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Abstract 

Using a series of hurdle choice models, this study considers both nay-saying and yeah-

saying to alternatives offered in a conjoint experiment.  These behaviors are characterized 

by respondents persistently choosing the no-choice alternative or choosing at least one of 

the non-empty options offered in a survey.  Results show that jointly consider nay-saying 

and yeah-saying in a two-hurdle model drastically improves model fit; welfare 

implications based on hurdle models are also different from those based on models 

without hurdle specification.   
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One of the potential biases associated with data collected by survey approaches may be 

related to no-responses, or answers of “don’t know” in the survey.  These biases have 

drawn sizable attention from researchers and may somehow be triggered one way or the 

other as described in Krosnick et al. (2002).  In the literature of economic valuation and 

marketing particularly, the issue of no-response is frequently centered on survey 

participants answering “don’t know” to the key willingness to pay question, or making no 

choice among product/service alternatives offered in the survey.  A number of studies 

have been devoted to understanding the non-participation issue and have made important 

recommendations on how to handle the consequences of such behavior (e.g., Wang 1997; 

Haab and McConnell 1996; Schweitzer 1994).  Nevertheless, almost all these studies 

focus on non-participation in the context of total number of participations, dichotomous 

contingent choices, or various direct willingness to pay questions.  Given the fast 

expanding body of literature concerned with the application of conjoint experiment in 

areas such as food safety, recreational demand, transportation research and health studies, 

there is a strong need to understand  non-participation behavior in conjoint experiments.   

 

A conjoint experiment typically records repeated choices made by each individual 

in the sample.  Von Haefen, Massey and Adamowicz (2005) is one of the first studies that 

directly examined non-participation in a conjoint experiment by allowing the non-

participation decision to be captured by a different behavior mechanism that may have 

been characterized by respondents’ demographic information.  According to their 

definition, non-participation in a conjoint experiment is typically featured by respondents 
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persistently selecting the no-choice option or indicating no-action in all choice situations 

in a survey.   

 

In other words, one may view this as if the respondents are rejecting or saying “nay” to 

all product/service options offered in all choice scenarios.  However, a natural question 

that comes along this line of reasoning is: what about respondents who are saying “yeah” 

to at least one product/service option offered in all choice scenarios?  Do these 

respondents truly prefer one of the options offered in a choice situation, or are there other 

reasons they do so?  If one suspects that nay-saying may generate potential biases in 

understanding choice behavior and suggested welfare implications, would it be 

reasonable to be concerned about yeah-saying choices?  Previous studies have shown that 

yeah-saying bias, if present, may affect the analysis results (Adamowicz et al. 1998 and 

Boxall et al. 1996).  Nevertheless, past studies have not examined yeah-saying behavior 

in the context of conjoint experiment.   

 

In this article we propose a method that recognizes and explicitly models yeah- 

and nay-saying behavior.  The proposed model is general and we do not intend to lay 

reference to any particular behavioral interpretation on why yeah- or nay-saying choices 

may occur, although attaching identifiable behavioral assumptions/restrictions may be 

proven to be valuable and further support the evidence offered here (Roebeling, Ruijs and 

Kragt 2006).  
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We adopt a hurdle model that can be applied in analyzing individuals’ repeated 

choices in a conjoint experiment.  The methodology follows the general framework in 

von Haefen, Massey and Adamowicz (and therefore denoted as VMA).  Our evidence 

from analyzing the nay-saying behavior is consistent with these authors.  Nevertheless, 

we made two major extensions of this framework.  First, we show that the hurdle model 

may not only be used to address the issue of nay-saying to alternatives, it can be applied 

equally well to accommodate yeah-saying.  In our application of the method to a dataset 

involving consumers’ conjoint choices of canola oil, the yeah-saying hurdle approach 

outperforms the nay-saying hurdle approach in both the conditional and mixed logit 

choice model specifications.  Second, since these two types of behavior may likely 

coexist in any given dataset, we incorporate them into the same model that employs the 

two hurdles simultaneously: one for the nay-saying behavior and one for the yeah-saying 

behavior.  Our results suggest that the two-hurdle model drastically improves model fit.  

A fixed coefficient two-hurdle model performs better than a mixed logit model without 

considering possible hurdles.   

 

Welfare implications (marginal willingness to pay) are also calculated based on 

these models.  Results indicate that these measures differ moderately between models 

that consider or ignore either of the two or both hurdles.  Welfare measures between fixed 

coefficient and mixed logit models are slightly different and almost no difference can be 

detected between two different ways of calculating these measures under the mixed logit 

models.  The following section explains the hurdle models adopted and how they fit into 

the context of a conjoint experiment.   Data employed are described in the next section.  
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Parameter estimation results, model fit comparison, and implied welfare measures under 

various models are discussed following the data description.  The last section of this 

article summarizes the conclusions, and points out implications that may be drawn from 

this study and future research potentials.   

