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Probability Distortion and Loss Aversion in Futures Hedging 
 

We analyze how the introduction of probability distortion and loss aversion in the 
standard hedging problem changes the optimal hedge ratio. Based on simulated cash and futures 
prices for soybeans, our results indicate that the optimal hedge changes considerably when 
probability distortion is considered. However, the impact of loss aversion on hedging decisions 
appears to be small, and it diminishes as loss aversion increases. Our findings suggest that 
probability distortion is a major driving force in hedging decisions, while loss aversion plays 
just a marginal role. 

Keywords: hedging, probability distortion, loss aversion, risk aversion 
 

INTRODUCTION 
 
It is widely recognized that estimated hedge ratios differ from observed hedge ratios (Peck and 
Nahmias, 1989; Collins, 1997; Garcia and Leuthold, 2004). Hedging models traditionally adopt 
an expected utility framework to calculate hedge ratios. While these hedge ratios are generally 
tractable and easy to estimate, two problems arise here. First, the underlying assumptions may 
not be consistent with hedgers’ decision context. There is an extensive literature showing how 
hedge ratios can change drastically as the assumptions about the decision context are relaxed, 
e.g. when transaction costs, alternative investments and downside risk measure are introduced 
(Lence, 1995 and 1996; Mattos, Garcia and Nelson, 2006).  
 
A second issue with expected-utility hedge ratios is that empirical evidence shows that the 
expected utility framework frequently fails to explain decision making under risk (Schoemaker, 
1982; Hirschleifer, 2001). Several studies have proposed alternatives to expected utility. The 
proposed theories try to account for several behavior patterns observed in laboratory and field 
experiments, e.g. individuals tend to evaluate prospects in isolation and make decisions in terms 
of gains and losses relative to a reference point. Prospect theory developed by Kahneman and 
Tversky (1979) and Tversky and Kahneman (1992) incorporates those behavioral dimensions 
and is possibly the most well-know construct. However, there has been very limited research 
investigating futures hedging in the framework of non-expected utility, i.e. it remains to be seen 
whether different choice models can yield hedge ratios more consistent with observed behavior. 
 
The objective of this paper is to investigate hedging behavior in a non-expected utility 
framework. More specifically, we will examine the effects of probability distortion and loss 
aversion on futures hedging. Empirical evidence shows that individuals usually don’t evaluate 
probabilities objectively, i.e. they tend to distort objective probabilities. Evidence from 
experiments also suggest that individuals are more sensitive to losses than to gains, which 
implies that people are more affected by a loss than by a gain of similar magnitude. 
 
This study contributes to the literature by incorporating probability distortion and expanding the 
investigation of loss aversion in the analysis of futures hedging. In spite of the intuitive appeal of 
probability distortion and loss aversion, little research exists that investigates the extent to which 
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hedge ratios differ from the traditional procedure in their presence. This effort may refine the 
way in which producers preferences are modeled and help understand their hedging behavior. 
 

DECISION MAKING UNDER RISK 
 
Schoemaker (1982) argues that expected utility theory fails as a descriptive and predictive model 
because it does not recognize several psychological principles of judgment and choice. Research 
has shown that individuals don’t structure problems and process information according to 
expected utility theory. Three sources of biases can generally be identified: heuristic 
simplification, self-deception, and emotions and self-control (Hirschleifer, 2001). 
 
Heuristic simplifications arise when individuals focus on a subset of available information due to 
unconscious associations, and limited attention, memory and processing capacities. Common 
examples of this source of biases include – but are not limited to – availability heuristics (events 
that are easier to recall or relate to are judged to be more probable), narrow framing (the form of 
presentation of logically identical problems affect the agent’s final decision), status quo bias 
(individuals prefer the alternative identified as status quo among a list of options), loss aversion, 
clustering illusion (agents perceive a random sequence of events as reflecting causal patterns), 
and conservatism (individuals might not change their beliefs as much as expected for a rational 
Bayesian when faced with new evidence). 
 
