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The Fallacy of Nearby Contract Commodity Futures Price Analysis:

Intramarket Futures Contracts Are Not Identically Distributed

Commodity futures represent a substantial share of futures market activity and are

an essential price discovery mechanism for the agricultural sector.  Following the lead of

the financial futures literature, nearby contract price series have become a standard for

commodity futures price analysis, although financial and commodity futures may not

follow similar price generating processes (Blank 1991; Yang and Brorsen 1995).  Nearby

contract futures price series are a composite of the maturing segments of all available

seasonal contracts.1

Many uses of a nearby contract price series rely on the assumption that individual

contracts are identically distributed.  For instance, a farmer looking to hedge price risk for

an expected September harvest or a baked goods manufacturer looking to do the same for

year-end increases in flour demand wish to trade in September and December wheat

futures contracts, respectively, and therefore to know the statistical properties of the data

generating processes underlying the pricing of those contracts.  A composite such as the

nearby contract series offers a satisfactory proxy only if it evinces the same statistical

characteristics as the specific contract of interest.  The literature on commodity storage

(e.g., Williams and Wright 1991; Deaton and Laroque 1992), however, suggests spot

price distributions should vary with seasonal differences in storage volumes, information
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 For example, a nearby contract series on Chicago Board of Trade winter wheat futures
would include prices on the March contract until it matured, at which time it would
contain prices from the May contract until it matured, when it would roll to the July
contract, and so on. 
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arrival, and the nature of supply and demand shocks.  Since spot and futures markets are

intrinsically linked, one might suspect significantly different statistical properties among

intramarket futures contract price series.  A composite series of futures prices may fail to

capture the basic statistical properties of any or all of the underlying contracts.  This paper

uses winter wheat futures price data to test the appropriateness of analyzing nearby

contract price series as a proxy for specific delivery contracts. 

Futures Price Behavior

Nearby contract analysis’ popularity is based on the assumption that the maturing

contract is always an appropriate proxy for more distant contracts.  The root of this

assumption is the common belief that the maturing period of a contract experiences the

greatest interest, and thus volume of transactions, generating superior liquidity and more

efficient pricing.   Although it is true that average daily trading volume is higher in the

maturing period of a contract (Table 1), the majority of trading occurs outside of this

period and daily trading volumes are substantial in the early period (i.e., that are not

included in a nearby contract).  Indeed, average daily trading volumes in the early period

of some contracts (December) exceed those in the maturing period of others (May). 

Moreover, the maturing period appears to be of varying significance across contracts as

evidenced by the absolute and relative differences in volume traded at the end of contracts.

If there are no significant differences between intramarket contracts,2 a nearby
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 We use the term "market" to refer to the underlying commodity on a particular exchange,
e.g., soft red winter wheat on the Chicago Board of Trade.  Within each futures market
there are multiple contracts, each having a different delivery date.
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contract price series should permit relatively smooth rolling of hedges across sequenced

contracts, as is necessary for market participants undertaking anything other than short-

duration hedging (i.e., 60 or fewer days).  If, however, the specific contract prices do not

follow the same data generating process, analysis of nearby contract price series will yield

inconsistent estimates of the contract price distribution(s) of interest due to

misspecification.

There are theoretical reasons to expect significant differences across individual

contracts.  While it does not offer a complete explanation of commodity price behavior, a

rational expectations competitive storage model can nonetheless explain a number of

empirical regularities in commodity spot price series, including positive skewness, the

existence of rare but violent explosions in prices, and a high degree of price

autocorrelation in more stable periods (Williams and Wright 1991; Deaton and Laroque

1992).  But these properties result from underlying storage, information and innovation

patterns that influence speculative agents' expectations and equilibrium pricing behavior

and which may vary across seasonally distinct futures contracts.

Recent empirical findings also cast doubt on the appropriateness of composite,

nearby contract prices as a proxy for specific commodity futures contract price series.  For

example, Thilmany, Li and Barrett (1996) found significant differences between May and

September winter wheat futures prices.  The latter matures following the U.S. harvest,

during a season of considerable inventories, while the former matures just prior to harvest,

when inventories hit seasonal lows.  Contracts maturing at different points of the year may

follow significantly different price generating processes, probably due to sharp seasonal

differences in inventories, information availability, and the nature of demand and supply
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shocks. 

