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Abstract 

In this paper we measure technological relatedness between industries using 
a dataset on product portfolios of plants. For this purpose we first develop a 
general methodology to extract data on co-occurrences of classes (e.g. 
industries) in a single entity (e.g. a plant) to construct estimates of the 
relatedness between the classes. The core assumption, in line with the 
concept of economies of scope, is that if two products are produced in the 
same plant, this is an indication of relatedness between the industries the two 
products are a part of. Unlike earlier methods, we arrive at a Revealed 
Relatedness (RR) index that can be interpreted on a ratio scale, allows for the 
use of indirect (i.e. not directly observed) information on industry relatedness, 
and conceptualizes relatedness as being asymmetric or directed. Direction of 
relatedness provides information on, for example, the most likely direction of 
spillovers between two classes. We also graph the RR matrices using methods 
borrowed from social network analysis. The result is a visualization of the 
“industry space” and how that changes over time with structural 
transformation of the economy. In order to test the validity of the framework, 
the industry space is used to plot structural transformation paths of regions. It 
is shown that the RR matrix indeed has significant explanatory power for the 
composition and change of a regions portfolio of manufacturing industries, in 
spite of the fact that regional information played no role in its derivation. This 
confirms the quality of our RR estimates.  
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1: Introduction 

 
The relevance of the industrial level for economic analyses is widely recognized. 
However, industries do not live in the splendid isolation that is often implicitly attributed 
to them. Technology and technological progress are often specific to particular industries, 
but, to varying degrees, industries also share common characteristics with respect to 
their production technologies. In other words, they are related. In the business 
administration literature and some technology oriented strands of economics, it has long 
been recognized that knowledge about similarities between industries is important to 
understand economic transformation, growth and firm performance. Penrose’s (1959) 
branching logic of product diversification underscores the importance for firms to stay 
close to their existing capabilities when expanding into new product markets. Research 
on technological paradigms (Freeman and Perez 1988, Dosi 1988), long-term structural 
change (Schön 2000) and general purpose technologies (Breshnahan and Trajtenberg 
1995) has shown how major technological breakthroughs propagate, one industry at a 
time, through the economy. Furthermore, the concept of a ‘cluster’ of related industries 
(Porter, 1990, 2000) has proven a versatile  research tool in investigating the value of 
national and regional industrial coherence. Indeed, Hidalgo et al. (2007) recently showed 
that countries expand their exports by moving to products that are related to their 
existing portfolio. This contribution places the issue of technological relatedness in the 
centre of contemporary trade theory as well.  
 
Given the importance of technological relatedness in such diverse fields, it has become 
crucial to reliably measure how strongly related industries are to one another. We 
contribute to this effort by developing a novel methodology to distil relatedness relations 
between industries from product portfolios. The basic idea is if products from two 
different industries are produced in the same plant, these industries are likely to be 
related. The first attempts to develop measures based on such co-occurrences of industry 
or technological classes in one and the same entity (such as one patent filed under 
multiple technology classes or one firm producing different products) were made in the 
1990s. The introduction of co-occurrence based relatedness measures marked an 
important step forward in the research of relatedness, and our new measure is 
constructed in the spirit of this tradition.  
 
The method we propose can be applied to many types of co-occurrence data. An 
important contribution of our method is a Bayesian extension that can be used to 
consistently merge co-occurrence information with any other piece of information on 
relatedness between industries. This may prove a valuable tool when combining 
information derived from different sources into a single relatedness measure. 
Furthermore, the method allows us to show that differences in the degree of complexity 
of industries naturally lead us to regard relatedness as a directed, and therefore an 
asymmetric, relation. 
 
In this article, we will show how our relatedness index can be used to estimate 
relatedness between industries. For this purpose, we use a dataset that contains product 
portfolios in Swedish plants between 1969 and 2002. As many plants produce multiple 
products, these product portfolios can serve as the basis of a co-occurrence analysis. The 
advantage of portfolio data is that they reflect the distributed knowledge about 
relatedness used in diversification decisions at the micro level of the economy. We will 
therefore refer to our index as a measure of Revealed Relatedness. By connecting 
industries in a network that reflects Revealed Relatedness, we can visualize the “industry 
space”. The data also allow us to calculate and plot the transformational path of 
individual regions in this industry space. Our enquiries show that regional portfolios of 
industries are usually not random, but rather a coherent set of related industries. This 
coherence is preserved over time as regions are more likely to expand into industries 
that are closely related to their present portfolio than into industries that are very 
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dissimilar to their main economic activities. Although this particular application is in the 
field of economic geography, it is easy to imagine similar – or quite different – 
applications in fields as varied as strategy research or international development studies. 
 
The outline of the article is as follows. In the first section we give an overview of the 
literature investigating the measurement of relatedness with a focus on the co-
occurrence approach. Next, in section two, we develop our methodology to derive a 
matrix of Revealed Relatedness. In section three, we apply this method to our product 
portfolio data to estimate yearly relatedness matrices for all manufacturing industries in 
the Swedish economy. Section four describes the outcomes of this procedure. Section 5 
applies the matrix to the structural transformation paths of two old industrial regions in 
Sweden, and section five concludes and describes challenges for future research. 
 
 
2: Relatedness as co-occurrence 

The present investigation is certainly not the first to set out on a search for a reliable 
relatedness measure. Historically, particularly the business literature has shown a 
profound interest in the issue of industry relatedness, as it clearly connects to the 
understanding of diversification processes and strategic decisions within firms (Gort 
1962, Berry 1975, Rumelt 1982, Prahalad and Bettis 1986, Grant 1988). Earlier 
measures of diversification have been based on a large number of different principles. 
The probably most widely used measure of relatedness uses the hierarchy of the 
Standard Industrial Classification (SIC) system to assess similarity between industries. 
The lower the class two industries share in the hierarchy, the more similar they are 
thought to be. According to this logic, industries in the same 5 digit class are more 
related than industries that only share the same 3 digit class. The value of this measure 
has been questioned, as it is rather rigid and theory void.  
 
This has given rise to a number of alternative approaches. In the 1980s, Scherer (1982) 
constructed relatedness matrices for almost 50 industries based on estimated technology 
flows. Later, Farjoun (1994) based relatedness on similarity in the human expertise, as 
proxied by occupations among employees in different industries. Yet another approach is 
the use of input-output tables to measure relatedness in terms of similarities in input-
output profiles (Fan and Lang 2000). Whereas Scherer’s method has to investigate 
individual firms in detail and is very time consuming, the latter two measures can be 
readily derived from information at the level of the industry aggregate. 
 
In the 1990s, a group of scholars devised methods to exploit the information enclosed in 
micro-level data. Engelsman and Van Raan (1991) used the fact that some patents are 
filed in multiple technology classes as evidence for the technological relatedness between 
these classes. The use of patents as a source of information has the advantage that it 
stays very close to the notion of technological relatedness. However, knowing which 
patent classes are related does not provide us immediately with an index of relatedness 
between industries. This problem is amplified by the fact that only a limited number of 
industries rely heavily on patenting. As a consequence, any patent based measure will be 
restricted to a rather small part of the economy.  
 
The prime piece of information in any co-occurrence analysis of relatedness is the 
number of times a combination of classes co-occurs in a single entity. For example, in 
Teece et al. (1994), the analysis centres on the number of times a combination of two 
industries (the co-occurrence) is found in one and the same firm (the entity). Hidalgo et 
al. (2007) use the number of times two industries display revealed comparative 
advantage (the co-occurrence) in a single country (the entity). However, some co-
occurrences are more likely than others, because the involved classes are more likely to 
occur in an entity. For example, some industries are bigger than other industries, and will 
therefore, a priori, tend to be found in more firms. The most important difference 
between the various analyses of co-occurrences, therefore, is the way authors control for 
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the overall tendency of a class to engage in linkages with any other class. Authors that 
apply the methodology pioneered in Engelsman and Van Raan (1991) often limit the 
analysis to all entities that host a co-occurrence, i.e. those entities that host at least two 
classes. In Teece et al. (1994), for instance, the authors restrict themselves to firms that 
own plants in multiple industries. Next, the authors the overall number of times an 
industry participates in any co-occurrence as given. It is then quite natural to view the 
linking process as draws from a hypergeometric distribution. Let us call the number of 

plants producing in industry i, iN , and the number of plants producing in industry j, jN . 

