andersson and Karlsson 2007), but can also 
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be based on the structure of economic or functional relationships (see, for example, Boix 

and Trullen 2007).  

 

Whereas the spatial weight matrix is clearly exogenous, the network weight matrix might 

exhibit a problem of potential endogeneity, as the geographical structure of collaboration 

is likely to be related to geographical patterns of patents. This problem is minimized in 

this study by using time lags; the network weight matrix refers to university-industry 

collaboration in 1993-1995, the R&D data are from 1996-1998, and patents are from 

1999-2001.
8
 The time lag is likely to be even larger since co-publications result from 

collaborative research done long before actual publication. Given the fact that the 

geographical structure of R&D and innovation is relatively stable over time, the network 

weight matrix might still suffer from potential endogeneity. This is a common problem 

with the use of actual data on spatial interaction patterns for the construction of the 

weight matrix. Yet, the use of these data has the clear advantage that it bears ‘a direct 

relation with the theoretical conceptualisation of the structure of spatial dependence, 

rather than (…..) an ad hoc description of a spatial pattern’ (Anselin 1988, pp. 20-21). 

Consequently, several empirical studies have used weight matrices in knowledge 

production function frameworks, which cannot be considered strictly exogenous. Peri 

(2005), for example, analysed the effect of knowledge flows on innovation output as 

measured by patents in European regions, while applying a weight matrix based on 

                                                
8
 Instrumental variables reflecting network potentials between regions would be a more definite solution to 

this problem, but good instruments are difficult if not impossible to find. Labour mobility (in professions 

related to the separate industries studied) as an instrument for social networks is a preferred candidate, but 

data on this detailed level are not available.  Within the literature on trade and economic growth (see for 

example Frankel and Romer 1999), geographical distance is often used as an instrument for patterns on 

trade between countries. However, as we are interested in separating localized knowledge spillovers from 

spillovers carried by university-industry collaboration, it is obvious that this cannot be used here.  
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interregional patent citations to capture interregional knowledge spillovers. Given the fact 

that the pattern of interregional patent citations is not independent of the regional pattern 

of patenting, the weight matrix cannot be considered exogenous (see also Peri 2005 p. 

318 on this). Despite this drawback, Peri (2005) argues that the use of an actual indicator 

for knowledge spillovers (here patent citations) is to be preferred over the arbitrary 

assumption that knowledge spillovers are solely localized as is the case with the use of 

physical distance, or contiguity based weight matrices alone.  

 

3.3 Empirical model 

 

Based on these specifications of interregional knowledge spillovers, the following pooled 

cross-sectional spatial model is estimated: 

       (1) 

where Pi,k,t stands for economically valuable knowledge as measured by patent 

applications of firms in region i in technology k in the period of 1999-2001, and  

denotes the private R&D expenditures and  the university R&D expenditures in 

the period of 1996-1998 in region i and technology k. Both private and university R&D 

expenditures in the other regions j are spatially lagged using a spatial weight matrix, 

. Furthermore, university R&D is lagged by the network weight 

matrix , which denotes the spatial structure of university-industry 

collaboration in the years of 1993-1995.  is a stochastic error term. The seven 
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technologies have been pooled, leading to a total number of 280 observations consisting 

of 40 NUTS3 regions i times seven technologies k. Technology dummies have been 

included to control for possible differences in the rates of patenting between technologies. 

The variable  in equation 1 refers to the technology-specific regional conditions 

that might affect the innovative output. The second set of models leaves out the variables 

for technology-specific regional conditions and includes regional fixed effects, which 

control for regional unobserved heterogeneity in conditions that influence the innovative 

output in general. The third set of models includes both the regional fixed effects and the 

technology-specific regional conditions.  

 

In order to render the effects of different weight matrices comparable, it is necessary to 

standardize them. The choice of the method of standardisation is, from a theoretical point 

of view, far from arbitrary, since it implies a specific way of allocating the value of a 

variable (in this case, R&D spillovers) from one region to other regions (see Leenders 

2002 and Abreu et al. 2005). The use of a row standardized weight matrix in this study 

implies that the lagged variable is the weighted average of R&D expenditures in 

neighbouring (defined by space or networks) regions. An increase of the number of 

neighbours j implies that the size of the spillovers that region i receives from each 

individual neighbour j automatically decreases. Conceptually, this suggests the presence 

of some form of limited absorptive capacity of region i, to the extent that the size of 

spillovers from region j is less if region i is connected or linked with more regions.
9
 

                                                
9
 Suppose region X has two neighbours and region Y has four neighbours. Both regions X and Y are of 

equal size and have one common neighbour but do not share a common border with each other. This 

common neighbour Z has a university with a given amount of R&D expenditures and has only two 

neighbours, X and Y.  By row standardizing the weight matrix, the region X with two regions would 
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Alternatively, it can be assumed that the size of the R&D spillovers received by region i 

from region j is related to the total number of neighbouring regions (defined by space or 

networks) with j. As such, an increase of the total number of neighbours i of the spillover 

generating region j implies a smaller total of spillovers received by each specific region i. 