 

Model  

A majority of the literature analyzing individuals’ discrete choice behavior, including that 

under a conjoint experiment, is built upon random utility theory (RUT) constructed by 

McFadden.  Suppose each individual in the sample can be denoted by i, then the choice 

of i in a typical conjoint experiment may be represented by vector iC . Respondents are 

often asked to complete a series of choice questions in various situations referred to as 

choice sets.  In each choice set, respondents are asked to choose one and only one option 

from several options offered.  Under this scheme, each element of iC  can be used to 

identify the choices made by individual i in each of the choice sets.  In designing the 

choice sets, an important feature is to allow consumers to express preference on 

alternatives not being offered in a choice set and this is commonly achieved by including 

a “no-choice” option that is not described by product/service features but by a description 

taking either of the following two forms: a) I do not wish to choose any of the options 

offered here or b) I would stay with the product/service I currently get/choose.  This is 

known in the conjoint experiment literature as the exhaustive requirement (Louviere, 

Hensher and Swait 2000) which is also consistent with the 1993 NOAA panel’s 

recommendation in the context of a contingent valuation study.   
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The inclusion of the no-choice option raises the empirical distinction between 

yeah- and nay-saying to the alternatives offered in choice sets.  If a dummy variable can 

be created where it equals zero when a no-choice option is chosen and equals one when 

any of the non-empty product/service alternatives offered is chosen, then a typical 

outcome of the series of choices an individual makes may be a mixture of zeros and ones 

such that { }J|,...0,1,1,0,0,1=iC , where J is the total number of choices (or choice sets) 

individual i sees in a conjoint experiment.  Without losing generality, J is assumed to be 

constant across individuals.  A nay-saying choice pattern may be captured by choices 

{ }J|,...0,0,0,0,0,0== 0
ii CC and similarly, a yeah-saying behavior may be represented 

by { }J|,...1,1,1,1,1,1== 1
ii CC .  Certainly, choice patterns consistent with these styles may 

not suggest a different choice behavior than other types of choices, but it is likely that 

individuals making choices1
iC and 0

iC behave systematically different to other individuals 

in the sample.   

 

Following RUT, the indirect utility associated with alternative j in the n-th choice 

set by individual i can be written as:  

(1) ijnijn eU += βX ijn  

where ijnX is a vector of the attributes associated with option j faced by i in choice set n; 

β is a vector of corresponding unknown coefficient to be estimated; and ijne is a noise 

term that gives the random nature of utilityijnU from the perspective of a researcher.  

If ijne is assumed iid in Gumbel distribution, the choice probability ijnP can be represented 

by the logit model:  
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The likelihood of the series of choices represented in iC can then be written as: 
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where ijny is a dummy variable indicating actual choices: 1=ijny if j is chosen by i in 

choice set n; otherwise 0=ijny .  Following the same idea, the likelihood of 

1
iC and 0

iC being realized respectively is:  
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The expression niP1 denotes the likelihood of i choosing one of the non-empty options 

offered in choice set n.  Since there is typically more than one non-empty product/service 

options besides the no-choice option in a choice set, indicator 1 is vectorized.  Similarly 

niP0 represents the likelihood of choosing the no-choice option in choice set n.   

 

VMA reviewed the relevant literature that has proposed methods to particularly 

deal with the potential bias introduced by nay-saying behavior.  These authors conclude 

that a hurdle model may offer a more direct treatment of non-participation by allowing 

different data generating mechanisms in the model.  Following VMA, a hurdle structure 

can be specified to capture the nay-saying as well as yeah-saying probabilities separately 

from the choice models.  If one assumes that the hurdle probabilities for nay-saying and 
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yeah-saying can be represented byλ  andτ  respectively and further assumes that these 

probabilities take the convenient logit form, then one may specify:  

(5.1) 
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where iZ is a vector of individual characteristics variables that may explain the behavior 

of yeah- and/or nay-saying to the options in a conjoint experiment;γ is a vector of 

unknown coefficients to be estimated and distinguished by corresponding subscripts in 

different hurdles.   

 

The choice probability of a nay-saying single hurdle model1 can therefore be 

written as:  
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This is the same as in VMA.  Based on this expression, the extension to the yeah-saying 

hurdle model is straightforward:  
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When the above two hurdle specifications are considered simultaneously under one 

choice model, the choice probability has three parts and is given as follows:  
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The overall log-likelihood of the hurdle models is simply the log of the individual 

choice probabilities summed over the number of individuals in the sample.  The 

development of the mixed logit model (Train 1998) has gained great attention from 

researchers in recent years.  The mixed logit model is not only able to reveal unobserved 

heterogeneity in choice models, it often provides a better fit to the data compared to the 

fixed coefficient conditional logit model.  A mixed logit model can be specified by 

replacing the basic choice likelihood
iCP by ( ) ββ

ii CC dfPP ∫=' , which is the fixed 

coefficient choice likelihood integrated out of the entire distribution of the random 

coefficients.  Once
iCP is replaced by '

iCP , all hurdle mixed logit models can be obtained in 

identical ways as their fixed coefficient versions.  To assist estimation, a simulated 

maximum likelihood approach can be taken to estimate the mixed logit models.   

