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The Shape of the Optimal Hedge Ratio: M odeling Joint Spot-Futures Prices
using an Empirical Copula-GARCH M odel

Abstract

Commaodity cash and futures prices have been ristiegdily since 2006. As evidenced
by the April 2008 Commodity Futures Trading Comiarsggricultural Forum, there is
much concern among traditional futures and optioresket participants that the
usefulness of commodity derivatives has been caomged. When basis risk is
particularly high, dynamic hedging methods may elptul despite their complexity and
higher transaction costs. To assess the potebénéfits of dynamic hedging in volatile
times, this paper proposes a novel, empirical cafpdsed method to estimate GARCH
models and to compute time-varying hedge ratidss dpproach allows a nonlinear,
asymmetric dependence structure between cash amegiprices. The paper addresses
four principal questions: (1) Does the empiricapota-GARCH method overcome
traditional limitations of dynamic hedging method&y How does the empirical copula-
GARCH hedging approach perform, for storable adtio@l commodities, compared
with traditional GARCH and Minimum Variance (statiedging methods? (3) Is
dynamic hedging more or less effective in the 686 biofuels expansion time period?
(4) How sensitive is the ranking of methods toneging effectiveness criterion used?
Preliminary findings suggest that the empirical astzpGARCH approach leads to
superior hedging effectiveness based on some abatinrisk criteria.

INTRODUCTION

Agricultural commodity prices have risen sharplycs late 2006 (Figures 1 and 2),
partly due to the Federal mandate for biofuels figa@thanol) and the resulting demand-
side pressure on corn and supply-side pressureyireans, wheat and cotton. As an
unintended effect, rising commodity prices attrdatentraditional investors such as
mutual and pension funds. As a consequence, agle?@38, the relationship between
spot and futures prices seems to have undergoséasiilal changes. In particular, the
cash-futures price basis for certain commoditieslanations has been observed to be
much weaker than the historical norm. From a ptatstandpoint, this makes the
effectiveness of futures hedging a timely problem.

This paper concerns the estimation of optimal dyndradge ratios for price risk
management, e.g. by a grain elevator purchasing edreat and soybeans. The
conventional approach to the problem is to use ldvatiate GARCH (MGARCH)
model to estimate conditional (co)variances. Howeae important limitation of
MGARCH models is the typical assumption of jointltimariate normality, despite the
empirical evidence against elliptical distributiangrice returns. This paper adopts a
different approach by combining univariate GARCHdals of spot and futures prices



with empirical (nonparametric) copulas to charazeethe higher order moment
dependence between the two.

This paper is interested in tehape of the optimal hedge ratiothe sense that
the hedge ratio depends not only on cash and &ifuiee (co)variances but also on the
level of prices, the sign of the basis (asymmetigyl other characteristics that may be
best captured by describing the full joint depemaestructure of cash and futures prices.

Empirical applications are presented for hedging @nd soybean meal from the
perspective of a Texas feedlot operator with atanpaid to the problem of increasing
dimensionality (e.g. several simultaneous longharshedges). As a secondary
contribution, the paper shows how empirical copokas be used to improve the results
in the case of a small data sample by providingrartrarily large number of draws from
the underlying distribution.

The paper also discusses the importance of usirg@opriate hedging
effectiveness criterion, which a few recent pajerge noted, and suggests adopting
“coherent measures” to obtain appropriate benchsnahen comparing different
hedging approaches.

DYNAMIC HEDGING: CONCEPTSAND ISSUES

Futures and futures options are commonly usedrib@agness to hedge commaodity price
risk. Cash and futures prices for a given comnyaaiibve closely together over time but
the difference between the two (i.e. basis) idfitsae-varying. Due to such basis risk, a
naive hedge position (equal and opposite) is ulyliteebe successful. Moreover, it has
been well understood at least since Cecchetti, @uand Figlewski (1988) and Baillie
and Myers (1991) that a constant (OLS) hedge ra#ig be inappropriate when prices are
possibly nonstationary, and that conditional rathan unconditional (co)variances
should be used. Myers and Thompson (1989) propmsggsheral framework to estimate
dynamic hedging.