In this case, column standardization of the weight matrices is more appropriate. Each cell 

value is divided by the sum of the column, and consequently, each column sums up to 

one. Within a column standardized weight matrix, the column sum of region i represents 

the effect of an increase or decrease in R&D expenditures in region i on all other regions j 

(see also Abreu et al. 2005). R&D spillovers from region i are in this case conceptualised 

as a pool of knowledge spillovers partly accessible to other regions j.
10

 In this study, all 

models have been estimated with column-standardized and row-standardized lagged 

variables separately to check for the robustness of the results.  

 

The network weight matrix, with firms in region i in the rows and universities in region j 

in the columns, is defined as follows in the case of column standardization: 

         (2) 

and as follows in the case of row standardisation: 

                                                                                                                                            
receive ! (1/(1+1)) the value of the R&D expenditures in region Z. Compare this with region Y, which has 

four neighbours and consequently only receives " (1/(1+1+1+1)) the value of the R&D expenditures in 

region Z.  The overall size of the spillovers is # of the original R&D expenditures. 
10

 In the case of column standardisation, the sum of all knowledge spillovers always equals the initial 

amount of R&D expenditures Following the example in the previous footnote, column standardisation 

implies that regions X and Y both receive ! (Z has two neighbours: 1 / (1+1)) the R&D expenditures of 

region Z.  
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          (3) 

where rij stands for the number of collaborations between firms in region i and a 

university in region j.  

 

In a similar way, the spatial weight matrix that defines the allocation of knowledge 

spillovers from region j to region i is defined as: 

        (4) 

in the case of column standardisation and as: 

         (5) 

in the case of row standardisation. In both equation 4 and 5 dij stands for the average 

travel time between regions i and j. The maximum possible value of dij was set to 90 

minutes because the size of spillovers through localized mechanisms is considered 

negligible beyond a travel time of 90 minutes by car. Van Ham et al. (2001), for example, 

pointed to the fact that in the Netherlands, labour markets (and labour mobility) are 

generally bounded by a travel time of 45 minutes.
11

  

 

In equation (1), the dependent variable is log transformed because of the transformation 

of the production function. This raises the issue of dealing with regions with zero patents 

                                                
11

 Next to this specification, several other specifications of the spatial weight matrix have been applied: 

first-order contiguity, inverse distance functions with other cut-off points (60 minutes and 120 minutes) and 

without cut-off points. The results presented later on are robust with regard to these different specifications.  
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since the log of zero is undefined. Adding a (small) value to each observation typically 

solves this problem. Alternatively, several empirical studies have applied a count data 

model in a knowledge production framework (e.g., Fritsch and Slavtchev 2007, Del 

Barrio-Castro and Garcia-Quevedo 2005). We apply both approaches in order to check 

for the robustness of the results. Patents are a good example of count data to which a 

Poisson model is typically applied (Hausman et al. 1984). However, we will make use of 

a negative binomial regression in order to correct for overdispersion. With the application 

of a negative binomial model, an extra variable alpha is introduced, which corrects for 

the overdispersion by adjusting the variance independently from the mean (Cameron and 

Trivedi 1998). Besides linear regression models with fixed effects, unconditioned pooled 

negative binomial models with direct estimation of fixed effects by including region 

dummies have been estimated (Allison and Waterman 2003).
12

  

 

 

4. Results   

The descriptive statistics are presented in Table C.1 in appendix C. It is clear that the 

distribution of patents is rather skewed. Table C.2a and C.2b in appendix C show the 

correlations of all independent variables. The low correlation between the spatially and 

network lagged university R&D indicates that there are clear differences between the 

                                                
12

 Note that this variant of a fixed effects negative binomial model differs from the one suggested by 

Hausman et al. (1984), where fixed effects refer to the dispersion parameter alpha, which is the same for all 

elements in the same group. Since the main goal of applying fixed effects is to control for regional 

unobserved heterogeneity, the pooled negative binomial model with regional dummies, as suggested by 

Allison and Waterman (2003), is more appropriate. 
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structure of the spatial weight matrix and the network matrix, resulting in different 

footprints (and hence impacts) of academic knowledge spillovers.  

 

Table 1 shows respectively the results of the negative binomial estimations with the 

variables measuring the technology-specific regional conditions, the results of the 

estimations with regional fixed effects and the results of the estimations combining 

regional fixed effects and technology-specific regional conditions. The first four models 

include the technology-specific regional variables, the models five till eight include 

regional fixed effects and models nine till twelve include both.
13

 For each model the 

results are shown for the specification with row and column standardized weight 

matrices. The first, fifth and ninth model include only the intra-regional R&D 

expenditures and, in the case of the first and ninth model, the variables that denote the 

technology-specific regional conditions. In the second, sixth and tenth model, 

geographically localized R&D spillovers are included. Models three, seven and eleven 

include R&D spillovers stemming from university-industry research collaboration. 