Self-deception comes indirectly from cognitive constraints and it basically states that individuals 
tend to believe that they are better than they really are, which helps them make others believe in 
those qualities too. Two of the consequences commonly found are overconfidence and biased 
self-attribution. Overconfident individuals believe that their knowledge is more accurate than it 
really is, which implies overoptimism about their abilities to succeed. Biased self-attribution 
means that agents tend to attribute favorable outcomes to their own abilities and unfavorable 
outcomes to exogenous variables, which implies that people cannot easily learn with their own 
mistakes. 
 
Finally, mood and emotions can make individuals choose alternatives that wouldn’t be chosen if 
the decision was solely based on reason. Mood states generally affect abstract judgments 
relatively more than judgments for which there are concrete information. People in good mood 
are likely to be more optimistic than those in bad mood. Individuals also tend to focus more on 
ideas and facts which are reinforced by conversation and opinions, i.e. there is a self-
reinforcement of ideas because people generally conform with the judgment and behavior of 
others. Further, empirical evidence suggests that in the decision to defer consumption discount 
rates can change under different circumstances: gains tend to be discounted more heavily than 
losses, choice framing (delay, advance in consumption) has a large effect on decision, time 
preference differs substantially in distinct domains, among others.  
 
Those psychological dimensions are underlined by a human tendency to seek cognitive 
simplification (Schoemaker, 1982), and have several practical implications on how individuals 
make choices. First, individuals make decisions by comparing alternatives one dimension at a 
time, and not by assigning a separate level of utility to each one of them. Another implication is 
that evaluation strategies can vary with the complexity of the alternatives available to the 
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decision-maker. Isolation is a third implication and it means that alternatives are not considered 
in a comprehensive way. Individuals just tend to consider different options in isolation, even 
though they might be related. A fourth aspect is the importance of reference points, i.e. it’s 
cognitively easier to consider alternatives by comparing them to a reference level than to 
consider them in absolute terms. A final point refers to probability judgment. In general 
individuals overweigh small probabilities and underweigh high probabilities, implying that there 
are subjective probabilities which relate non-linearly to objective (or stated) probabilities. 
 

NON-EXPECTED UTILITY MODELS 
 
Several studies have proposed alternatives to expected utility, and prospect theory (Kahneman 
and Tversky, 1979; Tversky and Kahneman, 1992) is possibly the most referred theory in this 
matter. Prospect theory differs from expected utility theory basically by assuming that decisions 
are made in terms of gains and losses rather than final wealth, individuals´ reactions to gains are 
different than to losses, and that agents use probability weights rather than objective probabilities 
when making decisions under risk. This choice model is based on a value function ( )V x , which 

has two components: a two-step preference function ( )v x  and a weighting function ( )( )w F x , 

where x  is the argument of the value and utility functions, and ( )F x  is the objective cumulative 
probability distribution of x . 

( ) ( ) ( )( )dV x v x w F x dx
dx

= ⋅∫       (1) 

 
Two-step preference function 
 
A two-piece representation takes into account the fact that variations in the framing of 
alternatives systematically yield different preferences (framing effects), e.g. agents react 
differently to gains and losses. A loss aversion coefficient λ  is incorporated to account for the 
fact that losses loom larger than gains. Finally, the two-piece preference function assumes that 
risk-averse behavior is observed in the domain of gains ( )0x > , and risk-seeking behavior is 

verified in the domain of losses ( )0x < . Risk-seeking assumption in the domain of losses has 
empirical support and comes from the idea that people dislike losses so much that they would be 
willing to take greater risks in order to make up for their losses. 

( )
( )

( )
, 0

, 0

U x x
v x

U x xλ

⎧ ≥⎪= ⎨
− ⋅ − ≤⎪⎩

       (2) 

 
Several studies have explored this two-piece preference function in financial decision-making 
models. In general those studies have used market data to explain investors’ behavior, look for 
evidence of a two-piece utility function, estimate the degree of loss aversion, or find the solution 
for optimal portfolio problems. The focus has usually been on equity and bond markets, and little 
attention has been paid to futures markets. For example, Barberis, Huang, and Santos (2001) 
look at the consumption-based model for the stock market assuming that investors are loss averse 
and derive utility not only from consumption but also from changes in their financial wealth. 
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Berkelaar, Kouwenberg, and Post (2004) use stock market data to investigate portfolio allocation 
problems assuming that investors are loss averse. Hwang and Satchell (2005) and Davies and 
Satchell (2005) use data on equity returns to examine admissible ranges for the parameters of a 
two-piece preference function. 
 
