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Abstract

Both prices and the volatility of storable agricultural commodity futures contracts
have been rising since 2005 and particularly since 2007. This paper aims to answer
two principal questions: (i) How has the behavior of these futures prices over time
and across maturities changed with the rise of biofuels and their demand-side pres-
sure on corn and related crops?, and (ii) Is there now stronger or weaker evidence
of the Kaldor-Working convenience yield-storage hypothesis, whereby futures price
backwardation can be explained by the high value of remaining inventory stocks when
these are near stockouts? The empirical application is to Chicago Board of Trade
corn, wheat and soybeans futures. To make use of all available futures data rather
than only the nearby, this paper adopts a recently developed affine term structure
model approach and conducts estimation in state-space form using the Kalman filter.
A novel aspect of the research is that it allows an arbitrary number N of state vari-
ables, where more variables provide further precision and curvature but at a higher
computational cost. It is found that a three-state variable model containing both ran-
dom walk and mean reversion components provides the most parsimonious fit during
1988-2004, but that a simple one-state variable model is optimal for the period 2005-
2007. The main implication is that futures prices since 2005 behave much more like
a “random walk” than before. Also, the model allows us to estimate the term struc-
ture of volatility and it is found that distant maturity futures should be expected to
be much more volatile than historically normal. Two practical but only tentative
implications are: (a) hedgers should use significantly lower hedge ratios than before,
and (b) for traders, the classic Black-Scholes option pricing solution should perform
better now than it has historically. Lastly, the paper finds partial empirical support
for the convenience yield relationship with relative inventory stocks, especially for
soybeans and wheat.

JEL Classification Codes: C52, C53, G12, G13, Q13, Q14.

1 Introduction

Agricultural commodity futures and cash prices have been steadily increasing since 2005,
the same year the Federal Government mandated in its Energy Policy Act 7.5 billion
gallons of renewable fuel use by 2012. The biofuels mandate was further increased in
the 2007 Energy Independence and Security Act, and up to now these mandated biofuels
quantities have primarily been met by corn-based ethanol.

The present paper aims to use a novel estimation approach to study changes in the
term structure, or profile, of corn, wheat and soybean futures prices. Affine term struc-
ture models of futures prices provide a theoretically-sound and analytically tractable full-
information estimation framework to study the profile of futures prices. This is in con-
trast with traditional methods that focus only on the nearest maturity futures contract,
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or which analyze each maturity contract price series individually. Indeed, the practice of
splicing together futures price series from different maturity contracts to create a single
pseudo-continuous dataset introduces potentially important biases.

There remains much interest in understanding how commodity futures prices evolve
not only over time but also across maturities, for instance to explain patterns of contango,
backwardation, or kinks. This paper applies to Chicago Board of Trade corn, wheat and
soybean futures data a recently-developed approach to let the number of latent (unobserv-
able) state variables be arbitrarily large and tests for the optimal (parsimonious) number
of factors, where e.g. the simplest one-factor model is the celebrated Black-Scholes geo-
metric Brownian motion model. Seasonality and time-to-maturity are explicitly accounted
for.

Three principal questions are asked:

1. What mix of state variables (i.e. random walk and mean reversion) provides the
most parsimonious model fit for each commodity?

2. Has the underlying price process changed following the biofuels expansion (i.e. since
2005), and if so, what are the trading and risk management implications?

3. Is there a clear relationship between the recovered (net) convenience yield and rela-
tive inventory stocks, and has this relationship changed with the biofuels expansion?

It is found that three factors or state variables is optimal for the time period 2000-
2006 but that over 2006-2007 the nonstationary (geometric Brownian motion) one-factor
model is preferred. Implications are discussed and estimated term structures of volatility
are obtained to evaluate evidence of Samuelson’s maturity effect hypothesis. Finally,
estimated time series of stochastic net convenience yields are recovered and regressed over
normalized inventory levels (inventory over production). The results provide evidence of
a nonlinear, convex relationship between convenience yield and inventories, in support of
the theory.

The outline of this paper is as follows. Section 2 reviews the concept of futures price
term structure or profile. Section 3 presents the affine models used and interprets their
parameters. In Section 4, the state-space representation of the models is developed and
the Kalman filter QMLE estimation approach is discussed. Section 5 reviews data sources
and variables. State-space estimation results are presented in Section 6, and supply of
storage model estimation results are discussed in Section 7. Lastly, Section 8 concludes.

2 The Term Structure of Grain Futures Prices

The profile of futures prices (also called term structure or forward curve) is the cross-
section, on a specific date, of prices for all maturities of futures contracts that are traded
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with nonzero open interest. Papers in this literature consider how to use information from
an unbalanced panel dataset, namely the constellation of futures prices traded at every
business day, to extract estimates of latent (unobservable) variables such as convenience
yield, cost of carry and risk premium. Although these questions have been studied for
several decades, the answers are not entirely satisfactory (Frechette, 1997; Peterson and
Tomek, 2005). More generally, it is well-understood that futures price analyses that use
only the nearby contract (e.g. creating a single time series by splicing together numerous
segments of the nearest maturity contract at each date) sacrifice a great deal of information
and introduce potentially large biases (Smith, 2005). Lastly, such futures profile models
can be used to estimate the term structure of volatility which is related to the implied
volatility of options-on-futures (e.g. Egelkraut, Garcia and Sherrick, 2007).