Understanding intramarket differences in futures pricing has practical importance. 

Producers, elevators, processors or manufacturers hedging through futures markets to

mitigate price risk tend not to use all contract delivery months uniformly.  These agents

need information on the price behavior and optimal hedging strategy related to a (few)

particular contract(s), not to the composite nearby contract price series commonly studied

by researchers.  This is not always taken into consideration when developing appropriate

analytical, hedging and general investment tools (CBOT 1984; Hull 1994).  The recent

controversy surrounding hybrid contracts is one relevant example.  Hybrid contracts rely

on hedgers’ ability to roll nearby hedges across contracts and growing seasons.  Recent

negative publicity and legal action surrounding such contracts calls hybrids into question

(Harl 1996).

Empirical Analysis

We use daily soft red winter wheat futures contract price data from the close of

each trading day on the Chicago Board of Trade, January 1991 to December 1995

inclusive.  We include each of the five different soft red winter wheat contracts—March,

May, July, September and December—in the analysis along with the nearby contract series

constructed from those data.  Table 2 presents simple descriptive statistics of these six

series. Although there are many similarities across the contracts (i.e., high autocorrelation

and low persistence), the nearby contract series appears to be more variable, less

positively skewed and less leptokurtic than any of its component contracts.

We model each futures price series as an autoregressive integrated moving average
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(ARIMA) process.  First, augmented Dickey-Fuller (ADF) tests indicated that each of the

price series is integrated of order one in its logarithm, so henceforth we use

first-differenced log price series (D ln P) as the dependent variables.  We next used the

Akaike information criterion (AIC) to identify the time-series dimensionality of the

stationary D ln P series.  By including lags of up to five days in both the dependent

variable and the residuals—i.e., fitting an ARIMA (5,1,5) model—as suggested by the

AIC, the residuals from each contract price model follow a white noise process, as

indicated by Ljung-Box-Pierce portmanteau Q-statistics.  Finally, there is a point each year

where the data set rolled over from the maturing year’s to the next year’s contract.  We

include the number of truncated days  as a regressor on the day the rollover occurred;

TRUN takes zero value all other days.  Not only does this control for the time-series

shock of the truncation, but it accommodates contract arrival effects on futures price

behavior.3  Each contract price series thus is specified as in equation (1), where Yt = D ln

Pt.

Next we tested for

GARCH effects using the

Q-statistic on the squared residuals.  Where GARCH effects were found, the time-series

dimensionality of the conditional variance was identified following Bollerslev (1988).  The

sufficiency of these GARCH specifications were verified by a Q-test of the squared
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 Not all contracts begin, or "arrive", on the same date each year.  Shocks to demand for
futures contracts not only influence pricing, they may also cause a new futures contract to
arrive earlier or later than other years.  Thilmany, Li and Barrett (1996) find significant
variation in contract arrivals and durations in September winter wheat futures.

(1) Y =  +  TRUN +  Y +  Y +  Y +

 Y +  Y +  +  +  +  +  +  

t 0 1 1 t-1 2 t-2 3 t-3

4 t-4 5 t-5 t 1 t-1 2 t-2 3 t-3 4 t-4 5 t -5

α α φ φ φ
φ φ ε θ ε θ ε θ ε θ ε θ ε
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normalized residuals.

Tables 3 and 4 report significant differences in price behavior among the

contracts.4  Table 3 offers three key indicators of these differences.  For instance, there is

considerable difference in magnitude and sign of day-to-day (i.e., first-order)

autoregression coefficient estimates.  Unlike the July and September contract price series

which exhibit GARCH effects, the March, May and December contracts do not exhibit

autocorrelation in conditional variance.  This is likely attributable to lower inventories and

lesser importance of crop information shocks, and hence less intertemporal transmission of

shocks to contract price risk in these pre-harvest contracts.  Most fundamentally, for each

of the five delivery contracts, c2 tests overwhelmingly reject the null hypothesis that all the

coefficients are equal to those of the nearby contract series.  Indeed, Table 4 shows that

statistical tests overwhelmingly reject the hypothesis that any pair of the delivery contracts

evince identical time series properties.

