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Abstract 
This paper investigates non-linearity in spatial processes models and allows for a gradual 
regime-switching structure in the form of a smooth transition autoregressive process. Until 
now, applications of the smooth transition autoregressive (STAR) model have been largely 
confined to the time series context. The paper focuses on extending the non-linear smooth 
transition perspective to spatial processes models, in which spatial correlation is taken into 
account through the use of a so-called weights matrix identifying the topology of the spatial 
system. We start by deriving a non-linearity test for a simple spatial model, in which spatial 
correlation is only included in the transition function. Next, we propose a non-linearity test 
for a model that includes a spatially lagged dependent variable or spatially autocorrelated 
innovations as well. Monte Carlo simulations of the various test statistics are performed to 
examine their power and size. The proposed modeling framework is then used to identify 
convergence clubs in the context of U.S. county-level economic growth over the period 
1963–2003. 
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1. Introduction 
Over the last decade, nonlinear times series modeling has gained considerable attention in 

the applied economics literature. Nonlinear models can capture certain features of business 

cycles, which linear models cannot. The presence of asymmetry and nonlinearities in 

business cycles can be incorporated in smooth transition autoregressive (STAR) models. The 

STAR model is a member of the family of nonlinear models that exhibit regime-dependent 

or regime-switching behavior. As implied by its name, the STAR framework allows the 

model parameters to take on different values across regimes following a potentially smooth 

transition process. The STAR model has been used to model nonlinearity and asymmetric 

response in applications pertaining to industrial production (Terasvirta and Anderson, 1992), 

the hog-corn cycle (Holt and Craig, 2006), exchange rates (Baharumshah and Khim-Sen 

Liew, 2006), interest rates (van Dijk and Franses, 2000), and unemployment rates (Skalin and 

Terasvirta, 2002).  

Applications of the smooth transition approach have been largely confined to time 

series models; even although spatial econometrics has evolved as one of the fastest growing 

sub-fields of econometrics. Spatial econometrics allows modeling spatial interactions (spatial 

autocorrelation) and spatial structure (spatial heterogeneity) in regressions using cross-

sectional or panel data. Considerable progress has recently been made in developing 

consistent and efficient estimators for spatial regressions (Kelejian and Prucha, 2007; Lee, 

2002, 2007). Spatial dependence represents a functional relationship between what happens 

at one point in space and what happens elsewhere. Spatial heterogeneity occurs when there 

is no uniformity of the observed effects across space. Two types of spatial process are 

common in the spatial econometrics literature: the spatial lag model which considers spatial 

spillovers in the dependent variable in the form of the spatially lagged dependent and the 

spatial error model in which the disturbances are generated by a spatial autoregressive 

process. Recently, models that combine both processes in terms of spatial autoregressive 

models with autoregressive disturbances (ARAR models) have received considerable 

attention (Kelejian and Prucha, 2004, 2007; Lee, 2002, 2007). Spatial processes have often 

been assumed to be linear, typically in terms of a linear autoregressive or moving average 

process. It is much more likely, however, that spatial dynamics exhibit non-linear features in 

a way that is similar to time series models.  
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In spite of the popularity of STAR models in depicting nonlinear models, there have 

been no applications of this general approach to spatial processes. That is, spatial models 

that incorporate nonlinearities in the form of regime switching have to date not been 

explored. This research proposes a statistical methodology to formally test for non-linearity 

in spatial processes models and allowing for a gradual regime switching structure in the form 

of a smooth transition autoregressive process. We start by deriving the non-linearity test for 

a simple non-spatial model. Next, we propose a non-linearity test for a model that includes a 

spatially lagged dependent variable or spatial autocorrelated innovations. Monte Carlo 

simulations of the various test statistics are performed to examine their small sample power 

and size. The proposed modeling framework is then used in the analysis of convergence 

clubs with respect to U.S. county-level economic growth over the period 1963-2003. 