The objective of modeling the futures profile is to capture stylized facts that are ob-
served in the futures price data in the most parsimonious, yet theoretically sound, model
possible. For example, as illustrated in Figure 1, the futures profile may be described by
a contango shape (prices rising with time-to-maturity) or backwardation shape (prices
falling with time-to-maturity). A large literature has examined the presence of backwar-
dation in storable commodity futures prices and its relationship with storage (Frechette
and Fackler, 1999; Williams and Wright, 1991; Wright and Williams, 1989; Zulauf, Zhou
and Roberts, 2006). Yet, it remains difficult for models of storage to match observed
data (e.g. Deaton and Larocque, 1992, 1996; Chambers and Bailey, 1996). The theory
of storage indeed supports an asymmetrical relationship in prices, and the work of Ng
and Ruge-Murcia (2000) for twelve commodities supports both a convenience return to
inventory holding and an important role for a precautionary demand for stocks to avoid
stockouts.

The conventional explanation for contango is that full carrying charges, including
storage cost, insurance, spoilage and interest rate/foregone financial returns, imply that,
within the same season, futures prices for distant maturities should be higher than futures
prices for nearby maturities. The relationship extends to comparing a futures price with
the spot price, which can be seen as an immediate delivery futures price, controlling for
quality and location differentials. Backwardation, or inverse carrying charges, is more
difficult to explain. A contested but persistent hypothesis is the concept of convenience
yield. We may tie these concepts together in the following equation:

Ft,T = Ste
(r+c−y)(T−t) (1)

whereby futures price is a function of the current spot price, foregone interest rate r,
cost of carry c and convenience yield y, and generally r, c, y � 0. The case r + c− y < 0
gives rise to backwardation and may be interpreted as a positive net convenience yield,
and vice versa. If we examine, for instance, historical data on daily futures settlement
prices for the six nearby maturities in Chicago Board of Trade corn, we can observe the
following. The forward curve since 1997 has been generally in contango, which means
futures contracts farther in maturity are priced higher. From 1993 to 1997 and during a
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few brief additional periods of time, the forward curve was generally in backwardation.

If backwardation is to be explained by relatively scarce inventory stocks, then one could
regress the time series of net convenience yields over a time series of relative inventory
stocks, using e.g. USDA data on inventories and production. Theory suggests a nonlinear
relationship because the usefulness of inventories increases greatly as they become scarce.
This approach and some variants are what a number of papers in the literature have done
(e.g. Carter and Giha, 2007; Chavas, Despins and Fortenbery, 2000; Geman and Nguyen,
2005; Sorensen, 2002).

This paper adopts a recently-developed approach by Cortazar and Naranjo (2006)
based on the estimation of a state-space formulation of the futures profile. The state-
space estimation is done using Quasi-Maximum Likelihood Estimation and the Kalman
filter (Harvey, 1989). The parameter estimates obtained from this estimation method
and the data can be used to recover a time series of the (stochastic net) convenience yield
associated with futures prices at each date in time. The convenience yield can then be
regressed over a measure of relative inventory stocks based on USDA data, to test the
Kaldor-Working supply of storage hypothesis.

3 Affine Models of Futures Prices

Two principal approaches have been used in the literature to model the term structure
of contingent claim prices. The first, pioneered by Brennan and Schwartz (1985) and
Gibson and Schwartz (1990), estimates the unobservable convenience yield of an asset,
real or financial. The second, developed by Schwartz and Smith (2000), uses the results of
Duffie, Pan and Singleton (2000) and Dai and Singleton (2000) to model the asset value
as an affine function of (generally unobservable) state variables. This second approach is
more general and allows that an estimate of convenience yield can generally be recovered
from the affine model. Affine models of asset prices have grown from a large literature that
spans mainly interest rate (e.g. Duan and Simonato, 1999; deJong and Santa-Clara, 1999)
and commodity derivatives (Cassassus and Collin-Dufresne, 2005; Richter and Sorensen,
2002; Routledge, Seppi and Spatt, 2000).

Since the seminal work of Schwartz (1997), which reformulated a number of previous
contributions into a unified framework, Roberts and Fackler (1999) and Sorensen (2002)
provided the first applications to agricultural commodities. Refinements were provided by
Schwartz and Smith (2000) while Duffie, Pan and Singleton (2000) and Dai and Singleton
(2000) showed how affine models obtain from the traditional risk-neutral probability mea-
sure pricing approach. Fackler and Tian (2003) further updated the application of affine
models to agricultural commodity futures and Lin and Roberts (2006) applied a related
model to nonstorable commodity futures prices. Smith (2005) proposed a closely-related
estimation approach.

Briefly, the idea consists of letting the log-futures price at time t and expiry T be

5



an affine function of latent (unobservable) state variables that are to be estimated via
the Kalman filter. This is in contrast with a previous, related literature that considered
observable state variables (e.g. Gibson and Schwartz, 1990). A further strand of the
literature, which is not explored here, relates the model to both futures and options data
in order to obtain improved option pricing solutions (e.g. Trolle and Schwartz, 2006).