However, there has been very limited research on the application of a two-piece representation 
on hedging problems. Albuquerque (1999) looks at currency hedging in the context of loss-
averse firms, and he claims that loss aversion provides incentive to hedge against downside risk. 
Hence his focus is basically on which instrument – forward contracts or options – produces a 
better hedge against downside risk. Lien (2001) examines how the strategy of a short hedger is 
affected in the presence of loss aversion. His findings show that loss aversion has no effect on 
the optimal hedge ratio if markets are unbiased. But when markets are in contango or 
backwardation the optimal hedge ratio in the presence of loss aversion will differ from the 
minimum-variance hedge ratio. 
 
Weighting function 
 
The idea of weighting function comes from the empirical observation that people don’t evaluate 
risky prospects as a linear function of the actual probabilities of different outcomes, but rather 
they evaluate risky alternatives using a non-linear weighting function. Kahneman and Tversky 
(1979, p.280) explain that “decision weights measure the impact of events on the desirability of 
prospects, and not merely the perceived likelihood of these events”. And the explanation for 
giving lower or higher weights to such events lies on the psychological dimensions of decision 
making discussed earlier.  
 
The weighting function ( )( )w F x  adopted in the current paper is given by equation 3 and is 
characterized by a unique parameter γ  (Prelec, 1998): 

( )( )
( )( )

1
exp ln

w F x
F x

γ=
−

       (3) 

 
where ( )F x  is the objective cumulative probability distribution, and γ  defines the curvature of the 

decision weight curve. The weighting function assumes equal probability distortion in the domains 
of gains and losses. Although there are other functional forms for the weighting function in the 
literature, we chose Prelec’s one-parameter function because of its accuracy and parsimony to 
explain aggregate behavior. Gonzalez and Wu (1999) tested several functional forms and 
concluded that one-parameter weighting function provides an excellent and parsimonious fit to 
the median data. 
 
This weighting function is an increasing function of probability ( )F x  (Figure 1). Empirical 
estimates usually find that 0 1γ< < , implying that the weighting function is regressive and 
inverse s-shaped, i.e. first ( )( ) ( )w F x F x>  (small probabilities are overweighed) and the 

function is concave, and then ( )( ) ( )w F x F x<  (high probabilities are underweighed) and the 
function is convex. For 1γ >  the weighting function is s-shaped, which means that small 
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probabilities are underweighed and high probabilities are overweighed. In general this function is 
also asymmetrical in the sense that the inflection point – where the function intersects the 
diagonal given by 1γ =  – is at ( ) ( )( ) 0.37F x w F x= = .  
 
Figure 1: Weighting function for three different values of γ  
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RESEARCH METHOD 
 
The analysis is based on a soybean producer who takes a short position in the futures market to 
hedge stored soybeans. In a one-period model final wealth is given by: 

1 0W W p h f= + Δ + ⋅Δ         (4) 
 
where 1W  is end-of-period wealth, 0W  is beginning-of-period wealth, pΔ  is the cash price 
change, fΔ  is the futures price change, and h  is the hedge ratio. In this model the hedge ratio is 
negative for short positions, and positive for long positions. Wealth change 1 0W W−  is adopted as 
the argument of a constant absolute risk aversion two-piece utility function (equations 5 and 6): 

1 0W W p h f− = Δ + ⋅Δ         (5) 

( ) ( ) 2 2
1 0 ,

2 2
G L

h h h hE v W W V θ θσ μ μ σ λ μ σ⎛ ⎞ ⎛ ⎞− ≡ = − ⋅ − ⋅ + ⋅⎡ ⎤ ⎜ ⎟⎜ ⎟⎣ ⎦ ⎝ ⎠⎝ ⎠
  (6) 

 
where ( )1 0h p fE W W hμ μ μ= − = + ⋅ , ( )2 2 2 2

1 0 2h c f cfVar W W h hσ σ σ σ= − = + + , ( )c fμ μ  is the 

mean of the cash (futures) price changes distribution, ( )2 2
c fσ σ  is the variance of the cash 