The Engle (1982) and Bollerslev (1986) GARCH frarodwallows for the
estimation of the conditional variance in a unigtgicase. Since the dynamic hedge ratio
under min-variance criterion is the ratio of thedibional cash/futures covariance over
the conditional futures variance at titp@ natural approach would be to estimate a
bivariate GARCH model of cash and futures pric€snsequently, a large number of
papers have applied this framework to estimate-tiarging hedge ratios (e.g. Baillie
and Myers, 1991; Bera, Garcia and Roh, 1997 GaRwoh,and Leuthold, 1995; Moschini
and Myers, 2002). In particular, Moschini and My€&002) devised a test enabling
them to reject the null hypothesis of a time-coniskeedge ratio for corn cash and futures
prices, in favor of a time-varying hedge ratio.

Most of the empirical results, however, provideyonkeak evidence of any
significant improvements in hedging effectivendssliins, 1997; Lence, 1995; Lien,
2005). To explain this apparent failure of dynahmeclging models, research on hedging



has examined cointegration (e.g., Haigh and HO6IB02 2002), parameter and model
uncertainty (Dorfman and Sanders, 2005; Lence angesl 1994a,b; Manfredo and
Sanders, 2004) as well as business risk (Turve\Bahkeér 1989, 1990; Brorsen 1995).

Moreover, an issue that has been well noted imiévariate GARCH literature
and which extends beyond the problem of hedgirnlgasthe number of parameters
increases rapidly with the dimensionality of mudtiate GARCH models. For example,
in the case of the widely used full MGARCH-BEKK (@a and Kroner, 1995), the two-
variable (one commodity) problem involves only @eparameters, but a three-
commodity problem implies 42 parameters and a sesemmodity problem implies 497
parameters. This is an important concern for abmrrof agribusiness risk management
problems including multiple input/output price rigiurrency risk or shipping cost risk.

A second principal issue raised in the dynamic hreglliterature is the
appropriate measure of hedging effectiveness.ypapers concluded that GARCH
dynamic hedges were inferior to minimum variancedes, but this comparison was
likely misleading because the standard hedging®¥eness criterion (minimum
variance) is designed for unconditional (co)varemand is therefore ill-suited to
evaluate the usefulness of GARCH dynamic hedgesn(l2005). Moreover, several
authors have noted that only downside risk shoalthinimized (e.g. Lien and Tse,
1998). More generally, Cotter and Hanly (2006)vstisat the ranking of hedging
models is highly sensitive to the criterion usedhie point of this paper that better
measures of hedging effectiveness ought to be deresi such as recently-developed so-
called “coherent measures” of risk (e.g. AcerbQ&0

The present paper proposes an empirical copula-GARGdel to better describe
the joint comovement of variables in a portfoliosefveral cash and futures prices. This
allows us to determine, for example, whether thlefaof GARCH models to provide
useful dynamic hedging is due to the possibly ursg@aassumption of joint multivariate
normality. The latter is generally necessary tantaén model tractability but may be
unduly restrictive. Indeed, recent papers (Berfraaylor and Wang, 2007; Jondeau and
Rockinger, 2006; Lee and Long, 2007; Hsu, Tsengvdadg, 2008; Fernandez, 2008)
have explored copula-GARCH approaches and havduaeat that improving modeling
of the joint distribution (i.e. through a copulappides greater overall hedging efficiency
gains than does improved modeling of the price dyos (i.e. through GARCH).
However, all of these papers take a parametriclagguproach, and often use the
Gaussian copula, implicitly assuming an elliptidapendence structure that is a function
of only one parameter, and which further ignoreghlr order moments. In contrast our
contribution is to propose a nonparametric, daiteedrframework. The principal
weakness is that the empirical copula is not itselé-varying, thus it is implicitly
assumed that all dynamics are accurately captartdteimarginals (i.e. univariate
GARCH models).

The GARCH Estimation Framework

This section presents a review of essential cosdapghe GARCH estimation
framework. Consider a time series variaBlsuch as a commaodity cash price sampled



at a weekly frequency. A convenient measure aftian is the continuously
compounded log-return, defined as a log-changedrcase of commodity prices. The
log-change is: = In (P;) — In (P..1). Let the unconditional mean and variance be delfin
by p anda®and let theconditionalmean and variance be:

m= E[r¢| 54l
he= E[(r— m)2| St

wherejs.1is the information set (filtration) at time (t-1J.hen we may write:

rn=m +Jhg

whereg;is the standardized innovation (error) at tim&hich has conditional mean zero
(0) and unit conditional variance. The basic GAR@bidel assumes the distribution of
€to be Gaussian Normal, but likelihood functions @arailable for a large number of
other distributions, notably including Student-E@ and Skewed Student-t. In this
paper the Student-t distribution is assumed foirithevations, based on the results of
Likelihood Ratio tests that reject the Normal disition and Kolmogorov-Smirnov tests
that find no support for the GED distribution.