We may write for instance, for maturity j ∈ 1, ..., J :

ln(Ft,Tj
= s(t) +

N∑
i=1

xi(t, Tj) (2)

where s(t) is a deterministic, sinusoidal function that captures seasonal variation that
is essential for such agricultural commodities as corn or wheat, and each xi is a state
variable.

To explain the role played by these state variables, or factors, consider the simple
geometric Brownian motion of Black-Scholes-Merton’s celebrated option pricing solution.
In this model, the asset price is affected by a drift term and a diffusion. It is also
nonstationary and is often associated with the discrete-time “random walk”. Another
well-known one-factor model is the Ornstein-Uhlenbeck mean-reversion model popularized
by Vasicek (1977) in the interest rate literature. Both of these one-factor models are nested
in the affine class and can be used to model the term structure of futures prices.

The first problem is that, as Irwin, Zulauf and Jackson (1996) have showed, futures
prices (unlike cash prices) are not well-described by a pure mean-reversion process and are
rather like a martingale and therefore closely related to the random walk. However, futures
contracts are often characterized by Samuelson’s maturity effect (1965; also Anderson
and Danthine, 1983), whereby the volatility of futures prices increases as expiry nears
(equivalently, volatility is decreasing in time-to-maturity). This result should however not
hold if futures prices are well-described by a random walk (Rutledge, 1976). Empirical
research into this term structure of volatility has generally found support for Samuelson’s
maturity effect, such that pure gBm does not describe prices well enough.

It therefore appears that agricultural commodity futures prices should be well-described
by a mix of mean-reversion and random walk components, and the affine class provides a
convenient framework for the empirical estimation of such models. Building on Roberts
and Fackler (1999), Sorensen (2002) considers the case of one geometric Brownian motion
state variable and one Ornstein-Uhlenbeck state variable, in addition to a deterministic,
seasonal function of sines and cosines. Cortazar and Naranjo (2006) show, in the case of
crude oil futures, how the affine class allows for an arbitrarily large number N of state
variables, potentially greater than the 1-3 factors used in the literature.

Although additional factors should improve the model fit, they also increase the com-
putational cost of estimation substantially. Why is it desirable to estimate a model with a
large number N of factors? Consider that while modern term structure models of interest
rates need only three factors to explain 97% of the forward curve dynamics, Koekkebakker
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and Ollmar (2005) found that ten factors were needed to explain 95% of the Nordic elec-
tricity term structure, using the Health, Jarrow and Morton (1992) model.

Solving by no-arbitrage the spot-futures price relationship (Cox and Ross, 1976) pro-
vides the solution to the futures price as an affine function of the seasonal variable, the
state variables and the time to maturity:

F (xt, t, T ) = EQ
t (ST ) (3)

and it is assumed that the log of the spot price is an affine function of N different
states variables as well as a deterministic seasonal function and parameters reflecting the
long-run drift of one assumed nonstationary state variable:

ln(Pt) = µ− 1

2
σ2 + s(t) +

N∑
i=1

xi,t (4)

where the deterministic seasonal function of time is:

s(t) =
K∑
k=1

(γk cos(2πkt) + γ∗k sin(2πkt) (5)

and where K = 2 (annual and semestrial seasonality) is the optimal number of sinusoidal
terms based on Akaike Information Criterion tests.

The state variable dynamics are solved using the Feynman-Kac general solution ap-
proach to parabolic partial differential equations and follows Black and Scholes (1973),
Merton (1973) and Black (1976):

dxt = −Kxtdt+ Σdwt (6)

where the diagonal of the matrix K contains the mean-reverting parameters κ, the
diagonal of the matrix Σ contains the diffusion parameters σ and any two Brownian
motions wij have a correlation coefficient of ρij.

It should be noted however that commodities are not a traditional asset because the
usual no-arbitrage condition is not met. Indeed, commodity markets are incomplete and
the risk-neutral probability measure, under which a solution to the asset dynamics may
be obtained, needs not be unique (Schwartz, 1997).

An explanation of the economic meaning associated with the parameters to be esti-
mated is useful. The first state variable, defined as nonstationary geometric Brownian
motion, represents permanent changes caused for example by economic shocks in tech-
nology and preferences. It is associated with a long run drift term µ, a risk premium λ1
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and a diffusion σ1, the latter capturing variability through Brownian motion. The risk
adjusted drift is then µ−λ1 + 0.5σ2. The effect of time-to-maturity is incorporated in the
stationary, mean-reverting state variable(s). These are driftless and associated with speed
of mean reversion parameters κj, diffusions σj, risk premia λj and between-state variable
correlation coefficients ρij. Note that the geometric Brownian motion state variable has
a speed of mean-reversion κ = 0, i.e. its shocks are permanent. The half-life of transitory
shocks can be measured using each of the κ terms.