 

Data 

The canola oil survey was administered by mails between 2003 and 2004 in four regions 

of Japan: Tokyo, Kanagawa, Saitama, and Chiba.  Respondents were randomly selected 

by their phone book registry and a total of 1050 questionnaires were mailed.  Out of the 

430 returned surveys that at least answered portions of the questionnaire, 367 completed 

all conjoint experiment questions and are useable in this study.  Descriptive statistics of 



 11 

demographic characteristics of the respondents show that the sample is representative 

based on a typical survey of retail food items.  Table 1 describes the attributes and their 

levels used in the conjoint experimental design, and the survey was focused on credence 

attributes of canola oil.  Each respondent was presented with eight choice sets and within 

each choice set, three options were offered.  Among the three options, the first two are 

described by actual attributes listed in table 1.  The last option is the no-choice option 

where the individuals can choose this option and indicate that they “would not like to 

choose either one of the first two products in this occasion”.  To obtain a preliminary idea 

of the issue of yeah- and nay-saying to the options offered in each choice set, figure 1 

gives the distribution of the number of times a respondent chose the no-choice option.  

Zero implies yeah-saying and eight suggests nay-saying.   

 

Contrary to the two datasets used in VMA, where a large proportion of the 

respondents were non-participants, in this canola oil survey, only 31 individuals out of 

the 367 (roughly 8%) respondents exhibited the pattern of nay-saying.  On the other 

extreme however, 72 individuals consistently chose a non-empty product offered in each 

choice set, consisting about 20% of the sample.  This large proportion of yeah-saying 

individuals makes it logical to investigate whether these choices are featured by different 

underlying choice behavior.  The rest of the respondents were distributed rather evenly in 

terms of the number of no-choice options chosen, except for the category representing 

individuals who chose the no-choice option seven out of eight times in the survey.  These 

characteristics indicate that in a survey on food purchase and marketing, it may not be as 

imperative as in a survey regarding environmental goods/services (as both datasets in 
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VMA) to treat the nay-saying as a separate group with distinctive choice patterns;  rather, 

at least equal effort should be directed to examine the yeah-saying behavior.  Differences 

in natures between different surveys may invoke different need for modeling methods.  

The gain of using a hurdle and ultimately the model selection may rely largely on the 

characteristics of the data in interest.   

 

Results  

Results of this study are presented in two sections: direct parameter estimation results 

from various models and the welfare implications associated with these models.   

 

Model Estimation Results  

Table 2 gives the model estimation results.  Given that there is relatively much 

information presented in table 2, discussion in this subsection takes the following order: 

First, the fixed-coefficient conditional logit model without hurdle specification is 

discussed.  Although different models have slightly different predictions on the 

significance of the coefficients of the product attribute variables in the indirect utility 

function; i.e.,β ,2  the result of this base-line logit model helps to bring a general view of 

the empirical meaning of this study.  Second, various models are compared under the 

fixed-coefficient conditional logit base-line choice model.  Third, a similar comparison is 

conducted within the scope of a mixed logit base-line choice model.  Lastly, results of 

comparisons between models across all categories are highlighted.   

 



 13 

The constant for the no-choice option is negative.  This suggests that Japanese 

consumers in general would like to have the option of purchasing canola oil and if not, a 

negative impact to utility may incur.  The attributes of being high in Oleic acid and 

containing Vitamin E are negative.  These effects are compared to the omitted category 

“low in saturated fat”.  The negative coefficients indicate that consumers would prefer the 

low saturated fat attribute more than the two relatively newer types of nutritional claims.  

Similarly, a non-significant coefficient for the variable representing high in Alpha-

Linoleic acid shows that consumers did not in general differentiate this attribute with the 

low in fat attribute.  It has been found in numerous other studies that genetic modification 

is often regarded as an attribute that, when present, will decrease product values.  The 

same effect can be seen here as well, in that the coefficient associated with the GM 

attribute is negative.  Consumers would prefer a bottle of canola oil more if it is produced 

by organic oilseeds.  The functional food attribute was also welcomed by consumers as 

reflected by its positive coefficient in the model.  The surveyed Japanese consumers did 

not appear to like canola oil imported from other countries.  Finally, the price coefficient 

is negative and significant.   