Conclusions

The primary objective of this paper was to test the statistical validity of price

analysis or hedging strategies based on nearby futures contract price series.  Our findings

suggest that research,  marketing and risk management techniques which rely heavily on

nearby contract price analysis should be reconsidered.  No two series of Chicago Board of

Trade winter wheat futures contract prices follow the same data generating process,

highlighting the importance of differences in underlying market conditions—e.g., storage
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 An appendix available from the authors contains full details of the empirical results.
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and information patterns—on equilibrium pricing.
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Table 1.  Trade Volume Data, CBOT Soft Winter Wheat Futures, 1991-1995
                                                                                                                                           

5000 Average Daily Average Daily Average Daily Maturing Period’s
Bushel Volume of Volume of Trading Volume Share of Total
Contracts Early Period1 Maturing Period2 Entire Contract Trading Volume
                                                                                                                                                                    

March 1,857 5,849 2,700 45.70%
May 1,057 2,300 1,228 26.30%
July 2,021 5,769 2,417 27.31%
Sept. 1,073 3,212 1,328 33.39%
December 2,525 7,377 3,373 38.93%
                                                                                                                                                                    
1  The early period is that not included in a nearby contract price series.
2  The maturing period is that included in a nearby contract price series.

Table 2.  Descriptive Statistics for Individual Contracts
                                                                                                                                                      

                 Autocorrelation (days)                Coeff. of                  Persistence (days
1 2 3 4 Variation 60 90 120 Skewness Kurtosis

                                                                                                                                                                                                                         

March 0.995 0.990 0.986 0.982 0.146 0.0026 0.0025 0.0024 0.720 3.776
May 0.995 0.990 0.986 0.982 0.128 0.0016 0.0017 0.0017 0.640 3.613
July 0.993 0.987 0.980 0.973 0.114 0.0013 0.0012 0.0012 0.771 3.461
Sept. 0.994 0.988 0.982 0.976 0.123 0.0016 0.0014 0.0014 0.988 3.702
Dec. 0.994 0.989 0.984 0.979 0.139 0.0019 0.0020 0.0020 1.234 4.321
Nearby 0.995 0.990 0.985 0.981 0.158 0.0032 0.0034 0.0034 0.611 3.448
                                                                                                                                                                                                                         

Note:  The persistence is the normalized spectral density at zero.  The relative skewness measure is m3/(m2)1.5, and the relative kurtosis
           measure is m4/(m2)2, where mi is the ith central moment.
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Table 3. Estimation Results for Wheat Futures Contracts
                                                                                                                                                      

                                Futures Contract                                     
Estimated Properties Mar May JulSep Dec Nearby
                                                                                                                                                      

AR(1) coefficient 0.57 0.37 0.27 -0.32 0.44 -0.18
GARCH effects? No No Yes Yes No No
c

2 (12) stat of H0: bi = bnearby

(critical value= 26.22 at .01 level) 88,204 107 209 73 400
                                                                                                                                                      

Table 4.  Joint Test Statistics for Structures of Different Contracts
(H0: bi = bj for contracts i and j)

                                                                                                                                                      

March May  July    September December Nearby
   
                                                                                                                                                                                                   

March – 183.24* 502.54* 110.70* 1,572.78* 88,204.00*
May – 69.65* 73.41* 539.05* 107.24*
July – 307.44* 1,315.36* 208.63*
September – 219.89* 72.59*
December – 399.69*
                                                                                                                                                                                                   

Note:  The joint tests follow c
2 (12) distribution, for which the critical value=26.22 at .01 significance level.
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Technical Appendix

Table A1.  ARIMA(5,1,5) Results for March
      Contract

                                                                         
Dependent
Variable:  Yt   Coefficient    t-Statistic
                                                                                                         

a0 0.0006 1.7420
a1 -0.0004 -3.2102*
f1 0.5707 10.6177*
f2 -0.1900 -5.0062*
f3 0.5070 14.0130*
f4 0.2271 6.0408*
f5 -0.5849 -11.8068*
q1 -0.5720 -12.2903*
q2 0.1289 5.7302*
q3 -0.4989 -16.7721*
q4 -0.2707 -9.9795*
q5 0.6408 14.9269*
F-statistic 2.9100 p-value=0.0008
Box-Pierce Q 8.3869 p-value=0.9960
  for _t