Furthermore, let N  be the total number of plants. The process of establishing links 

between industry i and industry j can now be depicted as randomly drawing iN  plants  

from a population of plants that can be split in two parts: jN  plants that are producing in 

industry j and jNN −  plants that are not producing in industry j.  

 
Using properties of the hypergeometric distribution, it is straight forward to derive the 
expected number of links for each industry pair (see, e.g., Bryce and Winter, 2006). We 
can then compare these expected values to the actual number of co-occurrences. 
Accordingly, relatedness gets to be defined as the t-value of observing the actual (or 
more extreme) number of links, given the mean and variance of the random draws. This 
yields a good control for the overall tendency of classes to engage in co-occurrences. As 
a matter of fact, the methodology does its job too well. It controls for the total number of 
co-occurrences for a given class. But while some industries may have an overall tendency 
to “participate” in many co-occurrences because they are very attractive from a general 
point of view (e.g. they usually generate high profits), other industries participate in 
many co-occurrences because they are similar to many other industries. The 
hypergeometric approach cannot distinguish between those two forces. As a result, if we 
take centrality to mean the number of other classes a class is strongly related to, the 
approach cannot tell us anything about how central a class is. The average relatedness of 
a class to all other classes may vary between classes, but it is hard to interpret what this 
average of t-values means.  
 
The method laid out in Hidalgo et al. (2007) differs from the Engelsman and Van Raan 
approach, as it defines distance between product categories in terms of conditional 
probabilities. The estimate of a conditional probability is equal to the number of co-
occurrences of classes i and j, divided by the number of times either class i or class j is 
observed in the sample - depending on whether the conditioning is on i or on j. For 
practical reasons - and to arrive at a symmetric distance measure - the authors set 
relatedness equal to the minimum of the two conditional probabilities. 
  
The general logic behind this method is that some co-occurrences are more likely than 
others, because one of the involved classes is larger than average. However, also here, 
the correction is not beyond debate. The size of a class corresponds to the number of 
countries that develop a relative specialization in a product, and this depends on the 
evenness with which production in the industry is distributed across the world economy. 
It is hard to assess how such a correction should be interpreted.  
 
We will describe a way to control raw co-occurrence links that has a more natural 
interpretation. As we implied above, for any application there may be a number of factors 
that influence the general propensity of classes to participate in co-occurrences. To 
return to the example of multi industry firms, some industries are more likely to 
participate in co-occurrences not because they are bigger than other industries, but 
rather because they are more attractive to diversify into. This attractiveness could 
depend on a number of factors, such as the average profitability in the industry, wage 
levels and the fierceness of competition. In our methodology, we are able to control for 
any of such factors as long as information on them is available at the level of the class 
aggregate. Furthermore, the resulting index can be regarded as a probability. This makes 



 5 

it easy to interpret, and allows comparisons on a ratio scale. Another consequence is that 
there is a consistent way to gather additional, indirect, information for the relatedness of 
pairs of classes that cannot be estimated with great precision. This is for instance useful 
when the involved classes are very small. The resulting index can also be asymmetric, 
where the direction of relatedness provides information about the complexity of the 
classes involved in the co-occurrence. 
 
 
 
 
3: The Revealed Relatedness Method 

 
Generation of co-occurrences 

The basic proposition behind our method is that it is possible to predict the number of co-
occurrences between two classes using only class specific variables as predictors. These 
predictions can then be compared to the actual number of links, which will reveal the 
relatedness between the classes involved.  
 
As an illustration, we could, for the moment, think of co-occurrences as the outcome of a 
decision making process. However, the Revealed Relatedness method itself is not limited 
to the depicted situation, but rather general. Let us assume that there are two stages in 
the generation of co-occurrences. In the first stage, actors in each class decide whether it 
would be beneficial to link to other classes.  To identify the attractive candidate classes, 
the actors make use of class-specific information. As a result, for each combination of 
two classes, there are a number of actors that would consider setting up a co-occurrence 
link. This number depends on both the general characteristics of the originating class and 
on those of the receiving class. In the industry example, firms investigate whether they 
need to diversify at all and, if so, which industries would be good diversification 
candidates. For this, they take into account many factors, such as profitability and 
expectations about the competitive setting in their own industry and in candidate 
industries. 
 
At the end of this first step, each combination of classes is under consideration by a 
number – possibly zero – of agents. However, not all class-combinations are equally 
feasible. As actors have to build on their existing strengths, only classes that are 
sufficiently similar to the original class can yield stable co-occurrence links. Therefore, in 
the second stage, agents investigate how related the candidate class is to their own 
class. 
 
Direction of  co-occurrences 
In many applications, the classes that co-occur in an entity can be ordered according to 
some sort of hierarchy. Patents are classified in a main technology class and some 
supplementary technology classes. In firms, some activities belong to the core business, 
whereas other activities take a more marginal position. Often, the temporal dimension 
can be used to derive information on the direction of relatedness. For example, moving 
from one decade to another countries add new industries to their existing portfolio. In all 
these cases, it is possible to interpret a co-occurrence as going from an originating class 
to a receiving class. The direction of a co-occurrence can often be chosen in such a way 
that it can be interpreted as an indication of varying degrees of complexity. For example, 
in a firm, non-core activities should normally be expected to take place in fields that do 
not require large investments in capabilities that are not used in the core-activity. The 
reason for this is that capabilities are costly to maintain, and should therefore contribute 
substantially to the performance of the firm.  
 
If we now turn back to our model, let us call the class of the investigating actor – the 
originating class – class i, and the candidate class – the receiving class – class j. The 
closer j is related to i, the easier it is for the agent in class i to establish a co-occurrence 
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from i to j. This will translate into a higher proportion of agents that are already 
interested in the combination of i and j to actually build a co-occurrence link from i to j. 
This proportion is what we call the Revealed Relatedness from i to j.  
 
In our example of industries, the firms in industry i that are investigating industry j as a 
diversification candidate will have to decide whether it is feasible to add industry j to their 
portfolio. If most of the production processes, raw materials and skills used in industry i 
can also be used in industry j – or if they at least have close analogues in industry j – a 
firm can add j to the portfolio without great investments or changes. The Revealed 
Relatedness of i to j is equal to the share of the firms in industry i that actually expand 
into industry j as a percentage of the firms that were investigating the link between 
industry i and j.  
 
First step estimates:  

In sum, our measure of Revealed Relatedness is equal to the observed number of co-
occurrence links, corrected for class-specific characteristics that influence the overall 
propensity of the involved classes to participate in co-occurrences. It is therefore a good 
measure of the ease with which industry j can be added to a firm in industry i, and thus 
of the relatedness between industries. 
 
In terms of probability theory, we can say that the Revealed Relatedness from i to j is the 
probability of a co-occurrence of classes i and j, given the number of agents investigating 
the link from i to j. Let us introduce some notation to formalize the above:  
 

ijC :  number of agents that consider participating in a co-occurrence from i to j  

ijL :  number of realized co-occurrence links from i to j 

ijRR :  Revealed Relatedness of i to j, i.e. probability that an actor in i establishes a co-

occurrence link to j given that the actor is investigating j. 
  