 

Based on the same conditional logit base-line choice models, various hurdle 

models are also estimated.  Comparing magnitude of parameters across models is not 

sensible because of the scale issue, thus, the discussion is focused on signs of parameters 

and model fit.  A series of consumers’ demographic information is used in the 

specification of the hurdle probability.  In the nay- and yeah-saying hurdle probabilities, 

these variables are identified by the suffixes “-Nay” and “-Yeah” respectively.  The nay-
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saying hurdle model improves the standard conditional logit model by a significant 

margin based on the nonparametric information criteria (AIC and BIC).  This is 

consistent with the findings in VMA.  According to this model, individuals who are male, 

younger, less educated, and/or lower household income, were significantly more likely to 

consistently choose the no-choice option in the survey.  These significant variables 

suggest that a distinctive choice pattern may be adopted by different individuals.  Size of 

household and the number of children in household were not significant factors 

determining the nay-saying behavior.   

 

Compared to the nay-saying hurdle model, the yeah-saying hurdle model 

improves the model fit by a much larger degree.  This is likely consistent with the data.  

Given the choice patterns displayed in figure 1, augmenting choice probabilities with the 

yeah-saying hurdle does provide a better understanding of the data reflected by further 

improved model fit.  Male, younger, and less educated individuals might be more likely 

to get involved with consistently choosing at least one of the non-empty products offered 

in each choice set.  Different to the nay-saying group, yeah-saying consumers tend to 

have less children at home and/or have more family income.  The last model, which 

contains both nay- and yeah-saying hurdles, has the best model fit among all four models.  

This result likely comes from the fact that this model allows and considers more types of 

choice patterns contained in the data, and therefore provides a better description of 

overall consumer preferences.  The impact of demographic variables to either nay- or 

yeah-saying is consistent to that given under the two, one-hurdle models separately.   
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In the specification of the mixed logit models, all coefficients are assumed to have 

a normal distribution across sampled consumers, except that of the price variable.  This is 

mainly to maintain the calculation of the marginal values explained in the next subsection 

separately from the “dividing by zero” problem (Layton and Brown 2000 and Hu, 

Veeman and Adamowicz 2005).  Models with a random price coefficient (lognormally 

distributed) have been analyzed and no conclusion in the current analysis was affected.  

The mixed logit model offers great improvement in fit.  The mixed logit without hurdle 

specification improves the conditional logit fit by almost 15% in AIC score.  Estimated 

standard deviations of various coefficients are labeled with “SD-” as the prefix.  These 

standard deviation estimates are also robust across various models, with minor 

differences.  These parameters suggest that Japanese consumers are heterogeneous in 

terms of their preferences to the studied attributes of canola oil.   

 

When the nay-saying hurdle was included, the model obtained further gain in fit.  

However, also consistent with VMA, the relative gain in moving from a non-hurdle 

model to a nay-saying hurdle model is less drastic under the mixed logit context than 

under the conditional logit context.  When the yeah-saying hurdle is considered instead, 

the model again fits the data better than when nay-saying was included, and when both 

hurdles are explicitly modeled in the two-hurdle model, the fit is further improved.  

Summarizing the above observations, the best model fit is achieved with the two-hurdle 

mixed logit base-line choice model.  Compared to the most naïve conditional logit model 

without hurdles, this last model drastically improves the overall model fit and enhances 

understanding and interpretation of the underlying data greatly.   
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If all models in table 2 are compared simultaneously, one can observe at least two 

additional interesting trends.  First, within each pair of models, although the mixed logit 

consistently outperforms the conditional logit model, the difference between model fits is 

diminishing along with the different ways of including hurdles.  Moving from the models 

without hurdles to models with nay-saying, yeah-saying, and both hurdles, the relative 

improvement in AIC scores from employing a mixed logit decreased from 15% 

improvement to 10%, to 6% and finally to 3%.  Second, comparing the mixed logit model 

without hurdles and the two-hurdle model without random coefficients, the latter has a 

12% improvement on AIC score.  This difference highlights the trade-off between a 

statistically demanding procedure and a structurally tailored model.  This may have some 

implications on model selection in the repeated conjoint experiment literature.   

 

Welfare Implications  

Models’ implications on welfare measures are calculated through the marginal values of 

attributes.  Marginal values are given as the opposite of the ratio between the coefficient 

of an attribute and that of the price.  This enables one to assess the values associated with 

each attribute among Japanese consumers, holding other attributes separate.  In addition, 

since these marginal values are ratios between two parameters, the issue of different 

scales in different models is eliminated.  Table 3 presents the implied values of the eight 

canola oil attributes.  All quantities are in thousands Japanese Yen, which is about 8.5 US 

dollars.  The standard deviations of the marginal values are calculated following the 

Krinsky and Robb (1986) approach with 3000 simulation iterations.   
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The computation of welfare measures within the context of a mixed logit model is 

slightly more complicated.  Two methods have been adopted in the literature.  One 

approach simply takes the mean estimate of the coefficients and plugs them directly into 

the Krinsky and Robb procedure.  The other approach, advocated by Hu, Adamowicz and 

Veeman (2005) is to consider the standard deviation estimates of the mean attribute 

coefficients.  These authors formulated a procedure that first simulates a coefficient by its 

mean and standard deviation estimates within the mixed logit model and uses the 

averaged coefficient in the Krinsky and Robb routine.  This study examines both methods 

and when applying the Hu, Adamowicz and Veeman approach, the iteration within a 

mixed logit model takes 500 iterations.  The two approaches are labeled as mixed logit I 

and II in the table respectively.   

