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 Cointegration between Prices of Pecans and Other Edible Nuts:
Forecasting and Implications

Abstract

The use of cointegration relationship among prices of pecans, almonds, and walnuts is
found to forecast pecan prices more accurately than some of the best time series models. 
This indicates that cointegration also exist among substitutes.  The findings can be used by
the pecan industry in decision making.



Introduction

The state of Georgia produces the most pecans in the world.   Pecan buyers and

sellers, however, often face price uncertainty because of price fluctuations.  Pecans can be

substituted by other nuts in selective uses.  In response to changing market conditions,

food manufacturers and consumers not only select between grades of the same nut, but

also substitute one type of nut for another.  Economic theory indicates that prices of

substitutable commodities are related because of substitution effects.  Therefore, we may

expect pecan prices are related to prices of other edible nuts.  

Since the development of the concepts of cointegration, considerable interest has

been generated in testing economic relationships among variables.  Long-run relationships

result from the tendency of economic variables to move together.   The finding of

cointegration between economic variables indicates the existence of a long-run

relationship between the variables.  Moreover, such cointegration relationships can be

used in making forecasts.  Previous studies (e.g., LeSage, 1990; Kim and Mo, 1995;

Shoesmith, 1995)  have found that error correction models based on cointegration

relations often outperformed other time series models.   Past research (e.g., Ardeni, 1989;

Bessler et al., 1991;  Chowdhury, 1991), however, has focused mostly on fundamentally

related variables.   Little empirical work in examining long-run price relationships among

substitutes has been seen in the literature.

The primary objective of this paper is to examine the cointegration relationship

between pecan prices and prices of almonds and walnuts and to develop an error

correction model (ECM) based on the cointegration relationship to forecast pecan prices. 



The forecast performance of the error correction model is then compared with those of  a

Bayesian vector autoregressive model (BVAR) and a restrictive vector autoregressive

model (RVAR).  BVAR and RVAR have been frequently used in time series forecasting

and have been found to be among the best multi-variate time series models (e.g., Bessler

et al. 1986; Kaylen, 1988; Zapata et al., 1990).   Successful forecasts will provide valuable

insights into the general performance of the pecan market for growers, shellers, and end

users.  Shellers could anticipate possible price changes in the near future, while growers

could adjust price negotiations for their in-shell pecans.   This paper is presented as

follows:  The next section describes the data.  The modeling procedures are then

discussed.  Section three and four present and analyze the forecasts.  Implications and

discussion are given in the final section.  Data

 The price data are those of two grades of shelled pecans (“fancy-halves” grade and

“fancy” grade), two grades of almonds (“supreme” grade and “selective-sheller-run”

grade), and two grades of walnuts (“combination-half-and-pieces” grade and

“combination-light-half-and-pieces” grade).    Prices of two grades of almonds are

averaged and so are the prices of two grades of walnuts.  Therefore, four price series --

prices of higher-grade pecans (denoted as grade-1 pecan prices), prices of lower-grade

pecans (denoted as grade-2 pecan prices), average (means of two grades) prices of

almonds (denoted as almond prices), and average prices of walnuts (denoted as walnut

prices) -- are used in model building.  The data are of weekly price quotes from "The Food

Institute Report" covering the period of February 7, 1994 through June 17, 1996

consisting of 119 observations.  All models are estimated using the first 70 observations



through June 26, 1995.  Out-of-sample forecasts and evaluation are made for the period of

July 3, 1995 through June 17, 1996 (with a total of 49 observations).  The models

The Phillips-Perron (1988) unit root tests indicate that all the price series are

nonstationary.   The price series, however, became stationary after first differencing,

indicating integration of order 1 or I(1).  Therefore, first-differenced data are used for

model estimation for all the models.

1. Cointegration and error correction models (ECM)

The notion of a cointegration relationship is that while some related economic

variables follow a random walk process, they may move together in the long run, forming

an equilibrium relationship or cointegration relationship.  If a variable moves away from

the equilibrium, it will return to the equilibrium.  This process is called error correction. 

Thus if we find the cointegration relationship among variables, we can use it to forecast

the movements of these variables.    

Following previous work (e.g., Johansen, 1988), let yt be a vector of m time series.

 Each series is integrated of one I(1) and thus the first-differenced series are stationary, i.e.