By definition, if a link is being investigated, it will be established with probability equal to 
its Revealed Relatedness. The number of observed links can therefore be regarded as the 
outcome of the following binomial process: 
 

(1) ( ) ( ) 









−=== −

ij

ijlc
ij

l
ijijijijij l

c
RRRRcClLP ijijij 1  

 

The conditional mean of ijL  of this binomial distribution is: 

 

(2) ( ) ijijijijij cRRcCLE ==  

 

ijC  is assumed to be determined by a number of class specific characteristics that we call 

iv  and jw . We use these characteristics to predict the number of links between i and j.  

 
First, we have to estimate the relation between class characteristics and co-occurrence 
links. A way to do this is to treat the problem as a count data regression problem. As 
most of the class pairs typically have zero links, a Zero-Inflated Negative Binomial 
regression analysis is most appropriate, although the validity of our framework does not 
depend on the exact formulation of the regression model: 
 

(3) ( ) ( )[ ] ijjiii wv

jiiiijjiij ewvwvLE
εββαδδγε +++++Π−= ''

0 ''1,,  
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As in any zero-inflated count data regression, the equation consists of two parts (e.g. 
Greene, 1994). The exponential, right most, part is the count data part. This determines 
the number of links that are generated, given our regressors. The left most part is 
usually called the regime selection equation, and is a way to cope with the overwhelming 
number of zeros in the observed data.  
 
Both the regime selection equation, and the count data equation depend on industry 
characteristics only. With ^ indicating fitted values, we can calculate the predicted 
number of links as follows: 
 

(4) ( )[ ] jiii wv
jiiiij ewvL ββαδδγ ˆ'ˆ'ˆ

0
ˆ'ˆ'ˆ1ˆ ++++Π−=  

 

As only the number of investigating agents, ijC , is supposed to vary with the general 

industry characteristics, the variations in predicted outcomes, ijL̂ , can be fully attributed 

to variations in ijC . Assuming that the model is correctly specified, remaining variation 

must be contributed to differing degrees of relatedness between classes. Thus, it is 

tempting to interpret the residuals, ije
ε̂
, as the estimated Revealed Relatedness of i to j 

and to split the model as follows: 
 

(5) ( ) ijijijijjiij RRCeCwvLE ij == εε,,  , where 

(6) ( ) ( )[ ] jiii wv

jiiijiij ewvwvCE
ββαδδγ ''

0 ''1, ++++Π−=  

 
However, as we include a constant in our model, this amounts to setting the average 

value of ε  equal to zero and, as a consequence, 
εe , or the RR in the typical class 

combination1, equal to 1. As the RR is a probability, this is obviously impossible. We must 
therefore account for the fact that the RR for the typical class combination is a part of the 
term 
 

( )[ ] jiii wv

jiii ewv
ββαδδγ ''

0 ''1 ++++Π− . 

 
Let us assume that the RR will not affect the regime selection equation. In this case, we 
can split the term α  in two, one part capturing the average propensity to investigate co-

occurrence links (α~ ) and the other part capturing the typical Revealed Relatedness 

across all industry combinations (η ): 

 

(7) ( ) ( )[ ] ηεββαδδγε ++++++Π−= ijjiii wv

jiiiijjiij ewvwvLE
''~

0 ''1,,  

 
This breaks the regression equation down in two parts: 
 

(8) ( )ijjiij wvLE ε,,  ( )[ ] ηεββαδδγ +++++Π−= ijjiii eewv
wv

jiii

''~

0 ''1  

ηε += ijeCij  

ijij RRC=  

where ( )[ ] jiii wv
jiiiij ewvC ββαδδγ ''~

0 ''1 ++++Π−=  and 
ηε += ijeRRij  

 
As this implies: 

                                                
1 As the expectation of a function is not equal to the function of an expectation, it would be a mistake to call 
this the average RR across all class combinations. 
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(9) 
ηeCL ijij

ˆˆ =  

 
We get the following expression for the predicted number of links: 
 

(10) ijijij LkLeC ˆˆˆ == −η
 

 
where ^ indicates fitted values and k is a constant. 
 

Using equation (2), we get the following estimate for ijRR : 

 

(11) 
ij

obs
ij

ij

obs
ij

ij
Lk

L

C

L
RR

ˆˆ

^

==  

 

where 
obs
ijL  is the observed number of co-occurrences from i to j. 

 
(6) and (8) are different in that equation (8) shifts part of the intercept of the regression 
equation into the RR term. However, we do not observe the actual investigation process, 
but only the variations in it across class combinations that can be attributed to the 
general class characteristics v  and w .2  There is no straightforward empirical way to 

determine how large this part of the intercept should be. However, we do know that the 
RR terms should be smaller than 1 (by construction, they will always be larger than 0). 
As the number of industry combinations is typically large, there will also be some outliers 
for the RR estimates. Nevertheless, the vast majority of RR estimates should be smaller 
than 1. This can be achieved by choosing a suitable value for k. In this paper, we use 
such a value that 90% of all class combinations that have at least 1 link3 are smaller than 
1: 
 

(11) ≡k













> 0

ˆ
90.0,

ˆ
ij

obs
ij

ij

obs
ij

L

L

L

L
perc  

where  ( )axpxperc ijij >,  denotes the pth percentile of variable ijx  across all i and j for 

which ijx  is larger than a . 

 
Now, for the vast majority of cases, RR estimates are between 0 and 1. The remaining 

values for which 1
ˆ

>
ij

obs
ij

C

L
 will be dealt with later on, when we develop a Bayesian 

extension of the method.  
 
Indirect links 

With the method outlined above, we can now calculate an entire matrix of relatedness 
indices for all possible combinations of classes. If such a matrix is to be a good 
representation of the relatedness between classes, its elements must maintain a certain 
level of transitivity with respect to each other: if class j is very similar to class m and 

                                                
2 As a matter of fact, we define RR in such a way that we can predict these variations without any error. All 
remaining variation is attributed to variation in the RR. In practice however, this means that we will measure 
RR with some error. In this sense our method is not different from any of the other methods encountered in the 
literature. 
3 As the vast majority of class combinations has zero links, using a rule that takes the 90th percentile of all class 
combinations, including the ones with zero links, will most likely end up with k equal to zero. 
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class m is very similar to class i, then class i is probably also very similar to class j. To 
our knowledge, the first authors to exploit such information inherent in all relatedness 
matrices are Bryce and Winter (2006). Like Teece et al. (1994), they use the 
hypergeometric approach to calculate a relatedness matrix based on industrial portfolios 
of firms. This gives non-zero estimates for many industry combinations. Bryce and Winter 
then use shortest path analysis to calculate the relatedness for all pairs of industries that 
had zero co-occurrences.  
 
We share the opinion that a relatedness matrix contains a lot of valuable “indirect” 
information. However, we take a different approach to put this information to use. Let us 
assume that we have a situation where many of the estimated RR indices are equal to 
zero. If we concentrate on one of the class pairs that yield zero relatedness, it is not 
necessarily the case that this zero is a consequence of a lack of information. An estimate 
of zero may just indicate that the classes are unrelated. Therefore it is also not obvious 
that we should change all zero relatedness estimates in favour of an indirect estimate of 
relatedness. Nevertheless, it may still be the case that we do not observe any co-
occurrences because we only expect a very small number of actors to investigate this 
specific combination of classes.The count data procedure may even predict the number of 
investigating agents to be smaller than 1, suggesting that the zero relatedness is caused 
by a lack of investigating agents. In such a case, an outcome of zero relatedness 
becomes questionable. As a matter of fact, this reasoning applies to all estimates for 
which the predicted number of investigating agents is small. 
 
For combinations of classes with a low predicted number of investigating agents, it 
therefore does make sense to use the indirect relatedness information that is contained 
in the matrix as a whole. Let us depict a class as consisting of a number of elements. For 
example, an industry can consist of a number of production processes, or use a number 
of skills. These skills are not necessarily unique to the industry, but could be used in 
other industries as well. The greater the overlap in the elements of two classes, the more 
the classes are related to each other. Figure 1 shows the set of skills used in three 
different industries, i, m and j. 
 