Finally, the models four, eight and twelve include both types of interregional spillovers. 

 

The first, fifth and ninth model is the basic knowledge production function including only 

intra-regional R&D expenditures. In both models university R&D has a positive and 

significant relationship with innovation, suggesting the presence of academic knowledge 

spillovers within the regions having a university, a finding that is in line with previous 

studies in European countries. Note that the positive relationship of private R&D cannot 

                                                
13

 In order to analyze the sensitivity of the results to the influence of the Philips Corporation, the models for 

physical science-based technologies (such as telecommunication) have also been estimated excluding the 

patents owned by Philips. The results remain similar.  
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be interpreted as an indication of localized knowledge spillovers in the region, since we 

cannot distinguish between the internal R&D investments of a firm and possible 

spillovers from R&D investments of other firms located in the region. 

 

Table 1. Regression results of negative binomial estimations  

 

The other models include the variables that denote the presence of interregional 

spillovers. The main conclusion holds that collaborative networks between universities 

and firms form an important mechanism for academic knowledge spillovers, irrespective 

of the method of standardisation and model specification. With regard to geographically 

localized spillovers between regions, the results are less robust. In the first set models 

(include only the technology-specific regional variables) no significant relationship 

between the spatially lagged university R&D and innovation was found, suggesting the 

absence of localized, interregional academic knowledge spillovers. A significant and 

positive relation for spatial lagged private R&D is found, which can be interpreted as an 

indication of the existence of geographically localized interregional spillovers from 

private research. In case of the fixed-effect estimations, the outcomes are opposite. There 

seems to be a positive and significant relationship between localized academic knowledge 

spillovers and innovation. Moreover, the insignificant effects of spatially lagged private 

R&D expenditures suggest the absence of interregional knowledge spillovers from 

private R&D. These results appear to be robust across the different methods of 

standardisation. In the third type of models, including technology-specific regional 

variables and regional fixed-effects, spatially lagged university R&D expenditures have a 
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significant positive effect whereas spatially lagged private R&D expenditures remain 

insignificant. This suggests that the different signs and significance levels of the spatially 

lagged R&D variables in the first set of models result from an underspecification of the 

models. This is likely to result from unobserved regional heterogeneity, which is not fully 

controlled for in the first four models presented in table 1. Given the fact that the fixed 

effects models control for this, it is reasonable to assume that these results are more 

reliable and the conclusions are therefore based primarily on the second and third set of 

models (respectively, models five till eight and nine till twelve). 

 

As a further check on the robustness of the results, linear models with similar 

specifications has been estimated as well.
14

 The results are shown in table 2 and reveal 

that the outcomes are similar with regard to the positive effect of network related R&D 

spillovers. Note that in case of column standardization, no significant effect of spatially 

lagged R&D expenditures could be found in most cases. Given the count data nature of 

the dependent variable, the results of the negative binomial estimations are however 

considered more reliable.   

 

Table 2. Regression results of OLS estimations  

 

Concerning the technology-specific regional conditions, the coefficients and significance 

levels are stable across the different specifications of the first set of negative binominal 

models estimated. The presence of a branch of TNO in the relevant technology fields has 

a positive relationship with innovative output, as does human capital. There is a negative 

                                                
14

 One patent has been added to each region to avoid zeros (which cannot be log-transformed).  
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correlation between average firm size and innovative output, suggesting that innovation 

in science-based technologies is, on average, higher in regions with smaller firms. This is 

in line with the findings for Germany reported by Bode (2004). However, in the third set 

of models, which includes regional fixed effects as well, these variables become 

insignificant. 

 

In order to control for possible autocorrelation, a modified version of Moran’s I for count 

data models introduced by Lin and Zhang (2006) has been applied on the residuals. 

Whereas the models including no spillover variables and only the network-mediated 

spillovers exhibit significant levels of spatial autocorrelation this is not the case anymore 

with the inclusion of the variables that denote spillovers.
15

 This result implies that our 

specification does not only capture geographically and network-mediated spillovers, but 

also, by doing so, effectively deals with spatial autocorrelation. 

 

In sum, the robust results with regard to network-mediated spillovers indicate that 

collaborative networks between universities and firms form an important mechanism for 

academic knowledge spillovers in science-based industries. Given that these networks are 

not limited to the regional scale, knowledge spillovers are also not bounded to this scale; 

this implying that academic knowledge spillovers occur over longer distances as well. 