I(0).  If the series are cointegrated, a representation of error correction model can be

expressed as

A(B)(1-B)yt=-bzt-1+ut     (1)

where A and B are defined as in (1), zt-1 is a r by 1 vector of error correction terms based

on r cointegration relationships zt=a'yt (r is called the rank of the cointegrating vectors a'),

and ut is the disturbance term.  Hence, the error correction model in (1) is essentially a

VAR in differences with r lagged error correction terms in each of the equations



(Shoesmith, 1995).   The Johansen test for cointegration using maximum likelihood is

preferred to the Engle-Granger two-step procedure for more than two variables

(Shoesmith, 1995).  The Johansen procedure can not only find multi-cointegrating vectors

and test for their statistical significance, but also fully capture the underlying time series

properties of the data in the form of VAR (Kim and Mo, 1995).  

The Johansen procedure is applied to the price data series to test for a

cointegration relationship.  An optimal lag of 7 is used for the autoregressive lag structure

in (1) as selected  on the basis of the Tiao-Box procedure applied previously.  The

approach suggested by Johansen (1991) is employed to examine the appropriateness of the

inclusion of  intercepts in the cointegrating vectors.  The approach involves estimating

both the restricted model (without intercepts) and the unrestricted model (with intercepts),

computing the eigenvalues of both models, and using a  c
2 statistic to test the hypothesis

that the inclusion of intercepts has inflated the eigenvalues (and therefore the number of

cointegrating vectors) in a statistically significant way.  The test results rejected the

hypothesis.  Therefore, intercepts are included in the cointegrating vectors in the

cointegration tests.  Table 1 presents the results of the Johansen cointegration test.   For

the null hypotheses of r=0, r=<1, and r=<2, the test statistics are all greater than the 90%

critical value, indicating the existence of cointegration relationships with a rank greater

than 2.  For the hypothesis of r =<3, however, the statistic is less than the critical value,

indicating the acceptance of the null hypothesis.  Therefore, a cointegration rank of 3 is

concluded for the price series.  Table 2 shows the three cointegrating vectors.



To examine the forecast performance of the error correction model,  vectors 1

through 3 of the cointegration relations (table 2) are used in equation (1) to generate

forecasts.  High mean squared errors from the model are observed.  Suspecting that

overparameterization of the ECM may have caused the large forecast errors of the model,

lag length is then reduced one by one and the corresponding mean squared forecast errors

are computed and compared.  The number of cointegrating vectors is also reduced to see

if the forecast performance of the model can be improved.  The results show that the ECM

with only one cointegrating vector and no autoregressive independent variables produces

the lowest mean squared forecast errors.  Among the three cointegrating vectors, the first

one produces the lowest RMSE, while the third one generates the highest RMSE 

indicating the dominance of individual cointegrating vectors in the order of 1 to 3. 

Therefore, the ECM with only one error correction term based on the first cointegrating

vector is used in forecasting.      

 2. Bayesian vector autoregression (BVAR)

The Bayesian methodology in VAR modeling was introduced by Litterman (1979,

1986) to alleviate the problem of overparameterization.  Litterman observed that most

economic variables could be reasonably approximated as following a random walk

process.  By specifying some priors, the closeness to the random walk, the impact of

increasing lags, and the interaction between variables can be dictated.  The modeling

procedure used in this study follows that by Bessler and Kling (1986).  Let a VAR in

differenced form take the following form



(1-B)yt=A(B)(1-B)yt+ut  (2)

where A are the coefficient vector with Aij(k) (for equation I and variable j at lag k)

distributed independently and normally, B is the lag operator, and ut is the disturbance

term.  The standard deviation of Aij  is then specified as

l/kU if I=j

d=

lwsi /k
U sj if I¹ j

where si and sj are standard deviations of residuals from univariate autoregression of series

I and j.  l is the prior standard deviation of the coefficient of the first lag of the own

variable, U is the prior controlling the decay speed of standard deviations of coefficients of

own lagged variables after the first lag, and w is the prior dictating the degree of

interaction between variables.  

The lag length of the VAR in equation (1) is determined using the Tiao-Box

(1981) likelihood-ratio test

M(k2,k1)=[n-0.5-(k2-k1)m][lnS(k1)-lnS(k2)]

where n is the effective sample size, k1 and k2 is the shorter and longer lag length,

respectively, m is the number of series, and S(k1) and S(k2) are the determinants of the

residuals of the VAR for k1 and k2, respectively.  M(k1, k2) has an asymptotical c2

distribution with m2(k2-k1) degrees of freedom.   Based on a sample size of 58, the use of

this test leads to the selection of 7 as the optimal lag length.

A mean of zero is set for the coefficient of the first lag of own variable in equation



(2) since the data have been first-differenced (Kaylen, 1988).   A three dimensional search

for the optimal values of (l, U, w) is conducted over the values of (0.00, 0.01, 0.25, 0.50,

0.75, 1).  For l, it is found that the optimal value is over the interval of 0 and 0.01. 

