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Estimating a Demand System with Seasonally Differenced Data 
 
Abstract 
 
Researchers estimating demand systems have often used annual data even though 

monthly or quarterly data are available. Monthly data may be avoided because with 

monthly data it becomes more difficult to specify seasonality, autocorrelation is more 

likely to be significant, and there is a greater chance of finding significant dynamics in 

demand.  This paper shows how to obtain consistent and asymptotically efficient 

estimates of a demand system using seasonal differenced data.  It also shows that several 

alternative estimators are either inefficient or implausible for demand systems.   
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Estimating a Demand System with Seasonally Differenced Data  
 
 
1. Introduction 

 
Researchers estimating demand systems have often used annual (Chavas 1983), Duffy (1987), 

Brown, Lee and Seale (1995), Eales, Durham and Wessells (1997), Brown and Lee (2000), Seale 

and Marchant (2003), Seale, Marchant and Basso (2003), Muhammad (2007), (Moschini and 

Meilke; Alston and Chalfant; Eales and Unnevehr; and Mutondo and Henneberry) even though 

monthly or quarterly data are available. Monthly data may be avoided because with monthly data 

it becomes more difficult to specify seasonality, autocorrelation is more likely to be significant, 

and there is a greater chance of finding significant dynamics in demand. 

Seasonality is commonly assumed to be present in budget shares in the estimation of 

demand systems.  A common assumption is that seasonality is deterministic and thus is 

accounted for by the use of seasonal dummies.  However, the use of dummy variables to account 

for seasonality may be inappropriate. As noted by Fraser and Moosa (2002), “assuming 

seasonality is deterministic when it is actually stochastic will yield a misspecified model” (p. 83).   

With deterministic seasonality, the intercepts as well as the parameters for the dummy 

variables are assumed constant.  However, changes in tastes and preferences may cause these 

parameters to change over time.  The changes in the parameters may be sudden or gradual over 

time.  This means that assuming deterministic seasonality may lead to models that are 

misspecified and fail the tests of structural stability. 

Therefore, another alternative is to estimate the general model used by Fraser and Moosa 

(2002) that nests the deterministic and stochastic seasonality.  Yet, the assumption of stochastic 
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seasonality is not without limitations.  The reader is referred to Fraser and Moosa (2202) for a 

discussion of these limitations.   

The conclusion from the discussions so far is that there is no agreement on the 

appropriate form of seasonality in the estimation of demand systems.  Moreover, each form is 

not without limitations.  Researchers therefore let the data determine the form and locations of 

seasonality components (Arnade, Pick, and Gehlhar, 2004). 

As an alternative and a mean to eliminate altogether of dealing with seasonality, a 

number of researchers have used seasonal difference models. These models let the researchers 

use the higher frequency data, do not require specifying the form of seasonality, and are not 

likely to show significant dynamic effects in demand. But, as we show, such models are 

autocorrelated with the degree of autocorrelation depending on the level of seasonal differencing. 

The reason for this is that the use of annual differences when quarterly or monthly data 

are available leads to the problem of overlapping data.  The econometric problem resulting from 

the use of overlapping data is the moving average (MA) autocorrelation which results in 

inefficient estimates and biased hypothesis tests.  Harri and Brorsen (2007) compare different 

estimators used with overlapping data in the context of the univariate equation model.  They 

show that when lagged values of the dependent variables are not included as explanatory 

variables, the GLS estimator is the appropriate estimator.  The covariance matrix for the GLS 

transformation can be derived analytically in the case of overlapping data.   

In this paper, we show how to obtain consistent and asymptotically efficient estimates of 

a demand system using seasonal differenced data.  Specifically, we propose a GLS estimator for 

estimating a system of equations with overlapping data.  Monte Carlo simulations are used to 
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compare the properties of the GLS estimator with overlapping data (annual differences) and the 

conventional SUR estimator with disaggregate data (monthly observations).  Alternative 

estimators are also considered like an SUR estimator using non-overlapping and the maximum 

likelihood estimator developed by Beach and MacKinnon (1979). 