Figure 1: Graphical representation of skill base overlap of products i and m, and m and j 

                                                              

    skill base product i                                       
RRmi=.3
3 

  I                               

    
skill base product 
m                                           

RRim=.2
5 

                                                              

                               

                                                              

    
skill base product 
m                                           

RRjm=.5
0 

  
I
I                               

    
skill base product 
j                                       

RRmj=.6
6 

                                                              

 
Let us now assume that we are unable to directly estimate the relatedness from i to j, 
because the predicted number of agents investigating this combination is very small. 
However, let us also assume that it is possible to assess the relatedness between m and j 
and between m and i respectively. The outcomes are depicted in the figure (to the right). 
Product m is quite similar to product j, as most of j’s elements are also part of m: RRmj = 
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66%. We can therefore use m as a proxy for j.4 According to our estimate of RRim, 25% 
of m’s elements are also present in i. Our best guess is that the same must be true for j, 
because m is very similar to j. Therefore, we would guess that RRij = 25%. The closer m 
is to j as measured by RRmj, the more confident we will be. Hence, a sound strategy to 
derive indirect information on a pair of classes, (i,j), is to look for a class  m, for which 
relatedness with both i and j is reliably measured and that is very related towards j. In 
this case, the relatedness from i to m can be used as a proxy for the relatedness from i 

to j: imij RR = . 

 

Adding second step estimates: Bayesian updating 

By now, we have developed two different ways of estimating the RR index of (i,j). 
Nonetheless, in empirical situations there might also be other relatedness matrices 
available that were constructed in quite different ways. For example, we may use expert 
opinions. In other applications, there may be an input-output based relatedness matrix. 
The main difference with the indirect estimates is that it is not clear how the numeric 
values can be compared to the frequentist RR indices. All the same, it is possible to use 
regression analysis to relate the first step RR indices to such an external relatedness 
matrix.5 The main question would however be how to merge this information with the 
information that is present in the observed co-occurrences. For this, we will reformulate 
the estimation model in a Bayesian framework. As notation becomes somewhat 
cumbersome, we drop the subscripts in this section. 
 
Let us return to equation (1) in which we express the probability of observing a co-
occurrence conditioned on the number of investigating agents. Making it explicit that we 
do not know RR and dropping subscripts, our likelihood function – the probability of 

observing l  co-occurrences, given RR  and C  – is: 

 

(12) ( ) ( ) ( ) 







−==== −

l

c
rrcCrRRlLP lcl 1,  

where we define 0≡








l

c
 if lc <  

 
We are, however, interested in the probability distribution of RR conditional on C and L. 
Using Bayes’ law we get: 
 

(13) ( ) ( ) ( )
( )cClLP

cCrRRP
cCrRRlLPcClLrRRP

==
==

======= ,,  

 
According to our model, the number of investigating agents, C, is not dependent on RR. 
Therefore, we can drop the conditioning on C in the numerator in (13): 
 

(14) ( ) ( ) ( )
( )cClLP

rRRP
cCrRRlLPcClLrRRP

==
======== ,,  

 

                                                
4 Note that we use RRmj because this expresses the number of elements that are found in both m and j as a 
percentage of the number of elements of j. The reason for this is that we assume that the decision to effectuate 
a link from i to j depends on how many of the elements of j are shared by i. Therefore, the denominator of the 
percentage should be the number of elements of j.   
5 The main problem is that we need relatedness estimates that are measured in the same units as the RR index. 
One way to do that is to use a regression analysis of the first step estimates on the external relatedness matrix. 
The predicted values of such an estimation would be expressed in RR units. However, as the RR matrix contains 
proportions data which are always between 0 and 1, standard methods are not appropriate. However, methods 
have been developed for such data (e.g. Papke and Wooldridge 1996). 
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As always in Bayesian inference, we have to specify our prior beliefs about the variable 
we are interested in. Given the binomial likelihood function, we choose the unconditional 

– or prior – probability of RR  to be distributed according to a ( )baBETA ,  distribution.6 a 

and b are parameters that reflect our prior knowledge of RR .7 The prior expected value 

of a ( )baBETA ,  distributed variable is: 
 

(15) ( )
ba

a
RRE

+
=  

 
At this stage, we can use the intermediate RR estimates. As we did not use any 
information on the number of links from i to j, but only information about the links 
between i and m and m and j, these estimates can be used as prior information. Let us 

choose a and b in such a way that ( )RRE  equals our indirect estimate.8 The prior 

probability of RR  is then equal to: 
 

(16) ( ) ( ) ( )
( ) ( )ba

ba
rrrRRP ba

ΓΓ
+Γ−== −− 11 1 , with 0, >ba  

 
Filling in (12) and (16) in (14), we arrive at the following expression (details can be 
found in Appendix A): 
 

(17) ( ) ( ) ( ) ( )
( ) ( )blcal

bca
rrcClLrRRP blcal

+−Γ+Γ
++Γ−==== −+−−+ 11 1,  

 
We have now expressed the probability distribution of RR in terms of the number of 
observed co-occurrences, the information present in the intermediate estimates (as 
captured by a and b) and the number of investigating agents, C, is unobserved. 
Therefore, in a final step, we have to remove the conditioning on C. To achieve this, we 
treat C as the outcome of another binomial process. The number of agents in the 
originating class, class i, is a known variable.  We also know how many agents we would 
expect to investigate the co-occurrence from i to j. If we for the moment reintroduce the 
subscripts, and use the expression for the mean of a binomial process, we get: 
 

(18) ( ) ijiij qNCE =    

where iN  is the number of agents in class i, and ijq  is the probability that they 

will investigate the co-occurrence to j. 
 

Setting this expected value equal to our estimates for ijC , we can calculate ijq . The 

probability distribution of ijC  is binomial. Dropping subscripts again, we get: 

                                                
6 Due to the size of the relatedness matrix, which for 200 different products would contain 39 800 elements, we 
choose to use the conjugate prior. That way, we can arrive at an analytical expression and do not have to 
engage in time-consuming posterior simulation. 
7 If a and b are both equal to 1, the BETA distribution simplifies to a uniform distribution on the interval [0,1]. 
Taking a=b>1 will give rise to a symmetric distribution with maximum probability density on mean ½. a=b<1 
leads to a symmetric distribution with asymptotically increasing probability densities towards the edges, 0 and 
1. For values of a and b such that a≠b, asymmetric distributions arise, with sometimes asymptotic increases 
towards one edge and sometimes maximum probability densities at (a-1)/(a+b-2). 
8 The shape of the BETA distribution can be quite peculiar. In particular, if any of the values a or b are chosen 
smaller than 1, the probability density near one of the edges explodes. This tends to put a lot of probability 
mass near the edges. We would, however, rather like the mode of the distribution to be near the value of the 
indirect estimate. After some experimentation, we decided that this is best accomplished by choosing the 
minimum of a and b to be equal to 2 and at the same time to have a/(a+b) equal to the value of the indirect 
estimate. 
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We can use this expression together with the law of total probability, to get rid of the 
conditioning on C in equation (17). Appendix B shows a detailed derivation. The end 
result of this is that we can calculate a Bayesian variant of Revealed Relatedness: the 
expected RR given the number of observed links.9 
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4: Empirical application: calculation of industry RR using product portfolios of 

plants 

 
Diversification as a branching process 

A better understanding of industry relatedness is useful in many economic applications. 
In strategy research, an extensive literature argues that multi-industry firms are active in 
industries that share certain commonalities (e.g. Teece 1982, Teece et al. 1994, Breschi 
et al. 2003). This suggests that firms tend to expand their business by moving into 
industries that are related to their current activities. As a result, the growth of a firm’s 
portfolio resembles a branching process, in which future expansion builds on 
competences that were gathered in the past (as in Penrose 1959). As coherent portfolios 
are thought to exploit economies of scope, they should be more efficient than incoherent 
portfolios. Accordingly, studying the portfolios of surviving firms sheds light on which 
industries share many commonalities. Therefore, Teece et al. (1994), invoke the survivor 
principle according to which economic competition will weed out inefficient organizations, 
and surviving organizations display, as a consequence, efficient practices. Our application 
is similar to the one in Teece et al. (1994). However, where Teece and his colleagues 
look at firms that own plants in different industries, we look at different products that are 
produced in one and the same plant.  
 