The term structure of futures price volatility is obtained from the estimated diffusion
and correlation parameters:

σ2
F (T − t) =

N∑
i=1

N∑
j=1

σiσjρije
−(κi+κj)(T−t) (7)

This means the volatility term structure is constant for the simple one-factor model
case: σ2

F (T − t) = σ2
F = σ2

1, as claimed by Rutledge (1976), but it is however dependent
on maturity when two or more state variables are used.

To account for backwardation and contango, convenience yield is best modeled as
asymmetric and non-constant. This is because inventories cannot be negative. Therefore
an additional source of data, commodity inventory stocks or a proxy thereof, is necessary
to model the asymmetry of convenience yields. Routledge, Seppi and Spatt (2000) develop
such a term structure model and apply it to crude oil futures data. Casassus and Collin-
Dufresne (2005) further enrich this model by incorporating stochastic interest rates and
time-varying risk premia. This paper does not adopt their more general setup because
previous research has found that for agricultural commodity futures interest rate risk is of
little consequence and risk premia are small and seldom significantly different from zero.

An entirely different approach which is mentioned here but not pursued is to use the
information contained in options to model the term structure of both volatility and futures
prices. For example, Egelkraut, Garcia and Sherrick (2007) use the implied volatility
from commodity options on futures to estimate the term structure of volatility. They
find that, at least for the nearby interval, implied volatility leads to better forecasts than
do methods that use historical volatility, but the forecasting power of option implied
volatility is limited when the derivative has a small trading volume.

3.1 Recovering the Net Convenience Yield

A longstanding question in the literature on commodity markets, fiercely debated since
the days of Keynes, Kaldor and Hicks, concerns the existence of a convenience yield.
Simply stated, the convenience yield is a value to holding commodity stocks, explained for
example by the benefits of positive inventories to maintain a smooth running commercial
operation. This concept is at the heart of discussions of the shape of commodity prices
at different maturities (contango and backwardation).
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In the simplest model of the forward price curve for commodities, the following rela-
tionship holds at all times:

F (t, T2) = F (t, T1)e(r+c−y)(T2−T1) (8)

where F (t, Tj) is the futures price for a contract expiring at time Tj, r is the risk-free
rate of interest (e.g. 3-month U.S. Treasury bill), c is the cost of carry and y is the
convenience yield. In this simple model, the shape of the forward curve (futures prices
over time to maturity) depends only on the net convenience yield: y − r − c.

Note that the present approach does not allow for identification of both convenience
yield and cost of carry. Rather, only the net convenience yield (or alternatively, net cost
of carry) may be obtained.

4 Kalman Filter QML Estimation of State-Space Model

The Kalman filter is used to estimate the maximum likelihood parameters of the state-
space model of futures prices. The two most important issues in this estimation problem
consist of dealing with the reduced form identification problem and providing the Kalman
filter with sensible starting values. To this end, we use theory-derived covariance matrix
restrictions to enable parameter identification (see Cortazar and Naranjo, 2006), and we
initialize the estimation using the parameter estimates found by Sorensen (2002). Harvey
(1980) and Aoki (1996) provide complete textbook treatments of state-space estimation
using the Kalman filter.

Duffee and Stanton (2004) find that the Kalman filter QMLE approach is preferable
to alternative estimation methods such as Efficient Method of Moments and Simulated
Maximum Likelihood, because it has better finite sample properties and also because it
is computationally faster.

We follow most closely Sorensen’s (2002) estimation structure but with a few differ-
ences, mainly that we evaluate different N -factor models and choose the best fit using
Likelihood Ratio tests. Also, Sorensen lets the number of traded maturities on any given
day vary, that is on a day n the contracts traded are 1, ...,Mn. In contrast, we use only
the five contracts closest to maturity. Reasons are twofold: beyond the fifth contract are
contracts for more than a year away, and trade volume is generally relatively small.

The state-space model is based on a measurement equation and a transition (state)
equation. The transition equation for a given observation t ∈ {1, 2, ..., T} is:

Xt+1 = a+ AXt + ηt (9)

where:
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a = (µ− 1

2
σ2, 0, 0, 0)′ (10)

and

A =


1 0 0 0
0 e−κ2∆ 0 0
0 0 e−κ3∆ 0
0 0 0 e−κ4∆

 (11)

and for the case of three state variables, the state variable covariance matrix, including
cross-term restrictions necessary to identify all parameters, is Var(η) = Ση =: σ2

1∆ ρ12σ1σ2

κ2
(1− e−κ2∆) ρ13σ1σ3

κ3
(1− e−κ3∆)

ρ12σ1σ2

κ2
(1− e−κ2∆)

σ2
2

2κ2
(1− e−2κ2∆) ρ23σ2σ3

κ2+κ3
(1− e−(κ2+κ3)∆)

ρ13σ1σ3

κ1+κ3
(1− e−(κ1+κ3)∆) ρ23σ2σ3

κ2+κ3
(1− e−(κ2+κ3)∆)

σ2
3

2κ3
(1− e−2κ3∆)

 (12)

The covariance matrix given four state variables follows straightforwardly from the
above three-state variable matrix.