Geographically localized spillovers from academic research seem to occur as well, 

leading to the conclusion that academic knowledge spillovers occur at different 

geographical scales simultaneously, depending on the underlying spillover mechanisms.  

 

                                                
15

 Results are available on request 
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5. Conclusions 

Universities are generally seen as important factors influencing regional differences in 

innovation due to the occurrence of knowledge spillovers, which are assumed to be to a 

large extent geographically localized. Empirical studies on knowledge spillovers typically 

include spatially lagged variables to measure the effect of interregional knowledge 

spillovers on regional innovation. The underlying mechanisms of knowledge spillovers 

are not modelled explicitly; rather it is implicitly assumed that such spillovers are 

geographically localized. Although empirical studies at the micro-level have found that 

spillover mechanisms as labour mobility or spin-offs are indeed largely localized, this is 

not the case for research collaboration, which occurs over longer distances as well. The 

goal of this study was to empirically analyse the possible presence of knowledge 

spillovers stemming from university-industry research collaboration over longer 

distances, while controlling for the presence of localized spillovers. This is done by the 

estimation of a pooled cross-sectional version of a knowledge production function for 

seven science-based technologies in the Netherlands. 

 

The results of this study suggest that academic knowledge spillovers occur through both 

geographically localized mechanisms and collaborative research over longer distances. In 

line with the arguments set out in the theoretical section, these findings imply the 

presence of knowledge spillovers from university R&D at multiple spatial scales. 

Knowledge spillovers resulting from research collaboration occur over longer 

geographical distances since geographical proximity is less important in the 

establishment of collaborative research networks in science-based industries. The 
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presence of knowledge spillovers over shorter geographical distances are likely to result 

from spillover mechanisms as spin-off dynamics and labour mobility where geographical 

proximity plays a more important role.  

 

On the one hand, these results reinforce the conclusions of existing empirical studies on 

the presence of localized knowledge spillovers from university research. On the other 

hand, these results also show that studies on localized knowledge spillovers neglect the 

presence of spillovers over longer distances. Possibly, this leads to an over-estimation of 

the importance of geography for academic knowledge spillovers. In order to analyze the 

impact of university research on regional innovation it is therefore necessary to take into 

account the presence of spillovers over longer distances as well. 

 

The conclusions that can be drawn from this study lead to some tentative policy 

implications as well. Within the Netherlands, academic knowledge spillovers within 

science-based technologies cannot be attributed solely to one specific geographical scale. 

This implies that the often-mentioned idea of policymakers that a university can be 

regarded as a booster for regional development is at least incomplete. Although regions 

seem to benefit from the presence of a university, this is not a necessity, since knowledge 

spillovers occur over longer distances as well. Related to this is the notion that given the 

wide geographical range of academic knowledge spillovers, innovation policy measures 

trying to stimulate these spillovers should not focus on specific regions. Rather, the 

national or even international scale seems more appropriate for such policies. 
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Importantly, our study has several limitations. First, the empirical study is based on 

pooled cross-sectional data. Although the time lags between the depended and 

independent variables lower the risk of endogeneity, future studies using panel data are 

necessary to come to more decisive conclusions. Second, this study focussed on science-

based industries where research collaboration between universities and firms is a 

frequently occurring phenomenon. Given the fact that the importance of the different 

mechanisms of academic knowledge spillovers probably differs between industries, it 

would be interesting to see whether these conclusions hold for other industries as well. 

Third, this study focussed on the Netherlands solely. This implies that the possible effect 

of spillovers through international research collaboration is not taken into account, which 

is likely to be important as well. Especially since several studies have found empirical 

evidence for the presence of international knowledge spillovers (see e.g. Peri 2005), it is 

likely that the role of collaborative research as carrier of knowledge spillovers over 

longer distances is under-estimated.  

 

This study included only one mechanism – collaborative research – explicitly, whereas 

other mechanisms were assumed to be fully captured by the spatially lagged variables. 

Future research in this area could further extend our framework by including additional 

weight matrices based on the actual geographical patterns of other mechanisms such as 

labour mobility flows, spinoff dynamics and inter-firm R&D alliances. Such a research 

program will shed light at the relative importance of the various mechanisms of 

knowledge spillovers at the different spatial scales at which these occur. A more 
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systematic understanding of the mechanisms of knowledge spillovers can have 

fundamental implications for regional and innovation policy alike.  