The rest of the paper is organized as follow. The next section provides a background 

review on the STAR model in the time series contest. Section 3 describes the spatial smooth 

transition autoregressive model. Estimation and Monte Carlo simulations are presented in 

section 4. The empirical application on the endogenous determination of “convergence 

clubs” for U.S. counties is presented section 5. Finally, section 6 concludes the paper. 

2. Background on STAR Model 

A basic STAR model with time series data can be represented as follow: 

 

tttttt csGxcsGxy εγϕγϕ +′+−′= ),,()),,(1( 21 ,              (1) 

 

or alternatively, 

 

ttttt csGxxy εγφφ +′+′= ),,(21                                            (2) 

 

where )~,1( ′′= tt xx  with ),...,(~
1 pttt yyx −−= and ),...,,( 1,0 ′= ipiii ϕϕϕϕ  , 2,1=i , 11 ϕφ = , 

122 ϕϕφ −= , tε  is the error term distributed independently and identically with mean zero 

and variance 2σ . ),,( csG t γ  is the transition function bounded between zero and one, 

allowing for a smooth transition between regimes.  
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Within the transition function, ts  represents the transition variable and it could be a 

lagged endogenous variable dtt ys −= , where d is referred to as the delay parameter; a 

function of lagged endogenous variables ),~( αtt xfs =   where f  is a function and α a 

parameter vector; an exogenous variable tt zs = , or a linear time trend tst = .1 The 

arguments γ  and c  are slope and location parameters, respectively. The parameter  γ                               

is also referred to as the smoothness parameter, and c  as the threshold between the two 

regimes. Two functional forms of the logistic function are common in the time series 

literature of STAR models: the logistic function and the exponential function. Using the 

lagged endogenous variable dty −  as transition variable, the logistic form is expressed as:  

 

{ }[ ] 1)()(exp1),,( −
−−− −−+= dtdtdt ycycyG σγγ .                                                                          (3) 

 

Combining (1) or (2) with (3) gives the logistic STAR (LSTAR) model. The exponential form 

is given as: 

 

{ }2))()((exp1),,( dtdtdt ycycyG −−− −−−= σγγ   .                              (4) 

 

Combining (1) or (2) with (4) gives the exponential STAR (ESTAR) model. For large values 

of  the parameter γ , the logistic function converges to one when 0fcy dt −−  and to zero 

when 0pcy dt −− . When 0→γ the LSTAR converges to an autoregression model of order 

p (AR(p)). The ESTAR shows a slightly different pattern with respect to γ . For large values 

of γ , the exponential function converges to one for values of dty − below or above the 

threshold parameter c . 

The STAR model offers the possibility to investigate the presence of nonlinearity in 

time series data. To this end, the STAR model is tested against the linear AR model. 

Luukkonen et al. (1988) suggested replacing the transition function ),,( csG t γ by a suitable 

first order Taylor series approximation and deriving the LM test of nonlinearity. Taking the 

                                                           
1 When the transition variable is a linear time trend ( tst = ), the STAR model is called a Time-Varying Autogressive 
Model (TVAR).  
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first order Taylor series approximation of the transition function ),,( csG t γ and substituting 

into (2) yields a simplified form of the STAR model given as: 

 

ttttt sxxy μββ +′+′= 10                (5) 

 

where 0β  and 1β  are functions of original parameters in (2). The nonlinearity test consists in 

deriving an LM test to test the null hypothesis 0: 10 =βH  against the alternative

0: 11 ≠βH .  

Luukkonen et al. (1988) also noticed that the LM test involving a third order Taylor 

series approximation has better power than the LM test obtained with the first order 

approximation. With a third order Taylor series approximation, the STAR model is given as:  

 

ttttttttt sxsxsxxy μββββ +′+′+′+′= 3
3

2
210                (6) 

 

The test of nonlinearity consists in deriving an LM test to test the null hypothesis  

0: 3210 === βββH  against the alternative 0,0,0: 3211 ≠≠≠ βββH . 