 

In the context of a hurdle model, marginal values can be calculated by simply 

taking the estimated coefficients in the indirect utility function.  A different approach is 

to recognize the existence of the hurdles and incorporate the hurdle likelihood into the 

welfare calculation.  For each of the three hurdle models (nay-saying, yeah-saying, and 

two-hurdle), table 3 presents the marginal values when the hurdle(s) are or are not 

considered.  Following VMA, when hurdle likelihoods are considered, the suggested 

marginal values are discounted by one over the likelihood of a respondent not belonging 

to the extremes (either nay- or yeah-saying).3  All marginal values reported in table 3 

show that these values, under different models, are consistent in their signs but the 

magnitude differs moderately.   
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The two simulation approaches of calculating welfare measures under mixed logit 

models show very little difference in this application.  The mixed logit models in general 

produce larger marginal values (in an absolute sense) than the conditional logit models.  

The yeah-saying hurdle model gives the lowest marginal values compared to other 

models regardless whether the hurdle is considered.  The nay-saying hurdle models 

suggest larger attribute values than those under models without hurdle specifications, 

while the yeah-saying and the two-hurdle models imply lower marginal values.  For the 

three hurdle models, when hurdle likelihoods are considered in the welfare calculation, 

the suggested marginal values are smaller, and in general they differ moderately to those 

predicted by models without hurdle specifications.  The change to marginal value 

predictions brought by considering or not considering hurdle likelihoods is the largest in 

the two-hurdle model.   

 

Summary and Discussion  

This study considers modeling discrete choices generated from conjoint experiments by 

particularly focusing on whether choices may be captured by different preference 

patterns.  Built upon previous studies on survey non-participation, this article extends the 

understanding of choices to two types of behaviors: the non-participation behavior 

categorized as nay-saying to alternatives in a conjoint experiment and the yeah-saying 

behavior characterized by always agreeing to select at least some options offered.  The 

modeling approach adopted in this study considers these types of choices through a series 

of hurdle models.   
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It is found that when decision-hurdles are introduced into choice modeling, the 

models perform significantly better than when no such hurdles are specified.  Although 

consistent with previous studies, the nay-saying hurdle model offers improvement in 

model fit, a better model is identified as the yeah-saying hurdle model, and the most 

comprehensive two-hurdle model that jointly considers the two types of behavior brings 

the largest increase in model fit of all three hurdle models.  The welfare implications are 

demonstrated by marginal values suggested under each model.  Compared to those 

without hurdle specifications, the three hurdle models also give moderately different 

predictions on the value of various attributes.   

 

In the application of the empirical models in this study, a noticeable observation is 

surrounding the mixed logit model.  The mixed logit has been proven as a powerful tool 

in discrete choice modeling and in many published studies involving moderate modeling 

effort, the mixed logit model often outperforms other competing models considered.  In 

this study however, we show that the two-hurdle model without random coefficients is 

strongly preferred to the mixed logit model without hurdles, and since the two-hurdle 

model does not require simulating any likelihood functions, it takes only a fraction of the 

computer time to estimate a mixed logit model (without hurdles).  Although it is true that 

the random parameter version of the two-hurdle model offers slightly better fit than the 

fixed coefficient specification, the small gain is at the cost of significantly increased 

estimation effort.  Given this evidence, we would like to view the mixed logit model as a 
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tool that can be superimposed to other models that seek better representation of the 

choice behavior by directly targeting the fundamental structure of the data.   

 

The above discussion also highlights the importance of having an ex ante 

understanding of the structure of data.  For example, as presented in figure 1 only, it can 

be seen that there are individuals involved in other types of choice patterns, such as 

choosing the no-choice option for 1, 2,…, seven times out of eight.  We have studied the 

two extreme situations which may be generated by the most distinctive patterns in 

choices but, this neither indicates that including other choice categories in figure 1 is not 

feasible, nor does it guarantee the two-hurdle model will still hold as the best alternative.  

Indeed, hurdles may be specified on any particular switch variables that may differentiate 

individuals’ behavior into various groups.  The switch variables may be linked to the 

survey design (such as different data collection methods), time taken to complete a 

survey, or many other factors.  Given these potential switching identifiers, a further 

advance of the modeling effort may involve a randomized hurdle model or an individual-

level hurdle model that associates each individual with a unique hurdle.  No matter what 

may be considered, a likely valuable consideration would be to achieve, as close as 

possible, an understanding of the structure of the data along with the empirical modeling 

effort.   
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Notes

                                                 
1 In this article, only single hurdle models are considered.  VMA demonstrated that a 

hurdle model and a non-hurdle model may generate different estimation and welfare 

results but there exists little difference between single- and double-hurdle models in 

various conditions.   