 



 31 

Tables and figures 

  

Figure 1 and 2. Geographical patterns of patents in biotechnology and optics - 1999-

2001   

 

Biotechnology     Optics 
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Figure 3 and 4. Geographical structure of interregional university-industry research 

collaboration in biotechnology and optics - 1993-1995 

 

Biotechnology         Optics 
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Table 1. Regression results of negative binomial estimations on regional patent intensity (standard errors in parentheses)  

 
Negative binomial regression including technology dummies and 

 region-technology variables 

Negative binomial regression including regional fixed effects and  

technology dummies 

 1 2 3 4 5 6 7 8 

Weight matrix - row column row column row column - row column row column row column 

University R&D 
0.142** 

(0.048) 

0.181** 

(0.052) 

0.164** 

(0.050) 

0.149** 

(0.048) 

0.166** 

(0.048) 

0.191** 

(0.051) 

0.193** 

(0.050) 

0.361** 

(0.069) 

0.442** 

(0.072) 

0.448** 

(0.087) 

0.369** 

(0.068) 

0.347** 

(0.083) 

0.450** 

(0.071) 

0.433** 

(0.085) 

Private R&D 
0.501** 

(0.096) 

0.474** 

(0.096) 

0.469** 

(0.095) 

0.434** 

(0.101) 

0.383** 

(0.103) 

0.403** 

(0.100) 

0.339** 

(0.102) 

0.350** 

(0.102) 

0.398** 

(0.099) 

0.395** 

(0.104) 

0.333** 

(0.100) 

0.314** 

(0.099) 

0.384** 

(0.098) 

0.360** 

(0.100) 

W space university 

R&D 
 

-0.015 

(0.094) 

-0.094 

(0.103) 
  

-0.003 

(0.093) 

-0.081 

(0.100) 
 

0.490** 

(0.149) 

0.519** 

(0.178) 
  

0.469** 

(0.147) 

0.514** 

(0.176) 

W space 

private R&D 
 

0.310** 

(0.139) 

0.365** 

(0.143) 
  

0.311** 

(0.138) 

0.378** 

(0.140) 
 

0.073 

(0.194) 

0.178 

(0.179) 
  

0.068 

(0.191) 

0.178 

(0.174) 

W network 

university R&D 
   

0.085** 

(0.040) 

0.151** 

(0.053) 

0.091** 

(0.040) 

0.162** 

(0.053) 
   

0.100** 

(0.047) 

0.115** 

(0.051) 

0.091** 

(0.046) 

0.117** 

(0.052) 

Average firm size 

-0.532** 

(0.192) 

-0.439** 

(0.194) 

-0.446** 

(0.193) 

-0.482** 

(0.192) 

-0.445** 

(0.189) 

-0.380* 

(0.195) 

-0.343* 

(0.191) 
       

Human capital 

0.591** 

(0.148) 

0.492** 

(0.151) 

0.498** 

(0.150) 

0.545** 

(0.148) 

0.511** 

(0.147) 

0.439** 

(0.152) 

0.404** 

(0.150) 
       

TNO 

1.018** 

(0.265) 

1.064** 

(0.263) 

1.051** 

(0.261) 

0.920** 

(0.266) 

0.736** 

(0.276) 

0.965** 

(0.264) 

0.752** 

(0.272) 
       

Constant 
-0.837** 

(0.251) 

-1.306** 

(0.309) 

-1.231** 

(0.301) 

-0.727** 

(0.253) 

-0.608** 

(0.257) 

-1.212** 

(0.309) 

-1.020** 

(0.299) 

-1.317 

(1.049) 

-2.523** 

(0.842) 

-3.899** 

(1.025) 

0.173 

(0.517) 

1.132** 

(0.479) 

-2.870** 

(0.865) 

-2.543** 

(0.951) 

Alpha 
0.885** 

(0.117) 

0.858** 

(0.113) 

0.850** 

(0.113) 

0.864** 

(0.115) 

0.840** 

(0.113) 

0.840** 

(0.111) 

0.807** 

(0.108) 

0.496** 

(0.077) 

0.448** 

(0.072) 

0.425** 

(0.069) 

0.471** 

(0.075) 

0.435** 

(0.067) 

0.427** 

(0.071) 

0.404** 

(0.066) 

N 
280 

(7 x 40) 

280 

(7 x 40) 

280 

(7 x 40) 

280 

(7 x 40) 

280 

(7 x 40) 

280 

(7 x 40) 

280 

(7 x 40) 

280 

(7 x 40) 

280 

(7 x 40) 

280 

(7 x 40) 

280 

(7 x 40) 

280 

(7 x 40) 

280 

(7 x 40) 

280 

(7 x 40) 

Max likelihood R2 0.687 0.695 0.695 0.692 0.695 0.700 0.705 0.774 0.784 0.808 0.777 0.803 0.787 0.811 

Log likelihood -621.26 -617.69 -617.31 -618.98 -617.30 -615.10 -612.58 -575.68 -569.29 -564.16 -573.43 -567.84 -567.37 -561.97 

** indicates significance at 5% level, * indicates significance at 10% level 
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Table 1. Continued 

 
 

Negative binomial regression including regional fixed effects,  

technology dummies and region-technology variables  

 9 10 11 12 

Weight matrix - row column row column row column 

University R&D 
0.328** 

(0.072) 