(futures) price changes distribution, cfσ  is the covariance between cash and futures price 

changes, ( )G Lθ θ  is the risk aversion coefficient in the domain of gains (losses), and λ  is the loss 
aversion coefficient. 
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The optimal hedge ratio is obtained through the maximization of (6) with respect to the hedge 
ratio: 

( ) ( ) ( )
1 0

, ,
0h h h hh h

h h

V V
E v W W

h h h
μ σ μ σμ σ
μ σ

∂ ∂∂ ∂∂
− = ⋅ + ⋅ =⎡ ⎤⎣ ⎦∂ ∂ ∂ ∂ ∂

  (7) 

( )
( ) 2 2

1 f cf

G L f f

h
λ μ σ

θ λθ σ σ
+ ⋅

= −
− ⋅

       (8) 

 
The hedge ratio in equation 8 incorporates loss aversion in the speculative component, but no 
probability distortion is assumed at this point. In this situation it can be seen that in an unbiased 
futures market ( )0fμ =  the speculative component of the hedge ratio is equal to zero, and hence 

the optimal hedge ratio becomes the minimum-variance hedge ratio given by 2/cf fσ σ . This 
finding is consistent with Lien (2001), who found that loss aversion has no effect on the optimal 
hedge ratio if futures and cash markets are unbiased. 
 
Now we introduce probability distortion in the hedging problem. The optimal hedge ratio can be 
derived in a similar fashion as the one in equation 8, except that now we have transformed 
probabilities – and not objective probabilities – in the calculation of means and variances. Thus 
the optimal hedge ratio with probability distortion given by equation 9: 

( )
( )

, ,
2 2

, ,

1 f p cf p
p

G L f p f p

h
λ μ σ

θ λθ σ σ
+ ⋅

= −
− ⋅

       (9) 

 
where ph  is the hedge ratio, ,f pμ  and 2

,f pσ  are the mean and variance of the futures price 
changes distribution, and ,cf pσ  is the covariance between cash and futures price changes. 
 
The distribution moments with probability distortion are calculated as: 

,f p f fμ μ μ= + Δ         (10) 

{ }22 2 2 2
, 2f p f f f f fσ σ μ μ μ σ= − + + Δ − ⋅Δ      (11) 

,cf p cf f c c f f cσ σ ρ μ μ μ μ μ μ= + Δ − Δ − Δ −Δ Δ      (12) 
where 

( ) ( )f f f f fF r dr w F r drμ
+∞ +∞

−∞ −∞

⎡ ⎤Δ = − ⎣ ⎦∫ ∫       (13) 

( ) ( )c c c c cF r dr w F r drμ
+∞ +∞

−∞ −∞

Δ = − ⎡ ⎤⎣ ⎦∫ ∫        (14) 

( ) ( )2
f f f f f f fr F r dr r w F r drσ

+∞ +∞

−∞ −∞

⎡ ⎤Δ = ⋅ − ⋅ ⎣ ⎦∫ ∫       (15) 

( ) ( ), ,f c f c f c f cF r r dr dr w F r r dr drρ
+∞ +∞ +∞ +∞

−∞ −∞ −∞ −∞

⎡ ⎤Δ = − ⎣ ⎦∫ ∫ ∫ ∫      (16) 
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In equations 10 through 16, ( )c fr r  is the cash (futures) price change, ( )cF r  and ( )fF r  are 

respectively the cumulative distribution functions of cash and futures price changes, ( ),f cF r r  is 

the joint cumulative distribution function of cash and futures price changes, ( )cw F r⎡ ⎤⎣ ⎦  and 

( )fw F r⎡ ⎤⎣ ⎦  are respectively the weighted cumulative distribution functions of cash and futures 

price changes, and ( ),f cw F r r⎡ ⎤⎣ ⎦  is the weighted joint cumulative distribution function of cash 

and futures price changes. In the absence of probability distortion, 2 0F C Fμ μ σ ρΔ = Δ = Δ = Δ =  
and consequently ,f p fμ μ= , 2 2

,f p fσ σ= , and ,CF p CFσ σ= . 
 