The rest of the paper is organized as follows.  Section two derives the GLS estimator.  

Section three discusses the Monte Carlo simulation.  Section four provides an empirical 

application to the case of US meat demand.  Section five concludes. 

2. The Model 

We start with the following system of M equations: 

M,...,m,DZw mmmmmm 1=+++= εγβα  (1) 

where wm is a (T * 1) vector of the values of the dependent variable, where T is the length of time 

series, Zm is a (T * lm) matrix of the values of the explanatory variables, Dm is a (T * pm) matrix 

of the values of the p dummy variables with p = 11 for monthly data and p = 3 for quarterly data, 

βm and  γm are respectively a (lm * 1) and a (pm * 1) vectors of regression coefficients, and εm is a 

(T * 1) vector of the disturbances.  We assume that ε = [ε1’, ε2’, . . . , εM’]’ has E[ε] = 0  and 

E[εε’] = Σ.  We further assume that disturbances are uncorrelated across observations, but have 

contemporaneous covariance V.  In other words, E[εmtεns] = σmn, if t = s and zero otherwise.  

Therefore, we can also write Σ = VΘIT.   

We will refer to the system in (1) as the disaggregate model which, depending on the 

available data, can be estimated with either monthly differences or quarterly differences.  If one 

instead uses annual differences, these annual differences represent an aggregation of level k=12 
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for monthly differences or k=4 for quarterly differences.  The system with the aggregated 

variables can be represented as:   

M,...,m,uXy mmmm 1=+= β   (2) 

where 
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where, k is as previously defined.  Given the size of the original sample, T, the new sample size 

is T-k+1.  Note also that the seasonal dummy variables no longer appear in (2).  The aggregation 

of the variables in (3) induces an MA process of order k-1 in the error term um in (2).  

From the assumption that the original error terms were uncorrelated with zero mean, it 

follows that: 
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Also, since the successive values of εjm are homoskedastic and uncorrelated, the 

unconditional variance of utm is: 

222 ][]var[
m

kEu mtumt εσεσ ===   (5) 

Based on the fact that two different error terms, utm and u( t+ s)m, (t = 1, ..., T  and s = t+1, 

..., T) have k – s common original error terms, εm, for any k – s > 0, the covariances between the 

error terms in (2) are: 

0)()(],[],cov[ 2
)()( >−∀−== ++ skskuuEuu

mmstmtmstmt εσ   (6) 

 Similarly, the contemporaneous covariances between the error terms in (2) are: 
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 Dividing (6) by (5) we get the correlations between two different error terms, utm and u( t+ 

s)m as follows: 

0)(],[ )( >−∀
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Collecting terms we have the correlation matrix of each um,  Ω (T-k+1 * T-k+1) as: 
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 With Ω defined as above, we can express the covariance matrix for 

 u = [u1’, u2’, ... , uM’]’ as E[uu’] = Σu = kVΘΩ. 

 To obtain efficient estimates, the generalized least squares (GLS) parameter estimates can 

be derived as follows: 

y'X)X'X(ˆ
uu

111 −−−= ΣΣβ  

y)V
L

('X)X)V
L

('X(ˆ 11111
1
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1
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+
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+

= ΩΩβ  
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or 

y)V'X)XV'X(ˆ 11111 −−−−− ⊗⊗= ΩΩβ  (9) 

 Let P’ = CΛ-½, where C is the matrix of the eigenvectors of Ω and Λ is the diagonal 

matrix containing the eigenvalues of Ω.  Then, Ω-1 = P’P.  Substituting this into (9) and 

rearranging we obtain: 

Py)VI('P'X)PX)VI('P'X(ˆ 111 −−− ⊗⊗=β  (10) 

 where I = IT_L.  Let X*=PX and y*=Py we get: 

*y)VI(*X*)X)VI(*X(ˆ 111 −−− ⊗⊗=β  (11) 

which is the conventional seemingly unrelated equations (SUR) estimator with an unknown 

contemporaneous covariance matrix V with the transformed variables X* and y*.   