The measurement equation is:

Yt = ct + CtXt + εt (13)

where:
cn = (s(τ 1

t ) + A(τ 1
t − t), ..., s(τMt ) + A(τMt − t))′ (14)

and

C =

1 e−κ(τ1
t −t)

...
...

1 e−κ(τM
t −t)

 (15)

and εt is distributed IID Normal with mean zero and covariance Ht = σ2
ε It.

The Kalman filter is initialized with starting values for the state variables and covari-
ance, then computes one-step ahead forecast errors between forecast and actual obser-
vations. The exact diffuse prior of Durbin and Koopman (2001) is used to improve the
behavior of the transition covariance matrix.

The N-factor Gaussian model of Cortazar and Naranjo (2006) nests most Gaussian
term structure models. They show how the affine transformation results of Dai and Single-
ton (2000) enable any model in this literature that satisfies the same basic assumptions
to be written in a canonical Gaussian form. Although innovations are unlikely to be
Gaussian Normal, the QMLE procedure is consistent.

The present model therefore combines features from their model as well as Roberts
and Fackler’s and Sorensen’s.
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The simplest model nested in the Gaussian N-factor framework lets the log of futures
prices be an affine function of one nonstationary state variable in addition to parametric
terms:

log(F (t, T j)) = µt+ (µ− λ+
1

2
σ2)(T j − t) + s(t) + xt + ωt (16)

xt =

(
µ− 1

2
σ2

)
+ xt−1 + νt (17)

where s(t) is the sinusoidal deterministic function described earlier, (T j − t) is the
time to maturity for contract j, expressed in a fraction of a year.

The second and additional factors are mean-reverting state variables. They are asso-
ciated with short-run, short-lived effects and provide additional precision for the shape
of the forward curve and moreover to describe Samuelson’s maturity effect. They are
associated with the remaining time to maturity and help to recover the net convenience
yield.

The two-factor model is then:

log(F (t, T j)) = s(t) + µt+

(
µ− λ1 +

1

2
σ2

1

)
(T j − t) + x1,t +

e−κ2(T j−t)x2,t −
λ2

κ2

(
1− e−κ2(T j−t)

)
+

1

2
σ1σ2ρ12

(
1− e−κ2(T j−t)

κ2

)
+ ωt

xt =

(
µ− 1

2
σ2, 0

)T

+ Axt−1 + νt (18)

where the matrix A is:

A =

(
1 0
0 e−κ2∆

)
(19)

and where ∆ = 0.004 is the sample time step obtained by dividing the unit time
interval (one year) by the number of steps (250 business days in a year). The restriction
κ1 = 0 is imposed because the first state variable is nonstationary and a speed of mean-
reversion parameter must be zero.

Including a second mean-reverting state variable implies the following three-factor
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state-space model that previous research has found optimal:

log(F (t, T j)) = s(t) + µt+

(
µ− λ1 +

1

2
σ2

1

)
(T j − t) +

x1,t + e−κ2(T j−t)x2,t + e−κ3(T j−t)x3,t −
λ2

κ2

(
1− e−κ2(T j−t)

)
− λ3

κ3

(
1− e−κ3(T j−t)

)
+

1

2

∑
i∗j 6=1

σiσjρij

(
1− e(κi+κj)(T j−t)

κi + κj

)
+ ωt

xt =

(
µ− 1

2
σ2

1, 0, 0

)T

+ Axt−1 + νt (20)

where the matrix A is:

A =

1 0 0
0 e−κ2∆ 0
0 0 e−κ3∆

 (21)

Adding further state variables leads to 4-, 5- and higher number factor models. These
follow in a straightforward manner but involve a cumbersome number of parameters. Each
additional state variable contributes 3+(N -1) more parameters.

5 Data

This paper uses weekly frequency (Wednesday) settlement prices for futures contracts of
the six nearest maturities for Chicago Board of Trade corn, wheat and soybeans over
the time period 1/1/1988 to 3/1/2007 obtained from Thomson Datastream and U.S.
production and inventory stocks quarterly data over the same time period. There is a
total of 996 time series futures price observations per maturity and per commodity, and a
total of 77 time series observations for both inventory and production, for each commodity.

Some previous research papers have used data as far back as the 1970s, but we are
concerned about the effect of the more heavily regulated market structure during that
time period. For example, over 1979-1984 corn prices were subject to Government floor
price targets as well as other supply controls.

The analysis is conducted separately for each of three agricultural commodities and
for each of two sub-samples. The period 1/1988-12/2004 inclusive is considered “pre-
ethanol”, while the 1/2005-3/2007 period is “post-ethanol”. A more accurate analysis
would benefit from extending the dataset to the present (5/2008) in order to divide the
samples in 2006 closer to the true structural break (October 2006).
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6 Futures Profile Estimation

The present paper reports only the preliminary results of this research, which need to be
further refined and revised, because at this stage they are numerically unstable and lead
to possibly unreliable standard errors (and thus, hypothesis tests), even if one computes
the robust QML standard errors.

6.1 Results for 1/1988-12/2004

For the pre-ethanol time period, we confirm that the three-factor mixed model that has
been found optimal for non-agricultural commodity futures is also the best for corn,
wheat and soybeans, based on Likelihood Ratio tests. This model is characterized by
both permanent and transitory shocks.