The simplest GARCH model specification allows orfRGH parametent and
one GARCH parametd. Although any combination GARCH(p,q) is admissibl
previous research has found that the (1,1) spatific performs very well as long as the
most appropriate distribution is specified for theovations (see above). Therefore, the
model of conditional variance is:

h=w+PBha+a(ra—p)

with (a+p)<1to ensure stationarity. Note that the persistaia®latility shocks can be
estimated based on the values taken lapndp. The appropriate likelihood is maximized
using a nonlinear solver. Robust standard ern@s@amputed following Bollerslev and
Wooldridge’s (1992) method.

The dynamic hedge ratio at each date in time cazobguted as the ratio of the
conditional cash-futures covariance over the caomnid futures variance. Although a
simple univariate GARCH model provides the latteemethod to obtain the conditional
covariance is needed. The main challenge withivaniate GARCH models is how to
specify a stable parametric structure that is etsoputationally solvable in a reasonable
amount of time. A large number of methods havenlseggested, but the BEKK
specification of Engle and Kroner (1995) in paridécihas become widely used. It has the
advantage of imposing positive semidefinitenegb@fconditional covariance matrix,
which is helpful to avoid a numerical failure tone@rge. Unfortunately, it requires that
a relatively large number of parameters be estidhateleed far more do than the
individual univariate GARCH models.



An alternative approach used in this paper is tgpacametrically estimate the
joint density, recover the empirical copula depermgestructure and compute
numerically the conditional covariance as follows:

hSF,t = hSthF,tJ- J.gstg F,tf(gStg EtlD—tl) dxdy

—00 —00

wherehs iis the conditional cash price varianbg; is the conditional futures price
variance, andis the joint density of cash and futures price waimns (errors).

As an empirical application of this novel approaehk,consider the dynamic
hedging problem of a Texas feedlot operator whotmpuschase corn and soybean meal
for livestock feed. An advantage of this appro@dat, unlike many parametric
multivariate GARCH methods, it extends well to hegldimensionality problems.

COPULA PROCEDURES

Copulas provide an alternative way to model joistributions of random variables with
greater flexibility both in terms of marginal disitions and the dependence structure.
Copulas have been used in financial literaturejtore sometime (see, for example,
Embrechts et al. 2002; Cherubini, Luciano and Vetoh2004; Chen and Huang, 2007;
Fernandez, 2008), but have not made their wayoyktet agricultural economics

literature. What is more, theory was until recemigdequate to support the application
of copulas to stochastic processes (i.e. time Sews argued by Mikosch (2006). Recent
advances have focused on extending the copula pbtacthe stochastic process (time
series) setting (Chen and Fan, 2006; Ibragimovy 2B@tton, 2006). These theoretical
results support empirical applications of copuleotly to the case of time series assuming
certain conditions are satisfied, and this includggarticular stationary Markov
processes, of which martingales (which describeraler of financial asset price return
series) are a special case. The Markov assumigteypropriate if we model the copula
on the dependence structaféer having estimated the GARCH model, in what is
therefore a two-step solution method.

This paper’s choice of empirical copula (analogmusonparametric kernel
density estimation) rather than parametric (e.qugS&n or Student) copula is motivated
by the paucity of theoretical economic justificador a specific copula form (see e.g.
deVries and Zhou, 2006).



Overview of Copulds

The connection between copulas and joint distrdmgtiis established by the Sklar's
Theorem (Nelsen, 2006, p. 15), which states thyatdéstribution functionH(x, y) with

marginsF(x) and G(y) can be represented as

H(x,y)=C(F(x),G(y)), 1)
whereC([[)is a uniquely determined copula function. The tkeoalso states that any
two distribution functiong’(x) andG(y) combined with an arbitrary copula

according to (1) result in a joint distribution fttiron H . (x, y) with the marging andG.