Similarly the variance-covariance matrix of the GLS estimates from (11) is: 

112 −−⊗= *)X)VI(*'X(]ˆ[Var εσβ  (12) 

 Alternative Estimators 

Among alternative estimators, an obvious estimator is the one that uses non-overlapping data.  In 

other words only the k-th observation from (2) will be used in the estimation.  This will eliminate 

the issue of MA autocorrelation, but the estimator is inefficient since it does not use all available 

information. 

 Another alternative estimator is the maximum likelihood estimator developed by Beach 

and MacKinnon.  This estimator (from hereon referred to as the AR(1) estimator) imposes the 

same AR(1) parameter for all m equations.  In the general case considered by Beach and 

MacKinnon the AR(1) parameter needs to be estimated.  However, in our case this parameter can 
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be derived analytically.  It is (k-1)/k, which is the first off-diagonal term in the Ω matrix.  In other 

words, the AR(1) model in this case uses a form of Ω where only the first off-diagonal term is 

positive while the others are set to zero.  This estimator is therefore inefficient too since it does 

not account fully for the autocorrelation present in the error term. 

 Finally, the seasonal difference model of Box and Jenkins (1970), which is called a 

seasonal unit root model in more recent literature, uses data which are in some sense 

overlapping, but do not create an overlapping data problem if correctly specified. For annual 

data, the seasonal unit root model is  

ttt

ttt a
ξηη
ηκω

+=
+=

−12

     (13) 

where ξt is i.i.d. normal. In this case, the disaggregate model 

ttttt ξκκαωω +−=− −− )( 1212      (14) 

has no autocorrelation.  In this example, twelfth differencing leads to a model that can be 

estimated using overlapping data and ordinary least squares. Seasonal unit roots have largely 

been used when the research objective was forecasting (e.g. Clements and Hendry 1997). One 

problem with the seasonal unit root model is that it is often rejected in empirical work (e.g. 

McDougall 1995). Another is that it implies that each month has its own independent unit root 

process and so each month’s price can wonder aimlessly away from the prices of the other 

months. Such a model seems implausible for most economic time series. Hylleberg et al. suggest 

that the seasonal unit roots may be cointegrated, and in the case of the demand systems the 

adding up condition would impose some type of cointegration which can overcome the criticism 

of one month’s price moving aimlessly away from another month’s price. Wang and Tomek 
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(2007) present another challenge to the seasonal unit root model since they argue that commodity 

prices should not have any unit roots. While a seasonal unit root model may be an unlikely 

model, if it is the true model, it does not create an overlapping data problem. 

 In this section we showed how to obtain consistent and asymptotically efficient estimates 

of a demand system using seasonal differenced data.  We also showed that two of the alternative 

estimators are inefficient while the seasonal difference model of the Box-Jenkins type seems 

implausible for demand systems. 

 3. Monte Carlo Simulation 

In this section we discuss the Monte Carlo study used to compare the properties of the proposed 

estimator and alternative estimators.  We generate the data according to (1).  We use a system of 

three equations and thus Zm consists of three correlated log prices series, P1, P2, P3, and an 

exogenous variable representing the log of the ratio of expenditures on the price index, ln(X/P).  

Dm consists of four quarterly or twelve monthly fixed dummy variables that satisfy the following 

conditions: 

∑∑
==

==
m

i
i

k

j
j dandd

11
00  

where, k and m are as previously defined.  The second condition is to impose the adding up 

restriction.  In addition, to ensure the adding up restriction we impose these three other 

conditions:  
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where αi represent the intercept for the ith equation.  In case one of the three shares is negative 

then that system observation is regenerated with a different draw of correlated random errors 
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until all three shares are positive.  Finally, the homogeneity and symmetry restrictions are 

imposed on the parameters of the system. 