The long-run trend, captured by µ, is about zero (0) for all three commodities. This
finding is consistent with the absence of a definite time trend in commodity prices before
the biofuels expansion.

The speed of mean-reversion parameters are about 0.6 for corn and soybeans, which
imply a half-life of temporary shocks around 6 months, which is longer than what Sorensen
(2002) previously found. For wheat however it is about 3.2, which implies a half-life of
only one month.

All risk premia (market prices of risk) are positive but small. This confirms previous
findings in the literature that markets prices of risk are small for agricultural commodity
futures.

6.2 Results for 1/2005-3/2007

The smaller data sample covers the period 1/2005 to 3/2007, during which time the
Federal Government mandated a substantial increase in biofuels production and use, pri-
marily met by ethanol in the early stages. As ethanol is produced from corn, it is no
surprise that prices of corn and related crops such as wheat and soybeans have increased
substantially.

The principal finding here is that we cannot reject the simple, one-factor model as
the best-fitting description of the futures data, for all three commodities. The only state
variable is geometric Brownian motion, therefore all shocks are permanent and prices
behave much more like a random walk than is historically the case. Moreover, the long-
run trend or drift term is now strongly positive, which is also evident from time plots of
prices. The intuition appears to be that markets “self-correct” less than before. In the
3-factor model that is rejected by the Likelihood Ratio test, the speed of mean reversion
parameters lie in the range of 1.51 to 1.91, such that the half-life of a shock is about two
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months, for all three commodities.

Lastly, risk premia have all approximately doubled. This is plausible, because futures
prices are martingales under the risk-neutral measure, yet since 2005 we observe both
much higher price volatility and also a clear upward trend or drift in prices.

6.3 Volatility Profile of Futures Prices

The volatility profile (or term structure) of futures is a plot of estimated volatility asso-
ciated with each maturity contract as a function of time-to-maturity. As noted earlier,
a one-factor gBm model implies a flat line and contradicts Samuelson’s maturity effect
hypothesis, according to which the volatility profile should a downward slope, decreasing
as time-to-maturity increases. One approach to studying volatility profiles is to use data
from options-on-futures and their implied volatility estimates (e.g. Egelkraut, Garcia and
Sherrick, 2007).

The approach taken in this paper is to compute the volatility profile using the esti-
mated parameters from the above models and equation (7). The results are presented in
Figures 2-4 for corn, soybeans and wheat, respectively.

The results for corn (Fig.2) and soybeans (Fig.3) are quite similar. In the pre-ethanol
sub-sample, volatility is clearly decreasing in time-to-maturity as would be expected from
the maturity effect. However, in the post-ethanol sub-sample, volatility both higher for
all maturities than in the previous time period and is only slightly decreasing in time-to-
maturity. This important change between the two time periods is even clearer in the case
of wheat (Fig.4). Here, volatility has at least doubled for all maturities in the more recent
period and the profile is essentially flat across time-to-maturity, indicating an absence
of Samuelson’s maturity effect. This reflects the stylized fact that futures prices are
behaving more like a random walk, with much less mean reversion present. Moreover, it
helps explain why in the recent time period the simple one-factor gBm model cannot be
rejected.

7 Supply of Storage

The supply of storage relationship proposed by Working follows closely the concept of
convenience yield from avoiding stock-outs that was first argued by Kaldor and later
generalized by Telser among others. More recently, Carter and Giha (2007) have revisited
and found support for Working’s classic study. Chavas, Despins and Fortenbery (2000)
provide a related but more general analysis based on a transaction cost theory that nests
the supply of storage hypothesis. Other related, recent work includes Geman and Nguyen
(2005) and Karali and Thurman (2007).

The net convenience yield is computed based on Sorensen (2002, equation (12), p. 417)
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but is adjusted to reflect the greater number of state variables. The net convenience yields
have been computed on a weekly basis, but to match the quarterly frequency inventory
and production data, the matching date observation is selected.

Theory suggests a nonlinear relationship between (net) convenience yield and relative
inventories, the latter defined as the ratio of US inventory stocks over US production. A
simple functional form that may be estimated using nonlinear least squares is:

δt(0.25) = β0 + β1

(
It
Qt

)β2

+ εt (22)

Figures 5 and 6 illustrate two cases: a concave relationship where the exponent β2 > 1
(Fig.5) and a convex relationship where 0 < β2 < 1. The latter is supported by the
theory. This is intuitive, because one expects convenience yield to be highly responsive to
inventory changes at low inventory levels (near stock-outs), but unresponsive to inventory
changes at high inventory levels.

Our preliminary empirical results find evidence in support of the theory-predicted
convex relationship for wheat and soybeans, but not corn. Note that Sorensen (2002) also
was unable to find empirical support for a convex relationship.

It is not entirely surprising, in light of a number of studies such as Brennan, Williams
and Wright (1997) who found that negative returns to storage may well be non-robust
artifacts of the data.