If the distribution functions and the copula in éI¥ continuous, Sklar’s theorem
can be restated in terms of the probability demsiéis

h(x, y)=c(F(x),G(¥)) L f(x)[g(¥), (1)

2 2
whereh(x, y) =M , f(x)=F'(x), g(y)=G'(y), andc(u,v) =M
0xdy Ooudv
copula density. Eq. (1’) often referred to as taranical representation essentially
decomposes the joint distribution of two variabtee a product of marginal densities
and the dependence structure captured by the cdpuakity (Cherubini, Luciano and
Vecchiato, 2004).

is the

From the practical standpoint, (1’) allows bothidation of copulas from a
known distribution and construction of a joint distition given marginal distributions
and the copula. For examplehifs a bivariate standard normal distribution wh t
correlationp and the standard normal margins, then (1) imghesGaussian copula
density

c(u,v)=

(@7 (W) +(®7 () , 2097 (WP (V) = (P () ~ (¢~ (V))Zj

1
fi-p ex"[ 2 21-p)
(2

where®(-) is the cumulative density function of the stamtnormal distribution. The
Gaussian copula is parameterized by a single paeanvehich can be estimated from the
historical data in a straightforward fashion.

The real advantage of copulas, however, comes tinerfact that once the copula
is derived or estimated, it can be appliedny pair of marginal distributions, not
necessarily those implied by the original jointtdisition. For instance, the Gaussian
density (2) can be combined in (1) with a betarthsitionf and a Student distributian
to result in a joint density functidm which is neither bivariate normal, nor beta, nor
Student.

! The following is a brief summary of theory behind topulas limited to two-dimensional copulas for
brevity sake. A more formal and thorough presentatiomentbpic can be found in Nelsen, 2006.



For all its flexibility, the copula approach hasmerious shortcoming. Generally
speaking, there are an infinite number of coplias ¢an be used to generate joint
distributions in (1’). Several parametric coput@se been frequently used in financial
literature including the Gaussian copula (2) (Chery Luciano and Vecchiato, 2004).
Relative performance of different copulas can basueed against each other, but there
is no constructive way to determine the “optimadpala function (Kole, Koedijk and
Verbeek, 2007).

Kernel Copula

An alternative to parametric copulas is a nonpatamkernel copula, which can be
constructed from (1’) by settingequal to the kernel density estimate of the joint
distribution, and andg to the kernel density estimates of the correspundiarginals. A
general form kernel density estimator of a univarfaobability density functiohcan be
written as

fx, r)——ZK(X TX ] ®

where{X,}, are observations (i.i.d. draws from the distribntbeing estimatedi(-) is
a kernel function, angdlis a smoothing parameter called bandwfdth.

A bivariate analog of (3) can be written as

IAl(x,y,Tl,Tz)— ZK(X X, y Y], 4)
2 i=1 1 TZ

where all the notation corresponds to (3), exdmitﬂhe kernel function now has two
arguments and different smoothing parameters carsé@ along each dimension. There
are several options for choosing the bivariate édeflumction, but the most
straightforward way is to use the product of twovanate (although not necessarily the
same) kernels (Wand and Jones, 1995).

Based on (1’), (3), and (4), the overall proceduoresstimating the kernel copula

from a series of historical daf&,Y;}", can be outlined as follows.

Step 1. Construct the kernel density estimates of margimtibutionsf andg
according to (3) using appropriate kerngjsind bandwidths.

Step 2. Calculate the cumulative density functions corresiiog tof andg (e.g.
by numerical integration)

-y,
F(x)-—jZK[ . de and G(y)-—rz_jw;K( . jd/] (5)

1 —wi=1

Step 3. Construct kernel density estimate of the jointsigrh according to (4)
using the product kernel and the same bandwidtins Step 1.

2 The theory behind the kernel density estimator hadthoice of the kernel function and bandwidth is
beyond the scope of the present paper. A more detailed gapasin be found in (Wand and Jones, 1995).

% Note that in the rest of the section the dependence ofttheatd kernel density functions on the
bandwidth is suppressed for brevity sake.



Step 4. Estimate the copula density at any given pain) (based on (1'), namely
hE™ @), 67' (v) )
FOE @) HE™ )

c(u,v)=

where F ' (u) and G (v) are inverse functions to the cumulative densities
estimated in (5), which can be obtained by solvingerically the root-finding
problemsﬁ(x):u andG(y)=v for givenu andv, respectively.

Once estimated, the kernel copula can be combinidany estimates of the marginal
distributions off andg, either parametric or nonparametric.