We argue that there are a number of reasons why firms produce several different 
products that are not linked to the technology used in production processes. For 
example, portfolio construction at the firm level may reflect marketing economies or risk 
diversification strategies. In holding companies and large conglomerates, access to cheap 
capital, superior management capabilities and cross-financing may play a key role in the 
determination of the portfolio. However, at the plant level, such considerations are less 
important. It is likely that products are built in the same plant, because the production 
processes involved are similar. Similarity in skills and routines embodied in human 
capital, but also similarities in the physical capital, the machinery and raw materials that 
are used, will generate economies of scope at the plant level and therefore make joint 
production of products attractive. However, it is unlikely that two products whose 
production processes have no commonalities whatsoever, will be produced in one and the 
same production facility. Therefore, a RR matrix based on plant portfolio data is likely to 
reflect relatedness at the level of the production processes and the technology involved.  

                                                
9 We can now also calculate RR indices for which ij

obs
ij CL ˆ> . In our Bayesian estimates, ijL  can take any 

value between 0 and iN , without causing any problems. 
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Data and implementation 

The database we use contains information on products produced in thousands of plants in 
all manufacturing industries in Sweden. As we are interested in the relatedness between 
industries, we translate these product codes into industry codes. Over the entire 
sampling period, about 57% of all observed plants produce products in only one industry. 
The vast majority of plants that are active in multiple industries, are only active in two 
industries (22 % af all plants).  
 
In the regional analysis of section 5, we will use data on 70 Swedish functional regions 
that cover entire Sweden (so-called A-regions). These data we take from a database that 
covers all manufacturing plants in Sweden with more than 5 employees (1968-1989). 
From 1990 to 1996 the sample is limited to plants with more than 5 employees  
belonging to manufacturing firms with over 10 employees. From 1997 and onwards, we 
have data for manufacturing plants belonging to manufacturing firms with more than 20 
employess, but also for manufacturing plants with over 20 employees that belong to 
service firms. Obviously, in this way the sample decreases substantially after 1990. 
 
For our zero-inflated negative binomial regressions, we use industry aggregates at the 
Swedish level. The database on the product portfolios provides us with total sales value 
for each product in each plant, which we then aggregate to the sales level of industries at 
the national level. The number of active plants, total profit, total valued added and total 
number of employees are taken from the database we also use in the regional analysis. 
Again, we add up all plant level data to arrive at national industry aggregates. With these 
data, we predict the number of co-occurrences in every single year. These predictions are 
then used in the way described in section 3. 
 
Often, a plant produces some main products and a couple of minor by-products. We can 
rank the industries in which a plant is active according to the sales value of its products. 
The industry in which the highest sales value is generated is taken to be the core 
industry of the plant. This hierarchy can be used to establish the direction of co-
occurrences: co-occurrences are defined as links that run from the core industry towards 
the other industries. The implicit assumption is that non-core products are kept in a 
portfolio because their production processes are relatively simple extensions of the 
production processes used in the production of the core products. However, it may also 
be the case that all elements in a portfolio share commonalities. If this is true, each 
combination of two products in a portfolio represents a co-occurrence, but it is impossible 
to establish the direction of links. In total, we get between 10,000 (in the year 1970) and 
2,500 (in 2000) directed (asymmetric) co-occurrences and between 63,000 (in 1970) and 
17,700 (in 2000) undirected (symmetric) co-occurrences. We also create versions of our 
RR matrix that are based on such undirected co-occurrences.10 In these versions, all 
possible combinations of two industries in a portfolio are administered as a co-
occurrence.  
 
To make sure our intermediate (indirect) estimates are reliable, we calculated them using 
only elements (i,j) of our first step RR matrices for which we predicted more than 10 co-
occurrences.11 Otherwise, the intermediate estimates are based on too weak evidence to 
improve the first step estimates. The correlation between our intermediate and first step 
estimates is strong: across the entire sample, the rank correlation between the elements 
of the intermediate RR matrix and the first step RR matrix are in every year above .40 

                                                
10 In general, using undirected co-occurrences does not necessarily lead to symmetric RR matrices. This 
depends on the exact specification of the zero-inflated negative binomial model. Moreover, the indirect 
estimates introduce asymmetry as well. To arrive at symmetric matrices, we therefore have to symmetrize the 
RR matrix by imposing RRsym(i,j)=max(RR(i,j);RR(j,i)).  
11 More over, we demand that the estimated relatedness between m, the proxy industry, and j, RR(m,j) are 
over twice the average of all relatedness estimates that were based on at least one co-occurrence. This ensures 
that m is a strong proxy for j. 
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and typically around .50.12  However, we use the intermediate estimates only if the 
frequentist estimates are based on predictions of 10 or less co-occurrences. In other 
instances, we do not expect the intermediate estimates to improve the frequentist 
estimates. To smooth our relatedness matrices, we take 3 year moving averages of the 
RR matrices. 
 
General properties of the relatedness industry networks: symmetric links 

Our estimated RR matrices allow us to regard industries as nodes in a network of 
relatedness links. We call this complete network industry space, in analogy to the product 
space in Hidalgo et al. (2007). Below, we visualize different instances of industry space 
using a spring embedded algorithm.13 This algorithm treats the industry nodes as equally 
charged particles that exert a repulsive force on each other. However, the industries are 
attached to each other with springs, the rigidity of which reflects the strength of RR links 
between them. This results in a field of forces that scatters industries across the entire 
plane, but in such a way that closely related industries are also located closely together 
in that plane. If two industries are visually close, this can be interpreted as that they are 
located close to each other in industry space. 
 
Figure A displays industry space for Sweden in 1970 using the symmetric RR matrix. 
Each node (circle) represents an industry and the ties represent the 1500 strongest RR 
links in 1970. We have applied a colour scheme that shows the 2-digit family in the 
Swedish SNI69 industrial classification system of each node: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1: Colour scheme used for 2-digit industry categories in the network graphs14. 
 
In the 1970 industry space (figure 2), the pattern of industries clearly follows the 2-digit 
classification. Nodes that share a colour are, in general, clustered closely together. On a 
first glance, we would therefore say that the RR measure classifies industries in a similar 
way as the SNI69 hierarchy. However, there are also quite some exceptions. For 
example, members of the non-metallic mineral products industry are scattered across a 
large part of the industry space. The quality of the match between the SNI69 hierarchy 
and the RR matrix can be quantified by calculating the correlation between the 
relatedness matrix derived from the SNI69 hierarchy15 and the RR matrix.16 For 1970, we 

                                                
12 In the asymmetric case, correlations are considerably weaker, but there the number of elements that meet 
the conditions for recalculation are also considerably smaller. 
13 The graphs are made with the Software packages UciNet and NetDraw (Borgatti et al 2002, Borgatti 2002). 
For a description of the spring embedded algorithm, we refer to the help file of these packages.  
14 To highlight technologically advanced industries, we adapt the 2-digit system by dividing the fabricated metal 
products machinery and equipment into R&D intensive industries and regular industries using the categories of 
Ohlsson and Vinell (1987). 
15 We construct a SNI69 relatedness matrix by counting, for each combination of two industries, the number of 
digits both industries share. For example the relatedness between an industry 311200 and 321000 is equal to 
1, whereas the relatedness between industries 345209 and 345202 is equal to 5 

    Food beverages and tobacco 
    Textiles wearing apparel and leather industries 
X  Wood and wood products 
    Pulp paper and paper products 
    Chemicals and chemical petroleum coal rubber and plastic products 
    Non-metallic mineral products 
    Basic metal industries 
    Fabricated metal products machinery and equipment 
    Fabricated metal products machinery and equipment, R&D intensive 
    Other manufacturing 
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get an estimated average rank correlation of .43 with a variance of .04 across the 
columns of the matrices. In other decades we obtain similar estimates (see table C.7 in 
Appendix C) which confirms our impression that the RR matrix and the SNI69 hierarchy 
yield similar pictures. This is quite remarkable as the RR calculations make no use 
whatsoever of the hierarchical relations within the SNI69 system. At the same time, 
however, the correlation is low enough to conclude that there are also some marked 
differences. 
 