Box-Pierce Q 0.9857 p-value=1.0000
  for _t

2                 

                                                                                                         

Table A2.  ARIMA(5,1,5) Results for May
                  Contract
                                                                         
Dependent
Variable:  Yt   Coefficient    t-Statistic
                                                                                                         

a0 0.0005 1.4441
a1 0.0000 -0.1212
f1 0.3693 1.0883
f2 -0.7259 -1.7805
f3 -0.2057 -0.3964
f4 -0.0497 -0.1391
f5 -0.5231 -2.0415*
q1 -0.3173 -0.9360
q2 0.6422 1.6218
q3 0.2276 0.4769
q4 0.0430 0.1309
q5 0.4498 1.9533
F-statistic 2.7995 p-value=0.0013
Box-Pierce Q 8.0990 p-value=0.9910
  for _t

Box-Pierce Q 3.6708 p-value=1.0000
  for _t

2

                                                                                                         

Table A3.  ARIMA(5,1,5) Results for July
                 Contract
                                                                         
Dependent
Variable:  Yt   Coefficient    t-Statistic
                                                                                                         

a0 0.0005 1.5386
a1 -0.0002 -7.1368*
f1 0.2733 0.7579
f2 -0.5280 -1.2147
f3 -0.5518 -1.4539
f4 0.0891 0.3514
f5 -0.3246 -1.7880
q1 -0.2273 -0.6299
q2 0.5001 1.1919
q3 0.6149 1.7729
q4 -0.0952 -0.3936
q5 0.2958 1.5776
F-statistic 6.2232 p-value=0.000
Box-Pierce Q 9.1506 p-value=0.9810
  for _t

Box-Pierce Q 45.0980 p-value=0.0010
  for _t

2

                                                                                                         

Table A4.  ARIMA(5,1,5) Results for
                  September Contract
                                                                         
Dependent
Variable:  Yt   Coefficient    t-Statistic
                                                                                                         

a0 0.0005 1.4852
a1 -0.0005 -5.9939*
f1 -0.3159 -0.7270
f2 -0.4678 -1.5169
f3 -0.2671 -0.8841
f4 0.4104 1.5804
f5 -0.2138 -0.6061
q1 0.3640 0.8303
q2 0.4201 1.3271
q3 0.1924 0.6331
q4 -0.4355 -1.6694
q5 0.1416 0.4024
F-statistic 6.2648 p-value=0.9960
Box-Pierce Q 15.5390 p-value=0.8020
  for _t

Box-Pierce Q 167.99 p-value=0.0000
  for _t

2
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Table A5.  ARIMA(5,1,5) Results for
                  December Contract
                                                                         
Dependent
Variable:  Yt   Coefficient    t-Statistic
                                                                                                         

a0 0.0007 2.2361*
a1 -0.0009 -19.1162*
f1 0.4445 2.1994*
f2 -0.7884 -5.6133*
f3 -0.1275 -0.5740
f4 0.1526 1.0722
f5 -0.6049 -5.6613*
q1 -0.4025 -1.9497
q2 0.7313 5.4651*
q3 0.1565 0.7493
q4 -0.2015 -1.4766
q5 0.5708 5.1660*
F-statistic 35.3826 p-value=0.0000
Box-Pierce Q 21.1870 p-value=0.3860
  for _t

Box-Pierce Q 27.2270 p-value=0.1290
  for _t

2

                                                                                                         

Table A6.  ARIMA(5,1,5) Results for Nearby
                 Contract
                                                                         
Dependent
Variable:  Yt   Coefficient    t-Statistic
                                                                                                         

a0 0.0009 2.0523*
a1 -0.0001 -4.7563*
f1 -0.1764 -0.5756
f2 -0.3093 -2.0288*
f3 -0.3129 -2.3955*
f4 0.5443 3.9901*
f5 -0.2098 -0.8868
q1 0.2128 0.6904
q2 0.2600 1.6807
q3 0.3164 2.4506*
q4 -0.5670 -4.0825*
q5 0.1513 0.6334
F-statistic 3.5697 p-value=0.0000
Box-Pierce Q 9.9658 p-value=0.9690
  for _t

Box-Pierce Q 2.4419 p-value=1.0000
  for _t

2
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