APPLICATION: HEDGING CATTLE FEED PRICES

An important agribusiness problem in the Wester. dtates is how to manage feed
price risk in livestock operations. A number oppes have examined the problem of
jointly hedging feed price risk and selling pricgkr(Shafer, Griffin and Johnston, 1978;
Garcia, Leuthold and Sarhan, 1984; Leuthold andrBen, 1987). Consider a typical
feedlot pen with 100 heads of cattle, a startingytateof 800 Ibs/head and a finished
weight of about 1200 Ibs/head at the end of a 1&kweeding period. Each head of
cattle consumes 50 bushels of corn over this péfad total of 5000 bu.) and about
120 Ibs of a source of protein for which soybeamlngea reasonable proxy. This is a
baseline problem that omits a number of relevasutds including hedging cattle prices,
(feeder and fed/live) as well as credit liquiditsks;, financial leverage and taxes. The
impact of these concerns will be addressed inadudraft of this work

For the purposes of the paper, we use Texas taargh corn cash prices,
Decatur, Ill. soybean meal cash prices, and Chi@umd of Trade (CME Group) corn
and soybean meal futures prices. All prices arg$aanwveekly on Thursdays. The
observations range from 1/6/2000 to 1/17/2008 fauta of T = 420.

To compare hedging effectiveness before and dfeelairge structural change in
agricultural commodity markets due to the biofus®m, we determine that a structural
break in grain and oilseed prices is located iroB@et 2006 and separate the data into two
samples: pre- and post-October 2006. The anatysmmpleted separately in each
sample and the results are then compared.

Transaction costs

Dynamic hedging involves changing one’s futurestpos(ratio of bushels equivalent of
futures contracts to bushels in cash position) dasehow the GARCH hedge
(cash/futures conditional covariance over futu@sditional variance) varies. Since very
few hedgers can be assumed to be members of tkagehBoard of Trade (for grains
and oilseeds) or Chicago Mercantile Exchange (fastock), a measure of broker fee or
transaction cost should be included to reflectpifiee paid to change the futures position
frequently. As a simple measure of transactiontsgatsis assumed that there is a
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proportional and constant fee of $0.01 per bushet ¢éime the futures position is
adjusted. Although this proxy is a simplificatiohappears to be a reasonable value
based on communications with practitioners.

EMPIRICAL RESULTSAND HEDGING EFFECTIVENESS

First we discuss the GARCH model estimates for lbimthkernel copula approach and the
benchmark MGARCH-BEKK model. We also include minim variance static hedge
ratio results. Second we present evidence of hgdgffectiveness based on portfolio

risk criteria as well as portfolio returns for hypetical scenarios.

Results for Dynamic Hedge Ratios

The estimated dynamic hedge ratios are presewmgethter with the minimum-variance
(static) hedge ratio, in Figure 3 for soybean nagal in Figure 4 for corn. First, for both
corn and soybean meal the static hedge ratio iseseia the post-October 2006 time
period reflecting relatively higher volatility obsh prices. For corn, the GARCH-BEKK
approach produces a dynamic hedge ratio that leehigver most of the time period,
than the static hedge ratio. In contrast, thedderapula GARCH produces a hedge ratio
that is generally smaller than the After Octobed@oth the BEKK and kernel copula
GARCH hedge ratios become closer to the staticdnealgp. For soybean meal, the two
dynamic hedge ratios are relatively close to taéshedge ratio, but over most of the
entire time period the BEKK GARCH hedge ratio isaer than the kernel copula
GARCH hedge ratio.

Hedge Effectiveness and Portfolio Returns

As a baseline, we begin with a simple portfolio m@ariance analysis. Figures 5 and 6
present the frequency with which each of the thedging strategies (static, GARCH-
BEKK, kernel copula-GARCH) led to portfolio returimsvarious intervals. Note that
interestingly the kernel copula GARCH approach $eadthe overall beseturns,but
understandably that is not the main objective afgieg. Regarding the cost of broker
fees associated with weekly updating of futurestjos, the kernel copula GARCH
dynamic hedge ratio ends up being less costly ithardging with the BEKK GARCH
approach.

Figures 7 and 8 present similar results using teasure of portfolio standard
deviation, a simple measure of risk. Here, thed&ecopula GARCH approach generally
does well in reducing “tail risk” (i.e. probabilityf very large gains or losses), which is
consistent with Fernandez’s (2008) finding thabpuwa approach to hedging is generally
optimal according to the Value-at-Risk criteriadowever, the kernel copula approach
does not perform as well in reducing variance, Wicalso consistent with the original
objective of using copulas to address higher-onslement risk.
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CONCLUSIONS

The present paper proposes the use of empiricai¢Recopulas as a means of estimating
multivariate GARCH models without imposing the resive assumption of joint
normality. The joint model is estimated as a carabion of univariate (marginal)

GARCH models and a kernel copula to characteriegdimt dependence structure and in
particular capture non-elliptical higher order maoeelationships.