8 Conclusions

The principal objective of this paper was to investigate, using a recently-developed full-
information estimation method, the effect of the structural break in agricultural commod-
ity prices that is partly due to the recent biofuels expansion. The paper asked three main
questions: (1) What mix of random walk and mean reversion components best describes
futures prices for storable grain/oilseed agricultural commodities?, (2) How, if at all, has
the underlying price process changed for each commodity since the rise of biofuels?, and
(3) Can we measure a clear relationship between the recovered (net) convenience yield
and relative inventory stocks?

We have found that in the pre-ethanol time period, a three-factor mix of geometric
Brownian motion and mean-reverting state variables provides the best fit to the corn,
soybeans and wheat data and matches previous findings such as the martingale property
and Samuelson’s maturity effect. In the post-ethanol period, however, we cannot reject
the simple one-factor gBm model as the best description of futures prices, again for all
three commodities. In this more recent period, prices behave much more like a random
walk than before and risk premia, historically small, appear to have about doubled.
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Moreover, our model is able to replicate the stylized fact that the volatility of futures
prices have increased substantially, and that prices for distant maturities are nearly as
volatile as nearby maturity prices (in contradiction with the maturity effect).

Lastly, we use the estimated parameter and state variable results to compute the net
convenience yield over time and regress these data over the ratio of quarterly US inventory
stocks to US production. We are able to confirm a nonlinear, convex relationship for wheat
and soybeans but the results are less clear for corn.

Although the state-space approach using the Kalman filter is powerful, it is also com-
putationally challenging to ensure that the right optima are attained. In fact, as the
developers of the R programming language explain (R Development Team, 2006, pp.
1220):

“Optimization of structural models is a lot harder than many of the references
admit. For example, the Air Passengers data are considered in Brockwell &
Davis (1996): their solution appears to be a local maximum, but nowhere near
as good as that produced by [R procedure] StructTS. It is quite common to
find fits with one or more variances zero, and this can includes σ2

e”.

This paper has contributed an application of a novel empirical strategy to evaluate
important changes in the behavior of agricultural commodity futures prices. We are able
to confirm that a fundamental change appears to have taken place since 2005 in the
hypothetical data generating process explaining prices over time and across maturities.

The next step, currently in progress, is to establish more formally, using Mean Absolute
Error criteria, that the present models provide superior in-sample tracking and out-of-
sample forecasting of price data.

9 References

Anderson, R.W. and J.-P. Danthine (1983). The Time pattern of hedging and the volatil-
ity of futures prices. Review of Economic Studies, 50:249-66.

Aoki, M. (1996). A New Approach to Macroeconomic Modeling, New York: Cam-
bridge University Press.

Bessembinder, H., J. F. Coughenour, P. J. Seguin and M. M. Smoller (1995). Mean
reversion in equilibrium assets prices: evidence from the futures term structure. Journal
of Finance, 50, 361-75.

Bessembinder, H., J. F. Coughenour, P. J. Seguin and M. M. Smoller (1996). Is there
a term structure of futures volatilities? Reevaluating the Samuelson hypothesis. Journal
of Derivatives, Winter, 45-58.

16



Black, D. (1986). Success and failure of futures contracts: Theory and empirical evi-
dence, monograph series in finance and economics, Monograph #1986-1, Salomon Broth-
ers Center, Graduate School of Business, New York University.

Black, F. (1976). The Pricing of commodity contracts. Journal of Financial Eco-
nomics, 3, 167-79.

Black, F. and M. Scholes (1973). The pricing of options and corporate liabilities.
Journal of Political Economy, 81, 637-59

Brennan, D., J.C. Williams, and B.D. Wright (1997). Convenience Yield without
the Convenience: A Spatial-Temporal Interpretation of Storage under Backwardation.
Economic Journal 107(443):1009-22.

Carter, C. A. (1999). Commodity futures markets: A survey. Australian Journal of
Agricultural and Resource Economics, 43, 209-47.

Chambers, M. J and R.E. Bailey (1996). A Theory of Commodity Price Fluctuations.
Journal of Political Economy, 104(5):924-57.

Cassassus, J. and P. Collin-Dufresne (2005). Stochastic Convenience Yield Implied
from Commodity Futures and Interest Rates. Journal of Finance 60(5):2283-331.

Cortazar, G. and L. Naranjo (2006). An N-Factor Gaussian Model of Oil Futures
Prices. Journal of Futures Markets, 26(3): 243-68.

Cox, J.C. and S.A. Ross (1976). The Valuation of options for alternative stochastic
processes. Journal of Financial Economics 3, pp. 145-66.

Dai, Q. and K. Singleton (2000). Specification Analysis of Affine Term Structure
Models. Journal of Finance, 55(5).

Danthine, J.-P. (1978). Information, futures prices and stabilizing speculation. Jour-
nal of Economic Theory, 17, 79-98.

de Jong, F. and P. Santa-Clara (1999): The Dynamics of the forward interest rate
curve: A formulation with state variables, Journal of Financial and Quantitative Analysis,
34:131-57.

Duan, J.-C. and J.-G. Simonato (1999): Estimating and testing exponential-affine
term structure models by Kalman filter, Review of Quantitative Finance and Accounting,
13:111-35.