 We generate 1000 samples of 60 and 120 observations according to (1).  We obtain 

aggregate observations according to (2) using two different levels of aggregation, k=12 for 

monthly observations and k=4 for quarterly observations.  We estimate both (1),  from now on to 

be referred as the disaggregate model, and (11), from now on to be referred as the overlapping 

model, for each sample.  We also estimate the model using nonoverlapping (to be referred as the 

NON model) observations by using only the kth aggregate observations.  Finally, we obtain the 

maximum likelihood estimates for the AR(1) model in (2) by imposing the same AR(1) 

parameter for each equation equal to (k-1)/k. 

3. Monte Carlo Results 

The actual slope parameters and the means of their Monte Carlo estimates and standard errors 

from all the models are presented in Table 1.  We report results only for one equation, since the 

results are very similar.  Three main findings are to be noted from the results in table 1.  First, 

slope estimates from all models are consistent as expected.  Second, the slope estimates and their 

standard errors are exactly the same for the disaggregate model and the aggregate model with the 

proposed GLS estimator.  This finding is consistent with the theoretical results presented above.  

Third, the standard deviations of both the model estimated with non-overlapping data and the 

AR(1) model are larger than those of the disaggregate model and the aggregate model with GLS.  

On average, the standard errors of the AR(1) model are 18 to 30 percent larger, while those of 

the model with non-overlapping data are from 2 to 4.65 times larger. 
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 Table 2 reports the number of rejections of the hypothesis that estimated parameters are 

equal to the actual values for the significance level of 5 percent.  The number of rejections is 

twice as large as the nominal level for the AR(1) model.  It is also almost twice as large for the 

model with non-overlapping data when the ratio of sample size to aggregation level is small.  In 

the meantime the rejection rates for the aggregate model with GLS (and the disaggregate model 

which are not reported as they are the same as the ones for the aggregate model) are very close to 

the nominal level. 

4. Empirical Application 

We estimate the U.S. meat demand to compare the empirical performance of the different 

estimation models discussed above.  Data are monthly observations from January 1989 to August 

2007.  Per capita beef, pork, and poultry quantities and retail prices were obtained from USDA’ 

Livestock and Poultry Situation and Outlook Reports.  Per capita fish quantities and retail prices 

were derived using the approach in Schmitz and Capps (p. 10) and Kinnucan et al. (1997).  

Bryant and Davis (2008) using the Bayesian Averaging of Classical Estimates (BACE) approach 

find that the first differenced Almost Ideal Demand (FDAID) model outperforms the other 

models considered in their analysis.  Therefore, we use FDAID as our functional form.  The fish 

equation is dropped from the estimation.  Finally, since the test of the symmetry hypothesis does 

not reject it we impose the symmetry.   

 Results of the U.S. meat demand are reported in table 3.  Table 3 reports parameter 

estimates and their standard errors for the four different models and for the three equations of 

beef, pork and poultry.  Parameter estimates and their standard errors for the disaggregate model 

and the aggregate model with GLS are very similar for the three estimated equations.  Results for 
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the AR(1) model and the model that uses nonoverlapping data confirm their inefficiency, as 

shown by higher standard errors and lower significance levels.  

5. Conclusions 

Estimation of demand systems with seasonal (annual or quarterly) differenced data leads to 

models which are autocorrelated with the degree of correlation depending on the level of 

differencing.   Ignoring this autocorrelation results in inefficient estimates and biased hypothesis 

tests.  The Beach and MacKinnon estimator, used in some previous works, is also inefficient in 

this case and so is the estimator that uses nonoverlapping data. 

We show how to obtain consistent and asymptotically efficient estimates of a demand 

system using seasonal differenced data.  Monte Carlo simulations confirm the theoretical 

derivation that a GLS estimator using an analytically derived correlation matrix produces 

consistent and efficient estimates.   

11 



 

References 

Alton, J. M., and J. A. Chalfant. (1993).  “The silence of the Lambdas: A Test of the Almost 

Ideal and Rotterdam Models.”  American Journal of Agricultural Economics 75(May):304-13. 