0.412** 

(0.075) 

0.414** 

(0.076) 

0.344** 

(0.072) 

0.322** 

(0.072) 

0.429** 

(0.076) 

0.411** 

(0.076) 

Private R&D 
0.337** 

(0.102) 

0.388** 

(0.099) 

0.386** 

(0.100) 

0.318** 

(0.101) 

0.300** 

(0.103) 

0.373** 

(0.099) 

0.352** 

(0.101) 

W space university 

R&D 
 

0.487** 

(0.151) 

0.551** 

(0.191) 
  

0.476** 

(0.150) 

0.552** 

(0.189) 

W space 

private R&D 
 

0.064 

(0.195) 

0.169 

(0.191) 
  

0.052 

(0.193) 

0.158 

(0.189) 

W network 

university R&D 
   

0.092* 

(0.048) 

0.106* 

(0.059) 

0.085* 

(0.047) 

0.105* 

(0.058) 

Average firm size 

0.001 

(0.256) 

-0.169 

(0.253) 

-0.242 

(0.259) 

0.022 

(0.253) 

0.055 

(0.255) 

-0.142 

(0.250) 

-0.187 

(0.258) 

Employment 

0.050 

(0.203) 

0.178 

(0.200) 

0.240 

(0.205) 

0.037 

(0.201) 

0.006 

(0.202) 

0.161 

(0.198) 

0.197 

(0.204) 

TNO 

0.389 

(0.276) 

0.284 

(0.270) 

0.341 

(0.272) 

0.269 

(0.280) 

0.273 

(0.281) 

0.167 

(0.275) 

0.221 

(0.279) 

Constant 
0.604 

(0.612) 

-1.446* 

(0.870) 

-3.090** 

(1.110) 

-1.890* 

(1.053) 

-1.889* 

(1.053) 

0.202 

(0.474) 

-2.149** 

(0.964) 

Alpha 
0.480** 

(0.076) 

0.434** 

(0.072) 

0.442** 

(0.072) 

0.463** 

(0.075) 

0.467 

(0.075) 

0.420** 

(0.071) 

0.429 

(0.070) 

N 
280 

(7 x 40) 

280 

(7 x 40) 

280 

(7 x 40) 

280 

(7 x 40) 

280 

(7 x 40) 

280 

(7 x 40) 

280 

(7 x 40) 

Max likelihood R2 0.776 0.786 0.785 0.779 0.779 0.788 0.788 

Log likelihood -574.24 -568.13 -568.49 -572.42 -572.64 -566.53 -566.87 

** indicates significance at 5% level, * indicates significance at 10% level 
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Table 2. Regression results of OLS estimations on regional patent intensity (standard errors in parentheses) 

 OLS regression  OLS regression including regional fixed effects and technology dummies 

 1 2 3 4 5 6 7 8 

Weight matrix - row column row column row column - row column row column row column 

University R&D 
0.155** 

(0.032) 

0.185** 

(0.034) 

0.168** 

(0.034) 

0.153** 

(0.032) 

0.160** 

(0.031) 

0.185** 

(0.034) 

0.187** 

(0.032) 

0.354** 

(0.050) 

0.393** 

(0.051) 

0.387** 

(0.053) 

0.353** 

(0.049) 

0.335** 

(0.050) 

0.392** 

(0.051) 

0.370** 

(0.053) 

Private R&D 
0.337** 

(0.058) 

0.314** 

(0.058) 

0.316** 

(0.058) 

0.289** 

(0.060) 

0.179** 

(0.060) 

0.262** 

(0.060) 

0.186** 

(0.058) 

0.232** 

(0.068) 

0.231** 

(0.067) 

0.235** 

(0.067) 

0.217** 

(0.068) 

0.205** 

(0.068) 

0.217** 

(0.067) 

0.208** 

(0.067) 

W space university 

R&D 
 

0.124 

(0.112) 

0.073 

(0.136) 
  

0.148 

(0.111) 

0.100 

(0.126) 
 

0.243** 

(0.108) 

0.191 

(0.136) 
  

0.242** 

(0.107) 

0.202 

(0.135) 

W space 

private R&D 
 

0.145 

(0.109) 

0.110 

(0.097) 
  

0.133 

(0.107) 

0.115 

(0.090) 
 

0.100 

(0.120) 

0.122 

(0.116) 
  

0.097 

(0.119) 

0.119 

(0.115) 

W network 

university R&D 
   

0.067** 

(0.026) 

0.153** 

(0.023) 

0.070** 

(0.026) 

0.153** 

(0.023) 
   

0.060* 

(0.032) 

0.100** 

(0.043) 

0.059* 

(0.032) 

0.103** 

(0.042) 

Average firm size 
-0.317** 

(0.111) 

-0.254** 

(0.112) 