The hedge ratio in equation 9 incorporates both probability distortion and loss aversion, and 
probability distortion is present in the speculative and hedging components. Here, the speculative 
component of the hedge ratio doesn’t disappear when the futures market is unbiased, and hence 
loss aversion does have an effect on the optimal hedge ratio. 
 
However, comparative statics suggest loss aversion has a diminishing effect on hedge ratios. 
Consider the partial derivatives in equations 17 and 18 with respect to the loss aversion 
coefficient. The sign of the first partial derivative is given by the sign of the expected change in 

futures prices ,F pμ , since all other parameters are positive. But the sign of the second partial 
derivative depends on the sign of ,F pμ  and ( )G Lθ λθ− . By definition, and also consistent with 

empirical findings, we have 1λ >  and G Lθ θ≤ , which implies ( ) 0G Lθ λθ− < . Hence, when 

, 0F pμ >  we have / 0ph λ∂ ∂ >  and 2 2/ 0ph λ∂ ∂ < , i.e. there is a positive relationship between 
hedge ratio and loss aversion which becomes less positive as loss aversion increases. When 

, 0F pμ <  we have / 0ph λ∂ ∂ <  and 2 2/ 0ph λ∂ ∂ > , and hence there is a negative relationship 
between hedge ratio and loss aversion which becomes less negative as loss aversion increases. 
Therefore, /ph λ∂ ∂  tends to zero as the loss aversion coefficient λ  becomes larger. 

( )
( )

2
, ,

22
,

p f p f p G L

G L f p

h μ σ θ θ
λ θ λθ σ

∂ +
=

∂ ⎡ ⎤−⎣ ⎦
       (17) 

( )
( )

2
,

32 2
,

2p f p L G L

G L f p

h μ θ θ θ
λ θ λθ σ

∂ +
=

∂ −
       (18) 

 
These effects can be explained intuitively because the coefficients of loss and risk aversion just 
affect the speculative component of the hedge ratio in (9). Probability distortion, however, 
affects the moments of the distribution, influencing both speculative and hedging components of 
the hedge ratio. Partial derivatives of (9) with respect to γ  yield (19) and (20). Signs of these 
expressions depend on the signs of the derivatives of the moments with respect to probability 
distortion, and also on the relative magnitude of those derivatives relative to each other. 
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( )( )

( ) ( )

2 2
, , , ,2 2

, , , ,

2 22 2
, ,

1 f p f p cf p f p
G L f p f p f p cf p

p

G L f p f p

h
μ σ σ σ

λ θ λθ σ μ σ σ
γ γ γ γ

γ θ λθ σ σ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
+ − − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂∂ ⎝ ⎠ ⎝ ⎠= −

∂ ⎡ ⎤− ⋅⎣ ⎦
  (19) 

( )
( )( ) ( ) ( )

( )

22 2 2 2 2 2 2
, , , , , ,

2 32 2 2 22 2
,, ,

2 2 2
, , , ,2

,2 2 22
,

1 2 2

1 1 2 2

p f p f p f p cf p f p f p

G L f pG L f p f p

f p f p cf p f p cf
f p

G L G Lf p

h λ μ σ σ σ σ σ
γ θ λθ σ γ γ γ γθ λθ σ σ

μ μ σ σ σλ σ
θ λθ γ θ λθ γ γ γσ

⎡ ⎤⎡ ⎤ ⎛ ⎞∂ + ∂ ∂ ∂ ∂
⎢ ⎥= ⋅ ⋅ − + ⋅ − ⎜ ⎟⎢ ⎥ ⎜ ⎟∂ − ∂ ∂ ∂ ∂⎢ ⎥⎢ ⎥− ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎛ ⎞∂ ∂ ∂ ∂ ∂+
+ ⋅ ⋅ − ⋅ − +⎜ ⎟⎜ ⎟− ∂ − ∂ ∂ ∂⎝ ⎠

, p

γ

⎡ ⎤
⎢ ⎥

∂⎢ ⎥⎣ ⎦
 

           (20) 
 