Arnade, C., D. Pick., and M. Gehlhar. (2004).  “Locating Seasonal Cycles in Demand Models.”  

Applied Economic Letters 11:533-5. 

Beach, C.M. and J. G. MacKinnon. (1979). “Maximum Likelihood Estimation of Singular 

Equation Systems with Autoregressive Disturbances.” International Economic Review 20: 459–

464. 

Box, G., and G. Jenkins. (1970). Time Series Analysis and Forecasting, and Control. Holden-

Day: San Francisco. 

Brown, M. and J. Lee. (2000). “A Measurement of the Quality of Orange Juice Consumption.” 

Agribussines 16(3):321-332. 

Brown, M. J. Lee, and J. L. Seale. (1995). “A Family of Inverse Demand Systems and Choice of 

Functional Form.” Empirical Economics 20:519-30. 

Bryant, H. L., and G. Davis. (2008). “Revisiting Aggregate U.S. Meat Demand with a Bayesian 

Averaging of Classical Estimates Approach: Do We need a More General Theory?” American 

Journal of Agricultural Economics 90(1):103-16. 

Chavas, J. P. (1983). “Structural Change in the Demand for Meat.”  American Journal of 

Agricultural Economics 65:148-53. 

Clements, M.P., and D.F. Hendry. (1997). “An Empirical Study of Seasonal unit Roots in 

Forecasting.” International Journal of Forecasting 13:341-355. 

12 



 

Duffy, M. H. (1987).  “Advertising and the Inter-Product Distribution of Demand: A Rotterdam 

Model Approach”. European Economic Review, 31(July): 1051-70. 

Eales, J., and L. J. Unnevehr. (1994). “The Inverse Almost Ideal Demand System.”  European 

Economic Review 38(January):101-15. 

Eales, J., and L. J. Unnevehr. (1993). “Simultaneity and Structural Change in U.S. Meat 

Demand”  American Journal of Agricultural Economics 75(May):260-68. 

Eales, J., C. Durham, and C. R. Wessells. (1997). “Generalized Models of Japanese Demand for 

Fish.”  American Journal of Agricultural Economics 79(November):1153-63. 

Fraser, I., and Moosa, I. A. (2002). “Demand Estimation in the Presence of Stochastic Trend and 

Seasonality: The Case of Meat Demand in the United Kingdom.” American Journal of 

Agricultural Economics, 84(1): 83–89. 

Harri, A. and B. W. Brorsen. (2007). “The Overlapping Data Problem.” Working Paper, 

Mississippi State University. 

Hylleberg, S., Engle, R.F., Granger, C.W.J. and Yoo, S.B. (1990). “Seasonal Integration and 

Cointegration.” Journal of Econometrics 44:215–238. 

Kinnucan, H., H. Xiao, C. Hsia. and J. Jackson. (1997). “Effects of Health Information and 

Generic Advertising on U.S. Meat Demand.” American Journal of Agricultural Economics 

79(February):13-23. 

McDougall, R. S. (1995). “The Seasonal Unit Root Structure in New Zealand Macroeconomic 

Variables.” Applied Economics 27:817-827. 

Moschini,, G., and K. Meilke. (1989). “Modeling the Pattern of Structural Change in U.S. Meat 

Demand.”  American Journal of Agricultural Economics 71:253-61. 

13 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VC0-3V5MR1T-6&_user=152108&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000012538&_version=1&_urlVersion=0&_userid=152108&md5=f37fdc2b3c3a201061e63336a75967c9#bb1#bb1


 

Muhammad, A. (2007). “The Impact of Increasing Non-agricultural Market Access on EU 

Demand for Imported Fish: Implications for Lake Victoria Chilled Fillet Exports.” European 

Review of Agricultural Economics:1-17. 

Mutondo, J. E. and S.R. Henneberry. (2007). “A Source-Differentiated Analysis of U.S. Meat 

Demand.”  Journal  of Agricultural and Resource Economics 32(3): 515-33. 