2 All models predict consistently in terms of the signs ofβ .   

3 All marginal values are based on sample enumeration: values for each person is 

calculated and averaged across the sample and the averaged measures are reported in 

table 3.   
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Table 1.  Variables Used in Conjoint Design 

Attributes and Levels Nature Representation in Choice Model 

4 levels of nutrition claims 

4 possible contents: 
low in saturated fat, 

high in Oleic acid, high 
in Vitamin E, high in 
Alpha-Linoleic acid 

Low is saturated fat is omitted in 
estimation 

2 levels of genetic 
modification 

Present or absent Enter as a dummy variable 

2 levels of organic food Present or absent Enter as a dummy variable 

2 levels of functional food Present or absent Enter as a dummy variable 

2 levels of imported or not Present or absent Enter as a dummy variable 

4 levels of prices All in Japanese Yen Enter as a continuous variable 
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Table 2.  Estimation Results  

Variable Coeff Std. Err. Coeff Std. Err. Coeff Std. Err. Coeff Std. Err.
Constant for No-Choice (NC) -0.974 0.140 -1.941 0.193 Constant for No-Choice (NC) -1.473 0.157 -2.277 0.188
Oleic Acid (OLA) -0.082 0.080 -0.266 0.092 Oleic Acid (OLA) -0.200 0.094 -0.344 0.103
Vitamin E (VE) -0.297 0.080 -0.392 0.079 Vitamin E (VE) -0.298 0.081 -0.355 0.084
Alpha-Linoleic Acid (ALA) 0.036 0.081 0.044 0.099 Alpha-Linoleic Acid (ALA) -0.043 0.095 -0.066 0.104
Genetically Modified (GM) -1.879 0.080 -3.304 0.172 Genetically Modified (GM) -2.042 0.087 -3.253 0.161
Organic (Org) 0.313 0.084 0.399 0.070 Organic (Org) 0.330 0.092 0.336 0.103
Functional (Fun) 0.700 0.058 0.914 0.068 Functional (Fun) 0.728 0.061 0.915 0.073
Imported (Imp) -0.832 0.066 -1.406 0.088 Imported (Imp) -1.004 0.073 -1.466 0.094
Price -1.304 0.244 -1.923 0.281 Price -1.442 0.255 -1.866 0.279
SD-NC -1.960 0.103 Constant-Nay -0.842 0.167 -0.926 0.225
SD-OLA -0.019 0.095 Male-Nay 0.702 0.271 0.752 0.262
SD-VE -0.003 0.084 Age-Nay -0.641 0.148 -0.779 0.284
SD-ALA -0.352 0.094 Household Size-Nay 0.069 0.141 0.078 0.112
SD-GM 1.818 0.161 Number of Children-Nay -0.183 0.218 -0.171 0.112
SD-Org -0.374 0.110 Education-Nay -0.662 0.165 -0.505 0.208
SD-Fun -0.184 0.073 Income-Nay -1.083 0.283 -1.231 0.389
SD-Imp 0.620 0.093 SD-NC -0.994 0.134
LL -2608.839 -2191.787 SD-OLA 0.214 0.095
AIC 5279.827 4500.965 SD-VE -0.002 0.087
BIC 5270.827 4483.965 SD-ALA -0.128 0.100

SD-GM 1.897 0.160
SD-Org -0.408 0.121
SD-Fun -0.225 0.079
SD-Imp 0.835 0.098
LL -2411.583 -2159.180
AIC 4993.651 4484.088
BIC 4977.651 4460.088

Models without Hurdles Models with Nay-Saying Hurdles
Logit Mixed Logit Logit Mixed Logit
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Table 2.  Estimation Results (Continued) 