-0.265** 

(0.113) 

-0.293** 

(0.110) 

-0.064 

(0.132) 

-0.228** 

(0.111) 

-0.187* 

(0.106) 
       

Employment 
0.326** 

(0.087) 

0.267** 

(0.090) 

0.281** 

(0.090) 

0.305** 

(0.086) 

0.099 

(0.108) 

0.245** 

(0.089) 

0.219** 

(0.084) 
       

TNO 
0.624** 

(0.176) 

0.568** 

(0.176) 

0.591** 

(0.176) 

0.546** 

(0.177) 

0.334* 

(0.174) 

0.480** 

(0.177) 

0.236 

(0.173) 
       

Constant 
-1.364** 

(0.360) 

-1.467** 

(0.359) 

-1.407** 

(0.363) 

-1.293** 

(0.357) 

-0.738 

(0.734) 

-1.402** 

(0.355) 

-1.064** 

(0.342) 

1.075** 

(0.138) 

-0.477 

(0.375) 

-0.326 

(0.420) 

1.038** 

(0.138) 

1.056** 

(0.137) 

-0.561 

(0.376) 

-0.434 

(0.418) 

N 
280  

(7 x 40) 

280  

(7 x 40) 

280  

(7 x 40) 

280  

(7 x 40) 

280  

(7 x 40) 

280  

(7 x 40) 

280  

(7 x 40) 

280  

(7 x 40) 

280  

(7 x 40) 

280  

(7 x 40) 

280  

(7 x 40) 

280  

(7 x 40) 

280  

(7 x 40) 

280  

(7 x 40) 

R2 0.598 0.610 0.607 0.608 0.660 0.620 0.661 0.507 0.526 0.525 0.530 0.550 0.548 0.562 

** indicates significance at 5% level, * indicates significance at 10% level 
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Table 2. Continued 

 
including regional fixed effects,  

technology dummies and region-technology variables 

 9 10 11 12 

Weight matrix - row column row column row column 

University R&D 
0.317** 

(0.054) 

0.356** 

(0.055) 

0.349** 

(0.056) 

0.321** 

(0.053) 

0.309** 

(0.053) 

0.361** 

(0.055) 

0.342** 

(0.056) 

Private R&D 
0.220** 

(0.068) 

0.221** 

(0.067) 

0.224** 

(0.068) 

0.207** 

(0.068) 

0.198** 

(0.068) 

0.208** 

(0.068) 

0.201** 

(0.068) 

W space university 

R&D 
 

0.237** 

(0.109) 

0.207 

(0.140) 
  

0.239** 

(0.109) 

0.217 

(0.139) 

W space 

private R&D 
 

0.092 

(0.123) 

0.119 

(0.120) 
  

0.086 

(0.123) 

0.112 

(0.119) 

W network 

university R&D 
   

0.055* 

(0.033) 

0.090** 

(0.043) 

0.054* 

(0.033) 

0.091** 

(0.043) 

Average firm size 
0.021 

(0.161) 

-0.067 

(0.163) 

-0.080 

(0.167) 

0.023 

(0.160) 

0.039 

(0.160) 

-0.064 

(0.162) 

-0.063 

(0.166) 

Employment 
0.017 

(0.131) 

0.077 

(0.131) 

0.092 

(0.135) 

0.019 

(0.130) 

0.004 

(0.130) 

0.079 

(0.131) 

0.080 

(0.134) 

TNO 
0.377* 

(0.215) 

0.343 

(0.213) 

0.385* 

(0.214) 

0.318 

(0.217) 

0.292 

(0.217) 

0.284 

(0.215) 

0.298 

(0.216) 

Constant 
0.521** 

(0.223) 

-0.266 

(0.393) 

-0.270 

(0.431) 

0.495** 

(0.223) 

0.541** 

(0.222) 

-0.282 

(0.391) 

-0.259 

(0.428) 

N 
280  

(7 x 40) 

280  

(7 x 40) 

280  

(7 x 40) 

280  

(7 x 40) 

280  

(7 x 40) 

280  

(7 x 40) 

280  

(7 x 40) 

R2 0.53 0.55 0.55 0.55 0.56 0.57 0.58 

** indicates significance at 5% level, * indicates significance at 10% level 
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Appendix A. The relevant science fields* for technological innovation in the seven 

selected technologies.  