SIMULATION DESIGN 
 
Normal distributions are generated for soybean cash and futures price changes. Means and 
variances are based on real price changes occurred during the 1990-2004 period in Illinois. 
Consistent with most research on agricultural futures markets (Garcia and Leuthold, 2004), it is 
assumed that futures markets are unbiased. Simulated normal distributions for cash and futures 
price changes have, respectively, mean 0.037 and standard deviation 0.561, and mean zero and 
standard deviation 0.571. The correlation between cash and futures price changes is 0.90. Based 
on those distributions we introduce a weighting function and investigate how different levels of 
probability distortion affect the values for the mean, variance, and covariance expected by the 
hedger. Further, we discuss the impact of probability distortion and loss aversion on the hedge 
ratio adopted by the producer. 
 

RESULTS 
 
First we investigate how probability distortion change the distribution functions, and hence the 
moments of the distribution. When 0 1γ< <  small probabilities are overweighed and high 
probabilities are underweighed, yielding a probability distribution function (PDF) with more 
mass in the tails and less mass around the mean than the original PDF. The cumulative 
distribution function (CDF) with probability distortion has more mass in the domain of negative 
values and less mass in the domain of positive values than the original CDF (Figure 2). 
Alternatively, when 1γ >  small probabilities are underweighed and high probabilities are 
overweighed. In this situation probability distortion causes a decrease of the mass of the PDF in 
the tails and an increase around the mean, resulting in a CDF that is less dense in the domain of 
negative values and more density in the domain of positive values (Figure 3). 
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Figure 2: PDF and CDF of cash price changes without probability distortion (dark line) and with 
probability distortion (grey line, 0.5γ = ) 
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Figure 3: PDF and CDF of cash price changes without probability distortion (dark line) and with 
probability distortion (grey line, 1.5γ = ) 
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The effect of probability distortion on the probability distribution impacts the expected change in 
cash and futures prices and its variance (Figure 4). When small probabilities are overweighed 
and high probabilities are underweighted ( 0 1γ< < ), the hedger expects the price changes to be 
greater than when γ  is close to one, and smaller than when γ  is close to zero. In addition, the 
variance of price changes is expected to be greater than the true variance for all values of γ  in 
this interval. In contrast, when small probabilities are underweighed and high probabilities are 
overweighed ( 1γ > ), the hedger will consistently expect price changes to be smaller than the 
mean of the distribution, and the variance to be also smaller than the true variance. The 
correlation between cash and futures price changes is also affected by probability distortion 
(Figure 5). In the absence of probability distortion ( 1γ = ) the correlation coefficient is 0.90. 
However, the expected correlation coefficient decreases quickly even for small deviations from 

1γ = . When γ  reaches 0.6 expected correlation is zero. Similarly, when γ  takes values greater 
than one, the expected correlation coefficient reaches zero when 1.6γ = . 
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Figure 4: Expected price changes and variance for different levels of probability distortion (γ ) 
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Figure 5: Expected correlation of price changes for different levels of probability distortion (γ ) 
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Because the moments of the distribution of cash and futures price changes are affected by 
probability distortion, so are the hedge ratios. Figure 6 shows the hedge ratio calculated for a risk 
aversion coefficient of 2 in the domain of gains and 2.5 in the domain of losses, and a loss 
aversion coefficient of 2. In the absence of probability distortion ( 1γ = ) the hedge ratio is –0.87, 
but it goes towards zero when γ  deviates from one. As γ  becomes smaller than one, the hedge 
ratio decreases and reaches zero at 0.6γ = . Similarly, the hedge ratio goes to zero as γ  increases 
towards 1.6. Nevertheless, the effect of loss aversion and risk aversion on hedge ratios is small 
relative to the impact of probability distortion. Table 1 presents a comparative analysis of how 
changes in one parameter at a time affect the hedge ratio. The upper part of Table 1 shows the 
effect of a 10% increase in each parameter on the hedge ratio relative to the base scenario (which 
is represented in the shaded row on the top). A 10% increase in the loss (risk) aversion parameter 
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causes a reduction of 0.30% (0.40%) in the hedge ratio, with the level of probability distortion 
held constant. But when a 10% increase is applied to γ  the hedge ratio increases by 11%1. 
Similarly, the bottom part of Table 1 shows that a decrease in loss and risk aversion has an 
impact on the hedge ratio which is smaller relative to a decrease of similar magnitude in γ . 
 