Apart from such differences, the industry space also gives some information that cannot 
be derived from the SNI69 classification. For example, paper and fabricated metal 
products are mostly located in the first and second quadrants. Wood and textiles clusters 
are positioned in the second and third quadrant, whereas chemicals and food clusters are 
located in the fourth quadrants. This shows where the clusters around the various 2-digit 
industries are located relatively to each other. As an example, basic metal industries are 
positioned closely to the fabricated metal products, machinery and equipment industries, 
whereas many members of the non-metallic mineral products industry are more closely 
related to industries in the chemicals cluster. Zooming in on the borders between two 
clusters, we see that these borders are quite fuzzy. Some of the paper and paper product 
industries are located along the lower rim of the food and chemical clusters. This 
indicates that these industries are rather related to chemicals whereas this is less so for 
other industries, such as printing and newspapers. Finally, it is possible to move to the 
level of the individual industry and assess its position relative to all other industries. Here 
we can observe, for example, that explosives take a central position in industry space. 
Another example is the communication industry, that, in 1970, is located at quite some 
distance from the other technologically advanced industries.  
 
For comparison, the industry space of 2000 is depicted in figure 3.17 By and large, the 
clusters that existed in 1970 are also present in 2000. However, there have been quite 
some changes. For instance, the fabricated metals cluster has becomes more diffuse, but 
the R&D intensive industries have moved closer together and more to the centre of the 
cluster. This suggests that there has been an increased specialization within the 
industries of fabricated metals, but it is beyond the scope of this paper to explore this 
issue further.  
 
Although there is some stability it is clear that industry space is not static but rather 
dynamic. As we do not expect relatedness structures to change very fast, on a yearly 
basis, shifts in relatedness would point to a weakness in the RR method. Therefore, it is 
reassuring to see that the RR matrices are highly stable in the short run. If we consider 
the symmetric RR matrices between 1970 and 1971, the average rank correlation is 
0.83. Between 1970 and 1972 it is 0.78. The short term changes in the later part of the 
period are quite a bit larger (correlation 0.63 from 2000 to 2001 and 0.52 from 2000 to 
2002). This may be caused by the fact that the number of plants in our sample goes 
down over time, reducing the quality of our estimates.18 In the long run, in contrast, we 
expect that structural changes in the economy are likely to leave an imprint on industry 
space. Looking at the symmetric RR matrices between 1970 and 1980, we find a 
correlation of 0.55. Comparing 1970 to 1990 estimates this correlation is reduced to 0.32 
and it falls to 0.26 when we compare 1970 and 2000 (for a comparison between other 
decades and the first and second step matrices, see tables C.3 to C.6 in appendix C). 
These numbers suggest that industry space indeed underwent some significant changes 
over the past decades. In this way, our RR calculations could also be used to describe the 
velocity of structural change in economies.  
                                                                                                                                                   
16 In the remainder, correlations between two relatedness matrices are calculated as the average rank 
correlations of their columns. Reported variances do not refer to the variance in the estimate of this rank 
correlation coefficient, but rather to the variances of the rank correlations across the columns. The variance 
expresses therefore how much the correlation between two relatedness vectors differs across industries.  
17 We initialized the spring embedded algorithm with the position of nodes in figure 2 to improve comparability. 
18 To better assess the quality of the RR estimates, tables C.1 and C.2 in appendix C contain correlation 
coefficients for the remaining decades and for both the first and second step estimates. 
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General properties of industry space: directed links 

One of the strengths of our method is that it also allows for a directed interpretation of 
the concept of relatedness. Rank correlations comparing the columns and rows of 
asymmetric RR matrices are typically around 0.4 (see table C.8 in appendix C). The 
“outgoing relatedness” is therefore quite similar to the “incoming relatedness”, yet, there 
are also profound differences.  
 
As discussed earlier, the interpretation of the asymmetric industry space is that the 
direction of the arrows indicate a move down the complexity hierarchy from industries 
producing a more complex set of products to industries with less complex output. This 
complexity should be interpreted primarily as complexity in production technology. As an 
example, figure 4 shows the RR links of the medicines industry in 1980. The medicines 
industry has outgoing links to a large set of industries such as soap, pesticide, resins and 
animal feeds. This shows that manufacturers of medicines can relatively easily venture 
into niches in those industries. The explanation we propose for this is that these 
manufacturers already possess the complex skills needed in the production of medicines. 
By adding less complex skills they can manufacture new products that compete with the 
products of other industries. However, it does not mean that a manufacturer of medicines 
can easily appropriate the skills to manufacture all products in the new industries. 
Rather, the producer can move into specific niches for which the skills involved in the 
production of medicines are complementary. A good example is the production of soap 
products19 with a therapeutic application. A manufacturer specialized in soap products, in 
contrast, generally cannot compete in niches of the medicines industry without large 
efforts and investments.  
 
The link from other textiles to medicines is harder to explain in this light. The 
interpretation of the link is that producers of other textiles, a category containing a large 
diversity of products, can move without too much effort into niches of medicines 
production. The reverse move would be much harder. This seems counter intuitive. 
However, if we take a closer look, we find that this strong link appears because the 
production of bandages is classified in the other textiles sector. Yet, obviously, bandages 
have almost exclusively medical applications. A plant that specializes in bandages will 
therefore be more likely to produce medical desinfectants as a secondary product than 
pairs of jeans. A similar problem arises with the industry of other food, where the 
“nuisance products” are spices, herbs and sauces. 
 
To summarize, our RR method yields very promising empirical results. However, none of 
the above can count as a real quality assessment of the RR measure. We will put the RR 
matrix to the test by using it to predict changes in the industrial profiles of regions. As 
the region has not played any role in our analyses so far, finding out whether industry 
space has any explanatory force in this example can be considered as a litmus test for its 
general usefulness in economic applications. 

                                                
19 This category also includes detergents, essential oils and perfumes.  
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Figure 2: Industry Space in 1970. Isolated nodes (with threshold of 1500 most important links) in North-East corner. 
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Figure 3: Industry Space in 2000. Isolated nodes (with threshold of 1500 most important links) in North-East corner. 
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Figure 4: the ego-network for medicines in 1980.  
 
Analyses of Regional Structural Transformation Processes 

In the course of their history, regions build up tangible and intangible assets to the 
benefit of their local firms. Good examples of such assets are cost-effective producer-
supplier networks, specialized infrastructure, a trained workforce and a strong regional 
brand. Moreover, it is often argued that, by cooperating, the actors in a region engage in 
a process of collective learning (Florida 1995, Asheim 1996). In economic geography, the 
benefits of these regional features have been intensively debated within the industrial 
districts, cluster and regional innovation system approaches (e.g. Marshall 1920, Asheim 
2000, Porter 2000). Furthermore, empirical studies have shown that regions that 
specialize in the production of specific products are often particularly good at fostering a 
fertile environment for manufacturers in these main industries (Amin 2003, Asheim et al 
2003).  
 