Seale, J. L., Marchant, M. A., and Basso, A. (2003).  “Import versus Domestic Production: A 

Demand System Analysis of the U.S. Red Wine Market.”  Review of Agricultural Economics 

25(1): 187-202. 

Schmitz, J. D., and O. Capps. (1993).  “A Complete Systems Analysis of Nutritional Awareness 

and Food Demand.”  Texas A&M Agricultural Experiment Station Bulletin  1712. 

United States Department of Agriculture. Livestock and Poultry Situation and Outlook Reports. 

Web page located at http://www.ers.usda.gov. 

Wang, D., and W.G. Tomek. (2007). “Commodity Prices and Unit Root Tests.” American 

Journal of Agricultural Economics 89:873-889. 

14 



 

Table 1.  Monte Carlo Simulation Results 
Sample 

Size 
Aggregation 

Level Variable Disaggregate Model Overlapping Model Nonoverlapping Model AR(1) Model 

   

Actual 
Parameter 

Values Parameter 
Estimates 

Standard 
Error 

Parameter 
Estimates 

Standard 
Error 

Parameter 
Estimates 

Standard 
Error 

Parameter 
Estimates 

Standard 
Error 

60 4 P1 0.02 0.0200 0.0141 0.0200 0.0141 0.0208 0.0320 0.0204 0.0176 
  P2 0.03 0.0311 0.0205 0.0311 0.0205 0.02899 0.0468 0.0308 0.0252 
  P3 -0.05 -0.0514 0.0290 -0.0514 0.02895 -0.0491 0.0656 -0.0516 0.0360 
  ln(X/P) 0.025 0.0250 0.0092 0.0250 0.0092 0.0246 0.0211 0.0248 0.0112 

60 12 P1 0.02 0.01997 0.0153 0.01997 0.0153 - - 0.0195 0.0191 
  P2 0.03 0.0314 0.0223 0.0314 0.0223 - - 0.0318 0.0270 
  P3 -0.05 -0.0516 0.0313 -0.0516 0.0313 - - -0.0510 0.0379 
  ln(X/P) 0.025 0.0251 0.00997 0.0251 0.00997 - - 0.0252 0.0122 

120 4 P1 0.02 0.0197 0.00996 0.0197 0.00996 0.0201 0.0204 0.0199 0.0122 
  P2 0.03 0.0304 0.0140 0.0304 0.0140 0.0305 0.02999 0.0304 0.0172 
  P3 -0.05 -0.0498 0.0199 -0.0498 0.0199 -0.0504 0.042 -0.0503 0.0241 
  ln(X/P) 0.025 0.0248 0.006 0.0248 0.006 0.0245 0.0134 0.0247 0.0075 

120 12 P1 0.02 0.0196 0.00998 0.0196 0.00998 0.0205 0.0452 0.0197 0.0120 
  P2 0.03 0.0305 0.0145 0.0305 0.0145 0.0306 0.0674 0.0304 0.0173 
  P3 -0.05 -0.0502 0.0206 -0.0502 0.0206 -0.0506 0.0951 -0.0501 0.0242 
  ln(X/P) 0.025 0.0248 0.0065 0.0248 0.0065 0.0237 0.0304 0.0247 0.0077 
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Table 2. Rejection levels of the hypothesis that estimated parameters are equal to their actual 
values. 

Rejection Level 
Sample 

Size 
Aggregation 

Level 
Nominal 

Level Variable 
Overlapping 

Model 
Nonoverlapping 

Model 
AR(1) 
Model 

60 4 0.05 P1 0.051 0.057 0.114 
  0.05 P2 0.054 0.046 0.118 
  0.05 P3 0.044 0.049 0.118 
  0.05 Ln(X/P) 0.054 0.043 0.116 

60 12 0.05 P1 0.056  0.122 
  0.05 P2 0.056  0.102 
  0.05 P3 0.047  0.109 
  0.05 Ln(X/P) 0.048  0.108 

120 4 0.05 P1 0.046 0.039 0.129 
  0.05 P2 0.043 0.038 0.107 
  0.05 P3 0.041 0.035 0.104 
  0.05 Ln(X/P) 0.052 0.034 0.1 

120 12 0.05 P1 0.047 0.091 0.109 
  0.05 P2 0.044 0.088 0.099 
  0.05 P3 0.043 0.089 0.096 
  0.05 Ln(X/P) 0.046 0.071 0.098 
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Table 3.  Parameter Estimates for the U.S. Meat Demand 
  Beef Equation   Pork Equation   Poultry Equation 
Variable Disagg. 