 
Agriculture & food chemistry Organic fine chemistry 

  

Biochemistry & Molecular Biology Biochemistry & Molecular Biology 

Plant Sciences Organic Chemistry 

Microbiology Pharmacology & Pharmacy 

Genetics & Heredity Immunology 

Food Science & Technology Genetics & Heredity 

Agriculture Dairy & Animal Science Microbiology 

Nutrition & Dietetics  

 Semiconductors 

Biotechnology  

 Electrical & Electronics Engineering 

Biochemistry & Molecular Biology Physics Condensed Matters 

Microbiology Crystallography 

Genetics & Heredity Applied Physics 

Immunology Nuclear Science and Technology 

Virology Material Science 

Biophysics  
Biotechnology & Applied Microbiology Telecommunication 

  

Information technology Electrical & Electronics Engineering 

 Telecommunications 

Electrical & Electronics Engineering Optics 

Computer Applications Applied Physics 

Computer Cybernetics Computer Applications 

Telecommunications Computer Cybernetics 

Acoustics  

  

Optics  

  

Optics  

Electrical & Electronics Engineering  

Applied Physics  

Polymer Science  

  

  
* as defined by the Institute for Scientific Information (ISI). 
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Appendix B Linking technologies and industries 

 

Technology  Industry  NACE 

Agriculture and Foodchemistry Food& Beverages 15 

Biotechnology Pharmaceuticals 24.4 

Organic Fine Chemistry Basic Chemicals  24.1 

Information Technology Office Machinery & Computers 30 

Optics Medical, precision and optical instruments 33 

Semiconductors Radio, television and communication equipment 32 

Telecommunications Radio, television and communication equipment 32 

Based on Schmoch et al. 2003 
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Appendix C 

 

Table C.1. Descriptive statistics  

 N Mean Min. Max. Std. Dev. Source  Unit of measurement 

Patents (1999-2001) 280 11.19 0.00 912 67.81 

European Patent Office 

– Patent Bulletins 

(www.epo.org) 

absolute numbers 

University R&D (ln) 

(1996-1998) 
280 0.88 0.00 5.38 1.76 

Association of 

universities in the 

Netherlands – VSNU 

(www.vsnu.nl)  

R&D expenditures in 

million euro’s 

Private R&D (ln) 

(1996-1998) 
280 1.77 0.00 5.55 1.14 

Ministry of Economic 

Affairs – SenterNovem  

(www.senternovem.nl/ 

wbso) 

private R&D wages in 

million euro’s  

W space university R&D - 

column standardized (ln)  
280 2.56 0.00 4.00 1.05 - 

 

W space university R&D - 

row standardized (ln)  
280 2.66 0.00 4.07 1.08 - 

 

W space private R&D - 

column standardized (ln)  
280 2.19 0.05 4.18 0.89 - 

 

W space private R&D –  

row standardized (ln)  
280 2.25 0.16 4.47 0.84 - 

 

W network university R&D 

- column standardized (ln)  
280 0.99 0.00 6.03 1.67 - 

 

W network university R&D 

- row standardized (ln)  
280 1.40 0.00 5.38 2.13 -  

Human capital (ln) 

(1998) 
280 5.76 0.00 9.29 2.30 

National Statistical 

Office / CBS  

(www.cbs.nl) 

Total regional 

employment in 

technology-related 

industry 

Average firm size (ln) 

(1998) 
280 2.93 0.00 5.92 1.46 

National Statistical 

Office / CBS  

(www.cbs.nl) 

Total employment 

divided by total number 

of firms in technology-

related industry 

TNO (dummy) 280 0.09    

Own elaboration of 

annual reports  

(www.tno.nl) 

Dummy 
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Table C.2a Correlation matrix – including column standardized variables  
 

 
1 2 3 4 5 6 7 8 

1 University R&D 1.00        

2 Private R&D 0.44* 1.00       

3 
W space university R&D - 

column standardized 
-0.15* 0.10 1.00      

4 
W space private R&D -  

column standardized 
0.07 0.41* 0.59* 1.00     

5 
W network university R&D - 

column standardized 
0.37* 0.58* 0.09 0.19* 1.00    

6 Average firm size 0.10 0.24* 0.14* 0.15* 0.22* 1.00   

7 Employment 0.24* 0.46* 0.18* 0.30* 0.37* 0.83* 1.00  

8 TNO 0.43* 0.24* -0.02 0.04 0.37* -0.04 0.01 1.00 

* indicates significance at 5% level 

 

Table C .2b Correlation matrix – including row standardized variables 
 

 
1 2 3 4 5 6 7 8 

1 University R&D 1.00        

2 Private R&D 0.44* 1.00       

3 
W space university R&D – row 

standardized 
-0.18* 0.09 1.00      

4 
W space private R&D -  

row standardized 
0.02 0.40* 0.49* 1.00     

5 
W network university R&D - row 

standardized 
0.35* 0.53* 0.05 0.17* 1.00    

6 Average firm size 0.10 0.24* 0.18* 0.17* 0.24* 1.00   

7 Employment 0.24* 0.46* 0.22* 0.32* 0.38* 0.83* 1.00  

8 TNO 0.43* 0.24* -0.03 0.02 0.27* -0.04 0.01 1.00 

* indicates significance at 5% level 