All this leads us to expect that regions generally will show a higher propensity to diversify 
into technologically related industries than into technologically unrelated ones. With such 
a strategy, regional actors can fall back on known routines and avoid large switching 
costs. At the same time, industries that are not related to any other local industries may 
become isolated and run a higher risk of exiting the region. The industry space can be 
used as an analytical tool to investigate such issues of structural transformation in 
regions. 
 
The regional portfolio and structural transformation 

A region’s industrial portfolio consists of all industries in which the region has any 
employment. The RR matrix can tell us how close an industry is to each other industry. 
However, to implement the notion of coherence of a regional portfolio, we still have to 
specify how we would measure the closeness of an industry to an entire portfolio of 
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industries. An intuitive approach is to count to how many portfolio members the industry 
is closely related. Let us call two industries, i and j, closely related if RR(i,j) is above a 
threshold value c. The closeness of an industry i to the portfolio of region r, Cir, is 
therefore a function of c:20 
 

 ( ) ( )( )∑
≠

>=∧∈=
ij

rir cjiRRPFjIcC ,  

 

where rPF  is the set of industries belonging to the portfolio of region r and 

( ).I  is an indicator function that takes the value 1 if its argument is true and 

0 if not. 
 
The choice of c is in a way arbitrary. It should not be too high, because this will treat 
almost all industry pairs as unrelated, nor should it be too low, as this will take many 
quite weakly related industries to be close to each other. We strike the balance at c equal 
to .3. However results are very similar for a large range of values for c. Further, as the 
symmetric RR matrices are estimated with a higher precision than the asymmetric RR 
matrices, we build on the symmetric estimates. However, also here, the asymmetric 
matrices yield very similar conclusions. 
 
To test the value of our RR matrix, we can investigate whether or not the closeness index 
derived from it helps explain the composition and the change in regional portfolios. More 
specifically, we want to find out if 1) regional portfolios consist of related industries, 2) 
regional portfolios are more likely to expand into related industries than into unrelated 
industries, and 3) regional portfolios are less likely to discard industries that are related 
to most other industries in the portfolio, than they are to discard technologically more 
peripheral industries. The number of exits and entries of local industries in regional 
portfolios are counted by looking at 5-year shifts in portfolios. So, for example, we 
compare the regional portfolio in 1990 with the portfolio in 1995 to assess whether an 
industry entered or exited a region. 
 
To answer the first question, we can calculate the rank correlation between a 
membership dummy variable that takes the value 1 if an industry is a member of a 
region’s portfolio on the hand, and the closeness, C, of that industry to the rest of the 
region’s portfolio members on the other. We indeed find that the correlation between 
membership and closeness is significant and positive. Averaged across all years in our 
sample, this correlation equals 0.24 which seems to be rather low. However, if, for each 
value of C between 0 and 20, we estimate the probabilities that an industry is part of a 
portfolio and plot that probability against C, we see a pronounced effect of relatedness. 
In figure 5A we show the the estimated membership probability averaged across all years 
for an industry that is close to C other industries in the region. If we move from the 
lowest values for C in the graph to the highest, the membership probability more than 
quadruples. This shows that the degree of coherence in regional portfolios is quite high.  
 
Figure 5B and 5C show similar graphs for estimated expansion and contraction 
probabilities. Again, we find a pronounced effect of our closeness variable. As expected, 
industries that are closely related to many portfolio members have a high probability of 
entering the portfolio within five years. As a matter of fact, the probability increases 
more than sevenfold when we move from industries that are not close to any portfolio 
members to industries that are close to thirteen portfolio members. The picture for 
contraction is reversed. Industries in the region that are unrelated to the other members 

                                                
20 We also calculated closeness as the sum of relatedness to all industries in the regional portfolio. 

( ) ( )∑
≠

∈=
ij

rir jiRRPFjIC ,' . The results are very similar to the ones we discuss in the main text. 

 



 21 

of the regional portfolio run about three times the risk of falling out of the portfolio 
compared to industries that are related to many other local industries. Calculations of 
rank correlations between closeness and expansion, and between closeness and 
contraction confirm this picture. Averaged across all years, the correlation between an 
expansion dummy and closeness is significant and positive at 0.13. For contraction, 
similar calculations yield a negative and significant correlation equal to  
-0.11. 
 
The overall conclusion is that the RR matrix has substantial predictive power when it 
comes to the composition and changes in regional portfolios. We have shown that, in 
terms of our Revealed Relatedness concept, regions not only show a strong coherence in 
their manufacturing activities. This coherence is also sustained over time by the exit of 
unrelated and entry of related industries. As the RR matrix is based on plant level data 
without taking into consideration any regional aspects, the predictive quality is quite 
remarkable.  
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Figure 5: The influence of closeness to a regions portfolio members on membership, 
expansion and contraction. 
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5. Conclusion 

 

Essentially, the Revealed Relatedness index presented in this paper compares raw co-
occurrence counts to the number of co-occurrences that can be predicted based on 
knowledge about class specific attributes only. This comparison yields a meaningful 
relatedness index whenever co-occurrences are more likely to arise between related 
classes. The index has the advantage that it can be interpreted as a probability. 
Moreover, we have shown that relatedness as quantified this way is not necessarily a 
symmetric notion: its direction can express a complexity gradient of the involved classes. 
This feature is useful, for example, if spillovers between classes are more likely to arise 
from more complex to less complex classes than vice versa. 
 
In an application to portfolio data, we have derived industry space with many reassuring 
properties. The industry space is stable enough in the short run to lend it credibility, but, 
at the same time, it is sufficiently dynamic to unveil shifts in relatedness in the long run. 
It is compatible with the relatedness implicit in the industrial classification system, but 
offers many additional, and some new insights.  
 
The use of industry space in our economic geography application shows the versatility of 
our relatedness measure. Although it is primarily based on the assumption that plant 
portfolios contain products for which production processes share many similarities, we 
have shown that the industry space has substantial predictive power in a study of 
structural transformations of regions. The theoretical assumptions we test are admittedly 
simple: regions have coherent portfolios of industries. Nevertheless, given that no 
regional information whatsoever is used in the construction of the industry space, the 
explanatory force of the index is remarkable. 
 
The graphical representations of regions in industry space is a good example of a simple, 
yet powerful, use of the Revealed Relatedness matrix. As such, it may support regional 
policy making or simply help to transparently communicate the threats and opportunities 
that lie ahead. However, the matrices can also be used in more complex studies. In 
economic geography, spillovers and agglomeration externalities can be studied in more 
detail if knowledge is available about the closeness between industries. In strategy 
research, comparable indices are already in use to quantify corporate coherence. In the 
field of industrial dynamics, a time series of RR matrices can become the subject of 
investigations, shedding light on how relatedness shifts over time. Apart from 
applications of the industry space, the methodology can be used in conjunction with 
other data bases. The first thing that comes to mind is a repetition for other countries. 
This would allow for comparisons of industry spaces across countries. It is by no means a 
given that the Swedish industry space is representative for the entire world. If no 
comparable data is available, the issue could be explored by investigating the predictive 
power of the Swedish industry space for, e.g., regional transformations in other 
countries. Furthermore, co-occurrences can also be based on firm, regional or national 
portfolios. There is also ample opportunity to use other inter-industry flow data as the 
basis of co-occurrences. On a more methodological level, experiments of combining such 
RR matrices using the Bayesian framework is an interesting challenge.  
 