Duffee, G. and R. Stanton (2004). Estimation of dynamic term structure models.
Working paper, U.C. Berkeley.

Duffie, D., J. Pan, and K. Singleton (2000). Transform analysis and asset pricing for
affine jump-diffusions, Econometrica, 68:1343-76.

Egelkraut, T., P. Garcia and B. Sherrick (2007). The Term Structure of the Implied

17



Forward Volatility: Recovery and Informational Content in Corn Options. American
Journal of Agricultural Economics 89:1-11.

Fama, E. and K. French (1987). Commodity futures prices: Some evidence on forecast
power, premiums, and the theory of storage. Journal of Business 60(1): 55-73.

Fama, E. and K. French, (1988). Business cycles and behavior of metals prices. Journal
of Finance, 43, 1075-93.

Geman, H. and V. Nguyen (2005). Soybean inventory and forward curve dynamics.
Management Science 51(7): 107691.

Gibson, R. and E.S. Schwartz (1990). Stochastic convenience yield and the pricing of
oil contingent claims. Journal of Finance, 45: 959-76.

Hamilton, J.D. (1994). Time series analysis. Princeton, NJ: Princeton University
Press.

Harrison, J. and D. Kreps (1978). Speculative behavior in a stock market with het-
erogeneous expectations. Quarterly Journal of Economics 92, pp. 323-36.

Harvey, A. C. (1989). Forecasting, Structural Time Series Models and the Kalman
Filter. Cambridge, UK: Cambridge University Press.

Irwin, S.H., C.R. Zulauf and T.E. Jackson (1996). Monte Carlo Analysis of Mean
Reversion in Commodity Futures Prices. American Journal of Agricultural Economics,
78(2):387-99.

Karali, B. and W. Thurman (2007). Volatility Persistence in Commodity Futures:
Inventory and Time-to-Delivery Effects. University of Georgia working paper.

Koekebakker, F. and S. Ollmar (2005). Forward curve dynamics in the Nordic elec-
tricity market, Managerial Finance 31 (6):74-95.

Lin, C., and M.C. Roberts (2006). A term structure model for commodity prices:
Does storability matter? Proceedings of the 2006 NCCC-134 Conference on Applied
Commodity Price Analysis, Forecasting and Market Risk Management.

Miltersen, K.R. (2003). Commodity price modeling that matches current observables:
a new approach. Quantitative Finance, 3:1, 51-58.

Ng, S. and F.J. Ruge-Murcia (2000). Explaining the Persistence of Commodity Prices.
Computational Economics, 16: 149-71.

Nielsen, M. J. and E. S. Schwartz (2004): Theory of Storage and the Pricing of
Commodity Claims, Review of Derivatives Research, 7:5-24.

Richter, M. and C. Sorensen (2002). Stochastic volatility and seasonality in commodity
futures and options: the case of soybeans. Working paper. University of Copenhagen
Business School.

18



Roberts, M. C. and P. L. Fackler (1999). State-space modeling of commodity price
term structure. Selected Paper presented at the annual meeting of the American

Routledge, B.R., D.J. Seppi and C.S. Spatt (2000). Equilibrium Forward Curves for
Commodities. Journal of Finance, 55(3): 1297-1338.

Rutledge, D.J.S. (1976). A Note on the Variability of Futures Prices. Review of
Economics and Statistics, 58: 118-20.

Samuelson, P. A. (1965). Proof that Properly Anticipated Prices Fluctuate Randomly,
Industrial Management Review, 6: 41-49.

Schwartz, E. S. (1997). The Stochastic behavior of commodity prices: Implications
for valuation and hedging, Journal of Finance, 52:923-73.

Schwartz, E.S. and J.E. Smith (2000). Short-term variations and long-term dynamics
in commodity prices. Management Science, 46: 893-911.

Smith, A. (2005). Partially overlapping time series: A new model for volatility dy-
namics in commodity futures. Journal of Applied Econometrics, 20:3, 405-22.

Sorensen, C. (2002). Modeling seasonality in agricultural commodity futures. Journal
of Futures Markets, 22, 393-426.

Trolle, A. and E. Schwartz (2006): A general stochastic volatility model for the pricing
and forecasting of interest rate derivatives, Working paper, UCLA and NBER # 12337.

Williams, J. C. and B. D. Wright. 1991. Storage and Commodity Markets. Cam-
bridge, UK: Cambridge University Press, 502 p.

Wright, B.D. and J.C. Williams (1989). A Theory of Negative Prices for Storage.
Journal of Futures Markets, 9(1): 1-13.

19



 
Figure 1: Wheat futures price profile, Dec. 6th 2004 and Dec. 21st 2006 
 

 
Figure 2: Profile of corn futures price volatility implied by 3-factor model 



 
Figure 3: Profile of soybean futures price volatility implied by 3-factor model 

 
Figure 4: Profile of wheat futures price volatility implied by 3-factor model 



 
Figure 5: Illustration of net convenience yield as a nonlinear function of the ratio of inventories to 
production, here for an exponent >1 
 

 
Figure 6: Illustration of net convenience yield as a nonlinear function of the ratio of inventories to 
production, here for an exponent <1 
 