Coeff Std. Err. Coeff Std. Err. Coeff Std. Err. Coeff Std. Err.
Constant for No-Choice (NC) -0.701 0.154 -1.202 0.186 Constant for No-Choice (NC) -1.283 0.173 -1.732 0.167
Oleic Acid (OLA) -0.118 0.106 -0.220 0.116 Oleic Acid (OLA) -0.273 0.113 -0.363 0.129
Vitamin E (VE) -0.286 0.088 -0.427 0.094 Vitamin E (VE) -0.262 0.096 -0.379 0.092
Alpha-Linoleic Acid (ALA) 0.122 0.099 0.157 0.121 Alpha-Linoleic Acid (ALA) 0.008 0.109 -0.031 0.111
Genetically Modified (GM) -2.347 0.103 -3.916 0.312 Genetically Modified (GM) -2.600 0.113 -3.968 0.228
Organic (Org) 0.447 0.091 0.531 0.091 Organic (Org) 0.468 0.104 0.500 0.095
Functional (Fun) 0.759 0.070 0.914 0.079 Functional (Fun) 0.799 0.073 0.931 0.077
Imported (Imp) -1.055 0.071 -1.448 0.107 Imported (Imp) -1.307 0.089 -1.591 0.110
Price -1.413 0.267 -2.026 0.319 Price -1.533 0.283 -1.995 0.235
Constant-Yeah -0.548 0.075 -0.646 0.062 Constant-Nay -0.816 0.216 -0.697 0.088
Male-Yeah 0.331 0.081 0.368 0.082 Male-Nay 0.861 0.273 0.753 0.148
Age-Yeah -0.333 0.046 -0.347 0.040 Age-Nay -0.742 0.324 -0.560 0.138
Household Size-Yeah -0.059 0.055 -0.101 0.048 Household Size-Nay 0.043 0.097 0.007 0.063
Number of Children-Yeah -0.171 0.054 -0.133 0.076 Number of Children-Nay -0.158 0.163 -0.184 0.075
Education-Yeah -0.518 0.068 -0.420 0.072 Education-Nay -0.395 0.259 -0.525 0.162
Income-Yeah 0.250 0.081 0.383 0.076 Income-Nay -1.144 0.367 -0.954 0.170
SD-NC -1.461 0.143 Constant-Yeah -0.645 0.163 -0.554 0.065
SD-OLA -0.269 0.082 Male-Yeah 0.430 0.088 0.453 0.063
SD-VE 0.125 0.082 Age-Yeah -0.354 0.064 -0.323 0.029
SD-ALA -0.399 0.110 Household Size-Yeah -0.077 0.066 -0.087 0.047
SD-GM 1.799 0.308 Number of Children-Yeah -0.143 0.135 -0.147 0.065
SD-Org -0.265 0.130 Education-Yeah -0.356 0.124 -0.397 0.085
SD-Fun -0.225 0.100 Income-Yeah 0.299 0.132 0.263 0.075
SD-Imp 0.286 0.142 SD-NC -0.345 0.146
LL -2060.122 -1905.330 SD-OLA 0.018 0.107
AIC 4230.729 3976.388 SD-VE 0.107 0.074
BIC 4214.729 3952.388 SD-ALA -0.107 0.129

SD-GM 2.265 0.201
SD-Org -0.241 0.068
SD-Fun -0.287 0.085
SD-Imp 0.562 0.129
LL -1928.119 -1836.715
AIC 4015.060 3887.496
BIC 3992.060 3856.496

Models with Both Yeah and Nay-Saying Hurdles
Logit Mixed Logit

Models with Yeah-Saying Hurdles
Logit Mixed Logit
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Table 3.  Marginal Attribute Values in Thousands Japanese Yen 

Marginal Value Std. Dev. Marginal Value Std. Dev. Marginal Value Std. Dev.
Constant for No-Choice (NC) -0.76 0.13 -1.02 0.12 -1.02 0.12
Oleic Acid (OLA) -0.07 0.10 -0.14 0.06 -0.14 0.06
Vitamin E (VE) -0.24 0.11 -0.21 0.06 -0.21 0.06
Alpha-Linoleic Acid (ALA) 0.03 0.05 0.02 0.05 0.02 0.05
Genetically Modified (GM) -1.50 0.40 -1.75 0.28 -1.75 0.28
Organic (Org) 0.25 0.11 0.21 0.06 0.21 0.06
Functional (Fun) 0.56 0.15 0.49 0.09 0.49 0.09
Imported (Imp) -0.67 0.18 -0.74 0.12 -0.74 0.12

Marginal Value Std. Dev. Marginal Value Std. Dev. Marginal Value Std. Dev.
Constant for No-Choice (NC) -1.04 0.14 -1.23 0.14 -1.24 0.15
Oleic Acid (OLA) -0.14 0.08 -0.19 0.07 -0.19 0.07
Vitamin E (VE) -0.21 0.08 -0.19 0.06 -0.20 0.06
Alpha-Linoleic Acid (ALA) -0.03 0.07 -0.04 0.06 -0.04 0.06
Genetically Modified (GM) -1.46 0.29 -1.78 0.29 -1.79 0.30
Organic (Org) 0.24 0.09 0.18 0.07 0.19 0.07
Functional (Fun) 0.52 0.12 0.50 0.09 0.50 0.09
Imported (Imp) -0.72 0.15 -0.80 0.13 -0.81 0.14

Marginal Value Std. Dev. Marginal Value Std. Dev. Marginal Value Std. Dev.
Constant for No-Choice (NC) -0.95 0.13 -1.12 0.13 -1.13 0.13
Oleic Acid (OLA) -0.13 0.08 -0.17 0.06 -0.17 0.07
Vitamin E (VE) -0.19 0.07 -0.18 0.05 -0.18 0.05
Alpha-Linoleic Acid (ALA) -0.03 0.06 -0.03 0.05 -0.03 0.06
Genetically Modified (GM) -1.33 0.27 -1.62 0.26 -1.63 0.28
Organic (Org) 0.22 0.08 0.17 0.06 0.17 0.06
Functional (Fun) 0.48 0.11 0.46 0.08 0.46 0.08
Imported (Imp) -0.65 0.14 -0.73 0.12 -0.74 0.13