In addition to being a methodological contributtonimprove the estimation of
MGARCH models in a tractable framework, this pagleo presents a simple empirical
application that may be generalized to a numbagobusiness hedging and risk
management problems. We find that the kernel @@ARCH approach is a promising
method but that the current, preliminary resulesrarxed. In the empirical application,
this new approach provides lower broker fees, sapbedge returns and lower tail risk,
but only mediocre variance reduction.

There are several directions in which this researali be extended to obtain
better results. We note two areas of concerrst,Rite assumption of a stationary copula
may be overly restrictive. While time-varying paetric copulas have been developed
(e.g. Patton, 2006), it remains a computationafiycdlt problem to extend this to the
nonparametric case. Second, we follow Cotter aaaly4(2006) and emphasize the
importance of using appropriate risk criteria, lesinterpretation of the hedging
effectiveness results is highly sensitive to thiedon used. One increasingly used set of
criteria are the Lower Partial Moments (e.g. Mattarcia and Nelson, 2008; Turvey
and Nayak, 2003). Lastly, a more general framewmoskhich to nest the different
criteria and their comparisons may be the recatdfined “coherent measures of risk”
(e.g. Acerbi, 2008).

REFERENCES

Acerbi, C. (2008). “Coherent Measures of Risk iBteryday Market Practice.” In:
J.A.D Appleby, D.A. Edelman and J.J.H. Miller, ed¢umerical Methods for
Finance London, U.K.: Chapman & Hall/CRC, pp.1-12.

Arias, J.S., B.W. Brorsen and A. Harri (2000). @l Hedging under Price, Basis,
Production, and Financial Riskournal of Futures Market20:375-96.

Bartram, S.M., S.J. Taylor and Y.H. Wang (2007)e Huro and European financial
market dependencéournal of Banking and Financ&L(5): 1461-81.

Bauwens, L., S. Laurent and J.V.K. Rombouts (200&jtivariate GARCH models: a
survey.Journal of Applied Econometric81(1): 79-109.

Bera, A.K., P. Garcia, and J.S. Roh (1997). Esionatf Time-Varying Hedge Ratios for
Corn and Soybeans: BGARCH and Random CoefficiemtréachesSankhya: The
Indian Journal of Statisticd9, Series B, Pt. 3, 346-68.



12

Brorsen, B.W. (1995). Optimal Hedge Ratios withkRweutral Producers and Nonlinear
Borrowing CostsAmerican Journal of Agricultural Economicé7:174-81

Cecchetti, S.G., R. E. Cumby and S. Figlewski (39B8timation of the Optimal Futures
Hedge Review of Economics and Statisti¢6(4): 623-30

Chen, S.X., and Huang, T.-M. (2007). Nonparaméigttmation of Copula Functions for
Dependence ModellingCcanadian Journal of Statistic85, 2: 265-82.

Chen, X. and Y. Fan (2006). Estimation and modelcs®n of semiparametric copula-
based multivariate dynamic models under copulapeisfication,Journal of
Econometrica 35(1): 125-54.

Cherubini, U., Luciano, E., and Vecchiato, W.(20@pula Methods in Financ&Viley
Finance Series. Hoboken, NJ: John Wiley & Sons.

Collins, R.A. (1997). Towards a Positive Economiedry of HedgingAmerican
Journal of Agricultural Economicg9:488-99.

Cotter, J. and J. Hanly (2006). Reevaluating heglgerformanceJournal of Futures
Markets26(7):677-702.

Dorfman, J. and D. Sanders (2005). “Generalizedgderiatio Estimation with an
Unknown Model.” Paper presented at the Americanujpural Economics
Association meetings, Providence, RI.

deVries, C.G. and C. Zhou (2006). Discussiextremes: 23-25

Engle, R. F. (1982). Autoregressive Conditionalgfiescedasticity with Estimates of the
Variance of U.K. InflationEconometricaéb0, 987-1008.

Engle, R.F. and K.F. Kroner (1995). Multivariatenbitaneous Generalized ARCH.
Econometric Theorg1: 122-50.

Fernandez, V. Multi-Period Hedge Ratios for a MAlsiset Portfolio When Accounting
for Returns Co-Movemendournal of Futures Market28, 2(2008): 182-207.