Therefore a search with an increment of 0.001 from 0.00 to 0.01 is conducted for the

value of l.  Based on the criterion of minimum log determinant of the error covariance

matrix of out-of-sample one-step-ahead forecasts for 12 period, the set of (l=0.001, U=1,

w=0.25) are selected as the symmetric Bayesian priors.   Previous studies (e.g., Bessler

and Kling, 1986) have shown that the use of asymmetric Bayesian priors based on prior

knowledge of economic relationships led to better forecasts.  Therefore the asymmetric

Bayesian priors are specified by keeping the values of l and U as 0.001 and 1,

respectively, and setting the values of w as in table 3.  The selection of w in table 3 is

based on prior knowledge of the relationships between these nuts.

3. Restricted VAR (RVAR)

Another approach to deal with the problem of overparameterization of VAR is not

to use the same lag length for all the endogenous variables in a VAR.  That is to restrict

the lag length of individual series based on some model selection criteria.  Various studies

(e.g., Kaylen, 1988 ) have reported good forecast performances from such models.  The

selection of individual lag length in this study follows Hsiao's procedure (Hsiao, 1979)

based on Akaike's criterion of final prediction error (FPE).  The results of model selection

are given in table 4.             

Forecast formulation



The error correction model, the Bayesian vector autoregression and the restricted

autoregression are constructed using the first 70 observations.  Out-of-sample forecasts

are made 1 through 5 steps ahead based on these models.  The models are updated

continuously by including newly available observations using the Kalman filter and

forecasts are generated from the updated models.  This forecasting process continues

through the end of the data period.  For the error correction model, the cointegrating

vectors are updated once every five periods.  This forecast procedure produces out-of-

sample forecasts of 49 for one-step ahead, 48 for two-step-ahead, 47 for three-step-ahead,

46 for four-step-ahead, and 45 for five-step ahead, respectively.  

Forecast analysis 

The root mean squared errors (RMSE) of forecasts from individual models are

shown in table 5.  The error correction model produced the lowest RMSE for both grades

of pecans for all the forecast period.  While the Bayesian vector autoregression (BVAR)

was more accurate than the restricted vector autoregression (RVAR) in forecasting one-

step and two-step ahead, the latter did better in making longer-step-ahead forecasts.  The

relative performances of the various models are consistent for both grades of pecans.  That

is, if a model outperformed another model in forecasting one grade of pecans, it also did

better for another grade of pecans.

While the RMSE criterion indicates the overall performance of a forecast model,

this descriptive statistic may be sometimes misleading because MSE is the average of

squared forecast errors.   Ashley, Granger, and Schmalensee (1980) developed an

approach to test for significance of differences of mean squared errors from individual



forecast models.  Defining _t =e1t -e2t  and  åt=e1t +e2t , the AGS test involves the

following least square regression

where e1t and e2t are the forecast errors from models with higher RMSE (model 1) and

lower RMSE (model 2), respectively;  m(åt) is the sample mean of åt;; mt is the error term

assumed independent of åt; a1 is the difference in mean squared errors from model 1 and 2

while a2 is proportional to the difference in forecast error variance from the two models

(Bradshaw and Orden, 1990).  The test is then on the null hypothesis a1=a2=0 against the

alternative that both coefficients are nonnegative and at least one is positive.  If either

coefficient is significantly negative, model 2 can not be judged as statistically better than

model 1 in terms of RMSE reduction; if one coefficient is insignificantly negative, a one-

tailed t test can be used on the other coefficient estimate; if both coefficient estimates are

positive, a four-tailed F test can be employed (Ashley, Granger, and Schmalensee, 1980). 

The AGS test is applied to the forecast errors of individual models and the results

of AGS test for equality of RMSE are presented in table 6.   The error correction model

generated significantly lower RMSE than the Bayesian vector autoregression in one

through three step ahead forecasts for both-grade prices of pecans and in four-step ahead

forecasts for prices of grade-two pecans.  The relative performances between the error

correction model and the restricted vector autoregression are similar to those between

t 1 2 t t t= + [ - m( )]+∆ α α µ∑ ∑



ECM and BVAR except for the three-step-ahead forecasts for prices of  grade-1 pecans in

which the difference in RMSE is insignificant.  While the Bayesian vector autoregression

significantly outperforms the restricted vector autoregression in only one-step-ahead

forecasts for prices of grade-2 pecans, the latter produces significantly lower RMSE than

the former in three and four-steps-ahead forecasts for both grades of pecans and five-step-

ahead forecasts for grade-one pecans.