Marginal Value Std. Dev. Marginal Value Std. Dev. Marginal Value Std. Dev.
Constant for No-Choice (NC) -0.50 0.08 -0.60 0.09 -0.60 0.09
Oleic Acid (OLA) -0.09 0.09 -0.11 0.07 -0.11 0.07
Vitamin E (VE) -0.21 0.08 -0.22 0.06 -0.22 0.06
Alpha-Linoleic Acid (ALA) 0.09 0.07 0.08 0.06 0.08 0.06
Genetically Modified (GM) -1.72 0.38 -1.97 0.34 -1.98 0.35
Organic (Org) 0.33 0.10 0.27 0.06 0.27 0.06
Functional (Fun) 0.56 0.13 0.46 0.08 0.46 0.08
Imported (Imp) -0.77 0.17 -0.73 0.14 -0.74 0.14

Models without Hurdles
Conditional Logit Mixed Logit I Mixed Logit II

Mixed Logit II

Conditional Logit Mixed Logit I Mixed Logit II

Conditional Logit Mixed Logit I Mixed Logit II

Nay-Saying Hurdle Models Without Considering the Hurdles in Marginal Values

Nay-Saying Hurdle Models that Consider the Hurdles in Marginal Values

Yeah-Saying Hurdle Models Without Considering the Hurdles in Marginal Values

Conditional Logit Mixed Logit I
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Table 3.  Marginal Attribute Values in Thousands Japanese Yen (Continued)  

Marginal Value Std. Dev. Marginal Value Std. Dev. Marginal Value Std. Dev.
Constant for No-Choice (NC) -0.40 0.06 -0.48 0.07 -0.48 0.08
Oleic Acid (OLA) -0.07 0.07 -0.09 0.06 -0.09 0.06
Vitamin E (VE) -0.17 0.07 -0.17 0.05 -0.17 0.05
Alpha-Linoleic Acid (ALA) 0.07 0.06 0.06 0.05 0.06 0.05
Genetically Modified (GM) -1.38 0.30 -1.58 0.27 -1.59 0.28
Organic (Org) 0.26 0.08 0.21 0.05 0.22 0.05
Functional (Fun) 0.45 0.11 0.37 0.06 0.37 0.07
Imported (Imp) -0.62 0.14 -0.59 0.11 -0.59 0.11

Marginal Value Std. Dev. Marginal Value Std. Dev. Marginal Value Std. Dev.
Constant for No-Choice (NC) -0.85 0.12 -0.88 0.08 -0.87 0.08
Oleic Acid (OLA) -0.18 0.10 -0.19 0.08 -0.19 0.07
Vitamin E (VE) -0.18 0.08 -0.19 0.05 -0.19 0.05
Alpha-Linoleic Acid (ALA) 0.00 0.07 -0.02 0.06 -0.02 0.06
Genetically Modified (GM) -1.75 0.36 -2.01 0.20 -2.01 0.20
Organic (Org) 0.32 0.10 0.25 0.06 0.25 0.06
Functional (Fun) 0.54 0.12 0.47 0.07 0.47 0.07
Imported (Imp) -0.88 0.18 -0.81 0.11 -0.81 0.11

Marginal Value Std. Dev. Marginal Value Std. Dev. Marginal Value Std. Dev.
Constant for No-Choice (NC) -0.57 0.08 -0.59 0.06 -0.59 0.06
Oleic Acid (OLA) -0.12 0.07 -0.13 0.05 -0.13 0.05
Vitamin E (VE) -0.12 0.05 -0.13 0.04 -0.13 0.04
Alpha-Linoleic Acid (ALA) 0.00 0.05 -0.01 0.04 -0.01 0.04
Genetically Modified (GM) -1.18 0.25 -1.35 0.15 -1.36 0.15
Organic (Org) 0.21 0.07 0.17 0.04 0.17 0.04
Functional (Fun) 0.36 0.08 0.32 0.05 0.32 0.05
Imported (Imp) -0.59 0.13 -0.54 0.08 -0.54 0.08

Conditional Logit Mixed Logit I Mixed Logit II

Conditional Logit Mixed Logit I Mixed Logit II

Two-Hurdle Models Without Considering the Hurdles in Marginal Values

Two-Hurdle Models that Consider the Hurdles in Marginal Values

Yeah-Saying Hurdle Models that Consider the Hurdles in Marginal Values

Conditional Logit Mixed Logit I Mixed Logit II
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Figure 1. Frequency Distribution of the No-Choice Option Being Selected  
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