Garcia, P., J.S. Roh, and R.M. Leuthold (1995).uimmeously Determined, Time-
Varying Hedge Ratios in the Soybean Comphgpplied Economic27:1127-34

Garcia, P., R.M. Leuthold, and M.E. Sarhan (19845sis Risk: Measurement and
Analysis of Basis Fluctuations for Selected LivekttMarkets American Journal of
Agricultural Economic$6(4):499-504.

Haigh, M.S., and M.T. Holt (2000). Hedging Multigkeice Uncertainty in International
Grain TradeAmerican Journal of Agricultural Economi@2(4):881-96.



13

Haigh, M.S. and M.T. Holt (2002). Hedging foreigm@ncy, freight, and commodity
futures portfolios: a notdournal of Futures Market82(12): 1205-21.

Hsu, C.C., Y.H. Wang and C.P. Tseng (2008). Dyndti®dging with Futures: A
Copula-based GARCH Modelournal of Futures Marketgorthcoming.

Ibragimov, R. (2008). Copula-based characterization higher-order Markov processes.
Econometric Theoryforthcoming.

Jondeau, E. and M. Rockinger (2006). The Copula-GHRnodel of conditional
dependencies: An international stock market apgtinaJournal of International
Money and Finange25(5): 827-53.

Kole, E., Koedijk, K., and Verbeek, M. (2007). Sgieg Copulas for Risk Management.
Journal of Banking and Financ®l, 8: 2405-23.

Lee, T.H. and X. Long (2007). Copula-based Multislr GARCH Models with
Uncorrelated Dependent Errodaurnal of Econometrigdorthcoming.

Lence, S. (1995) The Economic Value of Minimum-age Hedge#American Journal
of Agricultural Economic3§7:353-64.

Lence, S. H., and D. J. Hayes (1994). Parameteyedb@ecision Making Under
Estimation Risk: an Application to Futures Tradidgurnal of Financet9:345-57.

Lence, S. H., and D. J. Hayes (1994). The EmpiMiaimum-Variance Hedge.
American Journal of Agricultural Economi@$: 94-104.

Lien, D. (2005). The Use and Abuse of the Hedgiffgdiiveness Measurénternational
Review of Financial Analysis4(2): 277-82.

Lien, D. (2006). Estimation bias of futures hedgpegformance: A notelournal of
Futures Market26(8): 835-41.

Lien, D. (2007). A Note on the hedging effectivenes GARCH modelsinternational
Review of Economics and Finanae press.

Lien, D. and Y.K. Tse (1998). Hedging Time-Varyipbgwnside RiskJournal of
Futures Marketd.8(6): 705-22.

Mattos, F., P. Garcia and C. Nelson (2008). Retagtandard Hedging Assumptions in
the Presence of Downside Riskuarterly Review of Economics and Finad&{1):
78-93.

Miranda, M.J., and P.L. Fackler (2002pplied Computational Economics and Finance
Cambridge, Mass.: MIT Press, 2002.

Mikosch, T. (2006). Copulas: Tales and FaEtdremes: 3-20.



14

Moschini, G.C. and R.J. Myers (2002). Testing fonstant hedge ratios in commodity
markets: a multivariate GARCH approadburnal of Empirical Financ®(5): 589-
603.

Myers, R.J. (1991). Estimating time-varying optirhadge ratios on futures markets. The
Journal of Futures Market$1: 39-53

Myers, R. J., and S. R. Thompson (1989). Generhlizgtimal Hedge Ratio Estimation.
American Journal of Agricultural Economi@4: 858-68.

Nelsen, R.B. (2006 An Introduction to Copula2nd Edition. Springer Series in
Statistics. New York: Springer.

Patton, A.J., C.W.J. Granger and T. Terasvirta§200ommon Factors in Conditional
Distributions for Bivariate Time Serie3ournal of Econometric$32(1), 43-57.

Peterson, P.E. and R.M. Leuthold (1987). A Porfépproach to Optimal Hedging for a
Commercial Cattle Feedlalournal of Futures Marketg: 443-57.

Sanders, D.R. and M.R. Manfredo Comparing HedgiffgcEveness: An Application of
the Encompassing Principlédournal of Agricultural and Resource Econom2&s 31-
44.

Schroeder, T.C. and M.L. Hayenga (1988). Comparigdselective Hedging and
Options Strategies in Cattle Feedlot Risk Managendemrnal of Futures Markets
8(2): 141-56.

Shafer, C.E., W.L.Griffin and L.D. Johnston (1978}tegrated Cattle Feeding Hedging
Strategies, 1972-19760outhern Journal of Agricultural Economit8: 35-42.