Model 
GLS 

Model 
AR(1) 
Model 

NON 
Model   

Disagg. 
Model 

GLS 
Model 

AR(1) 
Model 

NON 
Model   

Disagg. 
Model 

GLS 
Model 

AR(1)
Model 

NON 
Model 

PBeef -0.2380* 
(0.0397) 

-0.2361* 
(0.040) 

-0.1375** 
(0.054) 

-0.0592
(0.067)           

PPork 0.0805* 
(0.0289) 

0.0817* 
(0.029) 

0.1461** 
(0.063) 

0.0497 
(0.036)  

-0.2247*
(0.033) 

-0.2238* 
(0.033) 

-0.0532 
(0.090) 

-0.084**
(0.038)      

PPoultry 0.1575* 
(0.0411) 

0.1544* 
(0.041) 

0.2012** 
(0.043) 

0.0095 
(0.069)  

-0.144* 
(0.031) 

-0.142* 
(0.031) 

-0.336* 
(0.061) 

-0.035 
(0.044)  

-0.3011* 
(0.059) 

-0.2959* 
(0.059) 

-0.135*
(0.032) 

-0.0442 
(0.087) 

PFish -0.00003 
(0.0003) 

-0.00004 
(0.0003) 

-0.0123 
(0.096) 

0.00008
(0.0001)  

-0.0002 
(0.0003) 

-0.0002 
(0.0003) 

-0.0237 
(0.137) 

0.0003*
(0.0001)  

0.0004***
(0.0002) 

0.0004*** 
(0.0002) 

0.0358 
(0.071) 

0.00001 
(0.0002) 

Expend 0.2921* 
(0.008) 

0.2920* 
(0.008) 

0.2737* 
(0.008) 

0.1757*
(0.035)  

0.1639* 
(0.006) 

0.1638* 
(0.006) 

-0.426* 
(0.012) 

0.165* 
(0.022)  

-0.4557* 
(0.011) 

-0.4557* 
(0.011) 

0.1522*
(0.006) 

-0.3400* 
(0.041) 

Feb 0.01934* 
(0.004)     

0.0417* 
(0.003)     

-0.0611* 
(0.006)    

Mar -0.0435* 
(0.004)     

0.0101* 
(0.003)     

0.0334* 
(0.006)    

Apr 0.0059 
(0.04)     

0.0227* 
(0.003)     

-0.0285* 
(0.006)    

May -0.010** 
(0.004)     

-0.0005 
(0.003)     

0.0100***
(0.006)    

Jun 0.0029 
(0.004)     

0.0215* 
(0.003)     

-0.0244* 
(0.006)    

Jul -0.0042 
(0.004)     

0.025* 
(0.003)     

-0.0209* 
(0.006)    

Aug -0.0277* 
(0.004)     

0.0208* 
(0.003)     

0.0069 
(0.006)    

Sep -0.0025 
(0.004)     

0.0399* 
(0.003)     

-0.0373* 
(0.006)    

Oct -0.0334* 
(0.004)     

0.0200* 
(0.003)     

0.0135** 
(0.006)    

Nov -0.0045 
(0.005)     

0.0370* 
(0.003)     

-0.0324* 
(0.007)    

Dec 0.0096** 
(0.004)         

0.0336* 
(0.003)         

-0.0432* 
(0.006)       

Note: *, **, and *** denote respectively significance at 1%, 5% and 10%. 
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