The study of relatedness is, in sum, potentially a very fruitful field of research, where 
many questions are still unresolved. Our hope is that the method in this paper can be of 
service to any study that would benefit from a reliable quantification of class-similarity. 
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Appendix A 

 
Substituting (12) and (16) into (14) yields: 
 

(A.1) ( )
( ) ( ) ( ) ( )

( ) ( )
( )cClLP

ba

ba
rx

l

c
rr

cClLrRRP

balcl

==
ΓΓ
+Γ−⋅








−

====

−−− 11 11

,  

 
 
Using the law of total probability, we can get an expression for the denominator: 
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Filling in terms and simplifying: 
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As the ( )blcalBETA +−+ 2,  must integrate to 1 over its domain, we get: 
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Rearranging terms: 
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Using this result in (A.3) gives: 
 

(A.6) ( ) ( ) ( ) ( )
( ) ( )blcal

bca
rrcClLrRRP blcal

+−Γ+Γ
++Γ−==== −+−−+ 11 1,  

 

As 0≥l  and lc ≥  means that 0>+ al  and 0>+− blc  the degree of relatedness, given 

the number of co-occurrences (the posterior distribution of RR ) is ( )blcalBETA +−+ ,  

distributed. 
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Appendix B 

 

From (17) we can calculate the conditional expectation of RR , given that we observe l  
co-occurrences, and c  plants investigating the co-occurrence. However, we do not 
observe c . We therefore remove the conditioning on C  using the law of total probability: 
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We now have to find an expression for ( )lLcCP ==  . Bayes’ law gives the following 

expression for the conditional probability of cC = , given there are l  co-occurrences. 
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Applying the law of total probability twice in the denominator and once in the numerator, 
gives: 
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Let us focus on the integral 
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Using this result in (B.3) leads to: 
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Filling in the binomial likelihood for the probability of cC =  
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We will now derive an equation for the variance of RR , given L . Let us first calculate the 

expected value of 
2RR , given L  and C : 
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Using (A.6) we get: 
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From the ( )blcalBETA +−++ ,2  distribution, we know that 
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Using this result, we arrive at the following expression for the expected value of 
2RR , 

given L  and C : 
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The expected value unconditional on C  can be derived using the law of iterated 

expectation: 
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The posterior variance is now given by: 
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Filling in terms gives:  
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Using ( ) ( )qqq Γ=+Γ 1  this can be rewritten as: 
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Appendix C 

 
Tables C.1 and C.2 describe the short-term stability of the different relatedness estimates during the first year of each decades. In most 
cases, the correlations (stability) for the First step estimates are higher than for the other estimates. The stability also shows a tendency 
to decrease with time. The row Intermediate only shows the correlation for only those second step estimates for which the first step 
estimates were two weak and the intermediate estimates were used. It is therefore quite remarkable that even for the elements where 
information of raw counts was very weak, stability is still so high. As expected, the stability of the Directed links is also lower than of the 
Symmetric links.  
 

Table C.1: Average Spearman rank correlation between relatedness vectors during given years for the Symmetric links. Standard 

deviation across industries in brackets. 

Symmetric links         

  1970-1971 1970-1972 1980-1981 1980-1982 1990-1991 1990-1992 2000-2001 2001-2002 

First step  

  

.90 
(.01) 

.86 
(.01) 

.93 
(.01) 

.89 
(.01) 

.89 
(.02) 

.79 
(.03) 

.85 
(.03) 

.76 
(.03) 

Intermediate only 

  

.82 
(.03) 

.78 
(.03) 

.86 
(.04) 

.79 
(.06) 

.82 
(.06) 

.61 
(.2) 

.65 
(.11) 

.63 
(.08) 

Second step 

  

.83 
(.01) 

.78 
(.02) 

.85 
(.01) 

.81 
(.01) 

.72 
(.03) 

.59 
(.04) 

.63 
(.04) 

.52 
(.04) 

 
 

Table C.2: Average Spearman rank correlation between relatedness vectors during given years for the Directed links. Standard deviation 

across industries in brackets. 

Directed links         

  1970-1971 1970-1972 1980-1981 1980-1982 1990-1991 1990-1992 2000-2001 2001-2002 

First step  

  

.86 
(.02) 

.79 
(.02) 

.87 
(.01) 

.79 
(.02) 

.85 
(.02) 

.76 
(.03) 

.81 
(.04) 

.72 
(.04) 

Intermediate only 

  

.76 
(.04) 

.73 
(.03) 

.83 
(.03) 

.64 
(.18) 

.67 
(.27) 

.88 
(.01) 

.70 
(.00) 

1.00 
(.00) 

Second step 

  

.80 
(.03) 

.73 
(.03) 

.85 
(.02) 

.77 
(.03) 

.82 
(.02) 

.75 
(.03) 

.78 
(.06) 

.68 
(.05) 
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Tables C.3-C.6 display the long-term stability of the different relatedness estimates between 
decades. The stability of the relatedness structures generally decreases the longer the time 
period, as could be expected. As in table C.1 and C.2, the First step estimates are generally 
higher than the Second step estimates.  

 

Table C.3: Average Spearman rank correlation between the Relatedness vectors of decades, 

Second step, Symmetric links. Based on 3-year moving averages. Standard deviation across 

industries in brackets. 

Second step, Symmetric links 

  1980 1990 2000 

1970 

  

.55 
(.04) 

.32 
(.03) 

.26 
(.02) 

1980 

    
.38 
(.02) 

.26 
(.03) 

1990 

      
.4 

(.03) 
 
  

Table C.4: Average Spearman rank correlation between the Relatedness vectors of decades, 

Second step, Directed links. Based on 3-year moving averages. Standard deviation across 

industries in brackets. 

Second step, Directed links 

  1980 1990 2000 

1970 

  

.53 
(.04) 

.37 
(.04) 

.33 
(.04) 

1980 

    
.42 
(.04) 

.35 
(.04) 

1990 

      
.45 
(.05) 

 
 

Table C.5: Average Spearman rank correlation between the Relatedness vectors of decades, 

First step estimates, Symmetric links. Based on 3-year moving averages. Standard deviation 

across industries in brackets. 

First step, Symmetric links 

  1980 1990 2000 

1970 

  

.68 
(.03) 

.45 
(.03) 

.44 
(.03) 

1980 

    
.46 
(.03) 

.43 
(.03) 

1990 

      
.53 
(.04) 
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Table C.6: Average Spearman rank correlation between the Relatedness vectors of decades, 

First step estimates, Directed links. Based on 3-year moving averages. Standard deviation 

across industries in brackets. 

First step, Directed links 

  1980 1990 2000 

1970 

  

.6 
(.04) 

.43 
(.04) 

.38 
(.04) 

1980 

    
.46 
(.04) 

.39 
(.04) 

1990 

      
.5 

(.05) 
 
A comparison between our relatedness estimates and the relatedness according to the 
hierarchical SNI69-system is displayed in table 7. The correlation is surprisingly low, 
especially compared to the network pictures displayed in the paper.  
 

Table C.7: Average Spearman rank correlation between the Relatedness vectors and 

relatedness according to the SNI69-system over all industries. Based on 3-year moving 

averages. Standard deviation across industries in brackets. 

Symmetric links 

  1970 1980 1990 2000 

First step 

  

.43 
(.04) 

.39 
(.05) 

.35 
(.04) 

.35 
(.04) 

Second step 

  

.31 
(.05) 

.27 
(.05) 

.26 
(.03) 

.25 
(.04) 

 
Table 8 displays the correlation between in- and outgoing links.  
 

Table C.8: average Spearman rank correlations between in-and outgoing links. Based on 3-

year moving averages. Standard deviation across industries in brackets. 

     

  1970 1980 1990 2000 

First step  

  

.48 
(.08) 

.44 
(.05) 

.37 
(.07) 

.39 
(.08) 

Second step 

  

.37 
(.04) 

.36 
(.04) 

.32 
(.06) 

.35 
(.07) 

 
 