Turvey, C.G. and T.G. Baker. (1989) Optimal Heddihgler Alternative Capital
Structures and Risk Aversio@anadian Journal of Agricultural Economi&3'(1):
135-44.

Turvey, C.G. and T.G. Baker. (1990) A Farm Leveldficial Analysis of Farmers' Use
of Futures and Options under Alternative Farm Pantg.American Journal of
Agricultural Economicg2: 946-57.

Turvey, C.G. and G. Nayak (2003). The Minimum Seariance Hedge Ratidpurnal of
Agricultural and Resource Economi28(1): 100-15.

USDA/NASS. "Quickstats, U.S. & States, Prices."ibial Agricultural Statistical
Service, (2008). Available online at
http://www.nass.usda.gov/Data_and_Statistics/QuBt&ts/index.asfd.ast accessed
03/15/2008.

Wand, M.P., and Jones, M.C. (199grnel SmoothingMonographs on Statistics and
Applied Probability 60. London, New York: Chapmartzall.



$5.50

— Cash, TX — Futures, CBOT |

$5.00
$4.50
$4.00
5
2 $3.50
v
$3.00

$2.50

$2.00

51.50 T T T T T T T
Jul-05 Nov-05 Mar-06 Jul-06 Nov-06 Mar-07 Jul-07 Nov-07

Figure 1: Corn futures and cash prices (Texas hag8”005-12/2007

50.19 — Cash, IL

— Futures, CBOT

$0.17

$0.15

$/lb.

$0.13

$0.11

$0.09

SUO7 T T T T T T T
Jul-05 Nov-05 Mar-06 Jul-06 Nov-06 Mar-07 Jul-07 Nov-07

Figure 2: Soybean meal futures and cash pricésdil basis), 7/2005-12/2007

15



16

2
1.8 ~
1.6
1.4
1.2

1
0.8
0.6 A
0.4 ~
0.2

O T T T T T T

1/6/05 7/6/05 1/6/06 7/6/06 1/6/07 7/6/07 1/6/08
Figure 3: Static and dynamic hedge ratios, soyhesal, GARCH-BEKK, GARCH-
kernel copula

= = -H(OLS)
— H(BEKK)

—— H(copula)

2

= = H(OLS)
— H(BEKK)

1.8

1.6 7 —— H(Copula)

1.4 +
1.2 -

1
0.8

0.6 A
0.4 -

0.2 -

O T T T T T T T T T
01/06/05 05/06/05 09/06/05 01/06/06 05/06/06 09/06/06 01/06/07 05/06/07 09/06/07 01/06/08

Figure 4: Static and dynamic hedge ratios, cornRGAN-BEKK, GARCH-kernel copula



17

160

B CC-GARCH
140 +

E BEKK-GARCH
120 o

B Kernel copula-
100 + GARCH

60

Frequency occurring
(03]
o
|

40

ol — ol

-10000  -5000 -2000 -500 0] 500 2000 5000 10000

Net return ($)

Figure 5: Feed Storage Hedget ReturnNumber of Hypothetical Cases Occurring in
Each Bracket, over 1/2000-9/2006

30

B CC-GARCH

2> 71 | @ BEKK-GARCH
20 - M Kernel copula-
GARCH
15
10
) ‘
0 T I T T T T T -_
-500 0 500

-10000  -5000 -2000 2000 5000 10000

Frequency occurring

Net return (S)

Figure 6: Feed Storage Hedget ReturnNumber of Hypothetical Cases Occurring in
Each Bracket, over 10/2006-1/2008



a3} i}
[} [}
L

Frequency occurring
=

B F=Y
[} [}
L L

[}
'

B
[}
L

B CC-GARCH

E BEKK

M Copula

=
[}
L

i}
[}
L

a3}
[}
L

0 200 400 800 1200 1600 2400 3600
Standard deviation of a 17-week feed hedge ($)

Figure 7: Feed Storage Hedgertfolio Standard DeviatiorNumber of Hypothetical
Cases Occurring in Each Bracket, over 1/2000-9/2006

30

[ul
(a5}
L

o)
o
L

Frequency occurring
=] i

B CC-GARCH
E BEKK-GARCH

M Copula-GARCH

0 100 200 300 400 600 800 1200 1600

Standard deviation of a 17-week feed hedge ($)

Figure 8: Feed Storage Hedgertfolio Standard DeviatiorNumber of Hypothetical
Cases Occurring in Each Bracket, over 10/2006-8200