Figure 6: Hedge ratio for different levels of probability distortion (γ ) 
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Table 1: Effect of probability distortion and loss aversion on hedge ratios 

Risk aversion 
Gθ    Lθ  

Loss aversion 
λ  

Probability 
distortion (γ ) 

Hedge 
ratio 

 

     
2 2.5 2 0.9 -0.7871  
2 2.5 2.2 (+10%) 0.9 -0.7869 (– 0.30%) 

2.2 (+10%) 2.75 2 0.9 -0.7868 (– 0.40%) 
2 2.5 2 1.0 (+10%) -0.8747 (+ 11%) 
      

2 2.5 2 0.9 -0.7871  
2 2.5 1.001 (–50%) 0.9 -0.7890 (+ 0.24%) 

1 (–50%) 1.25 2 0.9 -0.7906 (+ 0.44%) 
2 2.5 2 0.5 (–44%) -0.3823 (– 148%) 
      

Obs: percentage changes refer to the base scenario (shaded row) 
 
Figure 7 presents further evidence of the large impact of probability distortion on hedge ratios 
relative to the effect of loss and risk aversion. Like in Figure 6 the graphs show how the hedge 
ratio changes as different levels of probability distortion are assumed, but now for several 
combinations of loss and risk aversion. As can be seen, the pattern is very similar in all 

                                                 
1 There is some asymmetry in these effects, e.g. a 10% decrease in loss aversion implies an increase of 0.06% – and 
not 0.30% – in the hedge ratio, all else held constant. 
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simulations, and even for large changes in loss and risk aversion there is barely any impact on 
the hedge ratio. These empirical findings supports our theoretical analysis which suggested that 
the optimal hedge was rather insensitive to changes in loss and risk aversion. 
 
Figure 7: Hedge ratio for different levels of probability distortion (γ ), risk aversion (θ ), and loss 
aversion (λ ) 
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10, 10.5, 2G Lθ θ λ= = =  

-1.00
-0.80
-0.60
-0.40
-0.20
0.00
0.20
0.40
0.60
0.80
1.00
1.20

0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7

gamma

he
dg

e 
ra

tio

10, 10.5, 10G Lθ θ λ= = =  

-1.00
-0.80
-0.60
-0.40
-0.20
0.00
0.20
0.40
0.60
0.80
1.00
1.20

0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7

gamma

he
dg

e 
ra

tio

 

CONCLUSION 
 
This paper investigates how probability distortion and loss aversion affect hedging decisions. 
The findings suggest both dimensions have an impact on hedge ratios, but probability distortion 
appears to be dominant. Probability distortion alone always affects optimal hedge ratios, while 
loss aversion by itself has an impact only when futures market is biased. Furthermore, even when 
loss aversion affects the hedge ratio, its impact is small and negatively related to the magnitude 
of loss aversion. 
 
Consequently, changes in the hedge ratio seem to be driven by probability distortion or, more 
specifically, by the impact of probability distortion on the expected correlation between cash and 
futures price changes. Simulation results show that even a small degree of probability distortion 
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in the decision process can drive the optimal hedge ratio far away from the standard minimum-
variance estimate. Moreover, it doesn’t take much probability distortion to turn the optimal 
hedge ratio to zero, i.e. even little probability distortion is enough to make hedging less attractive 
for a producer. 
 
The findings of this study have several implications. First, while expected utility-based hedge 
ratios are easier to calculate than non-expected utility-based hedge ratios, their results tend to 
differ dramatically when more realistic models are used. Second, loss aversion and risk aversion 
seem to have just a marginal influence on hedge ratios in a non-expected utility framework. 
Third, probability distortion appears to be a major driving force to determine hedge ratios under 
non-expected utility models. Hence, the results of this research seem to suggest that future 
research should focus on the determinants of probability distortion in choice models, which 
could shed more light on how individuals make hedging decisions. 
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