Concluding Remarks

This study found that a cointegration relationship existed  between prices of

pecans, almonds, and walnuts during the data period.  The superior forecast performance

of the error correction model based on the cointegration as compared to other forecast

models has further verified the appropriateness of modeling such a relationship between

those nuts.  These findings have important implications.  Theoretically and intuitively,

relationships among substitutes are quite different from those among fundamentally related

variables such as homogeneous commodities in different regions.  Unlike fundamentally

related variables, the lack of a long run relationship among substitutes does not indicate

the existence of  arbitrage opportunities which have been frequently related to market

inefficiency.  On the other hand, it is changes in demand and supply conditions among

substitutes that lead to substitution which drives prices.  Therefore it is interesting to note

that market forces can also bring prices of substitutes to a long run equilibrium

relationship.  The findings of the study  indicates that markets for pecans, almond, and

walnuts are related to such an extent that prices of these three nuts move towards an

equilibrium in the long run.  Theses findings also have important implications for the pecan



industry.  Pecan prices have been influenced by the supplies of other edible nuts.  The

finding of a cointegration relationships between pecans and other edible nuts will help the

pecan industry in making decisions on production, storage, marketing, and forecasting. 

For example, pecan buyers and sellers can make more accurate forecasts of pecan prices

based on available price information of almonds and walnuts using the cointegration

relation among these nuts.  The use of error correction models in forecasting has minimal

requirement on data because past price information on edible nuts can be easily obtained. 

Such forecast information can be used to guide decision making on pecan production,

storage, and marketing, thus increasing economic efficiency.

Table 1.  Statistics of the Cointegration Test

Eigenvalue Ho:
r_

L-max L-max 90 trace trace 90

0 4799 0 40 53 18 03 81 54 49 92
0.3056 1 22.61 14.09 41.01 31.88

0.1909 2 13.13 10.29 18.40 17.79

0.0815 3 5.27 7.50 5.27 7.50
Notes: r is the number of cointegrating vectors.  L-max and trace are the test statistics based on the
formulas given in Johansen (1988).  L-max 90 and trace 90 are the corresponding critical values.

 Table 2.  Eigenvectors of the Cointegration Relationship

Eigenvectors Pecan 1 Pecan 2 Almond Walnut Constant

1 -33.622 38.842 -4.318 37.999 -74.738

2 -9.411 9.853 -1.225 -4.654 12.014

3 -25.641 22.896 6.892 -14.475 27.123

Note: Pecan 1 and pecan 2 refer to higher and lower grades of pecans, respectively.

Table 3.  Tightness Priors (w) for the Asymmetric BVAR



Lagged Variables

Equation Pecan 1 Pecan 2 Almond Walnut

Pecan 1 1.0 0.3 0.1 0.7

Pecan 2 0.3 1.0 0.1 0.7

Almond 0.1 0.1 1.0 0.1

Walnut 0.7 0.7 0.7 1.0
Note:  The overall tightness l and the decay prior U are 0.001 and 1, respectively.
 
Table 4.  Results of Lag Selections for the Restricted VAR

Lagged Variables

Equation Pecan 1 Pecan 2 Almond Walnut

Pecan 1 6

Pecan 2 6

Almond

Walnut 4
Note:  The numbers refer to the number of lags.

Table 5.  RMSE of Forecasts from Individual Models

Model Grade
1

Forecast
2 3

Steps
4 5

ECM Pecan
1

0.08708 0.11852 0.14105 0.16941 0.19382

Pecan
2

0.08759 0.12375 0.15318 0.17409 0.19233

BVAR Pecan
1

0.09188 0.13320 0.16805 0.20237 0.23569

Pecan
2

0.08522 0.12411 0.16039 0.19593 0.23007

RVAR Pecan
1

0.10478 0.14019 0.15778 0.17555 0.20198



Pecan
2

0.10125 0.13875 0.15635 0.17110 0.19391

Note: RW denotes the random walk model, ECM denotes the error correction model, BVAR denotes
the Bayesian vector autoregression, and RVAR denotes the restricted vector autoregression.

Table 6.  AGS Test for Significance of Differences of Forecast Errors from Alternative Models

BVAR RVAR

Pecan 1 Pecan 2 Pecan 1 Pecan 2

ECM 1 Y Y Y Y

2 Y Y Y Y

3 Y Y N Y

4 N Y N Y

5 N N N N

BVAR 1 N Y

2 N N

3 Y Y

4 Y Y

5 Y N
Notes: The numbers refer to the forecast steps.  Y/ N denote significance/insignificance in the
differences of RMSE.
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