3. Specification of Spatial STAR Model 

Two types of spatial regressions are common in the spatial econometrics literature: the 

spatial error model and the spatial lag model. The specification of the spatial error model is 

relevant when the dependence works through the error process. The errors are then 

assumed to be generated by a spatial autoregressive process. The spatial error model may be 

written as: 

 

εβ += Xy  , where μελε += W ,                         (7) 

 

where y is an 1×N vector of observations on the dependent variable, X is an KN × matrix 

of explanatory variables, β  is a vector of unknown parameters, W is an NN × weight 

matrix which defines the spatial structure of regions, λ  is a scalar parameter, μ  is an 1×N  

vector of random error terms with mean 0 and constant variance. OLS estimation of the 

spatial error is unbiased and consistent but inefficient (Anselin, 1988). The spatial error 
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model is appropriately estimated using Maximum Likelihood approach or General Moment. 

The spatial lag model is relevant when the variable under investigation depends on its spatial 

lag. In other words, the model considers that spatial spillovers is present and is captured 

through the spatially lagged dependent variable. The spatial lag model may be expressed as: 

 

μβρ ++= XWyy                 (8) 

where ρ is a scalar parameter, and all other defined as before. OLS estimation of the spatial 

lag model is biased and inconsistent. Appropriate estimation is obtained by using Maximum 

Likelihood or Instrumental Variables approach (Anselin, 1988). 

The objective of this paper is to develop a methodology to test for nonlinearity in 

the above-defined spatial processes, allowing for a gradual regime switching structure in the 

form of a smooth transition autoregressive process. We first start with a basic specification 

of the STAR model for spatial variables by analogy to the model presented for time series:   

 

εγδδαα ++++= ),,()()( 1010 csGxxy                             (9) 

 

Where y  represents 1×N vector of observations on N  regions, x  is an 1×N vector 

representing an explanatory variable, G  the transition function, s  the transition variable, γ  

the smoothness parameter, c  the location parameter and ε  is the error term.   

By analogy to the time series context, a possible candidate for the transition variable 

could be the spatially lagged dependent variable or a spatially lagged independent variable. In 

this paper, we will consider the latter. We therefore define the spatial lag of the independent 

variable x  as Wx , where W  represents the exogenously defined weight matrix.2 W is a 

Boolean matrix, with element taking value 1 when regions are neighbors and 0 when they are 

not. If the weight matrix W  is standardized, then Wx  simply represents the average value of 

x  at the neighbors.  

The transition function could therefore be defined for both the logistic and 

exponential form respectively as: 

 
                                                           
2 Wx  is an 1×n  vector of observations, and simply represents the cross-product of the weight matrix W  
and x  
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{ }[ ] 1)(exp1),,( −−−+= cWxcWxG γγ               (10) 

 

{ }2)(exp1),,( cWxcWxG −−−= γγ                   (11) 

 

In this paper, we will only consider the LSTAR model, which is simply the 

combination of equation (9) and (10). The logistic function changes monotically and 

smoothly from zero to one depending on values of the transition variable Wx . For large 

values of the parameter γ , the logistic function converges to one when Wx  is above the 

threshold value c , and converges to zero when Wx  is below the threshold value c . 

Intuitively, this implies that the transition variable changes monotically and smoothly from 

zero to one as the characteristics of the neighbors (Wx ) changes.  

Under the assumption of homoskedastic errors, the LSTAR model obtained by 

combining equation (9) and (10) could be viewed as a simple spatial model, in which spatial 

correlation is only included in the transition function. We first start by deriving nonlinearity 

tests on this model. Considering a first order Taylor series approximation of the logistic 

function in equation (10) and substituting back into equation (9) yields a nonlinear LSTAR 

model of the form: 

 

εββββ +∗+++= xWxWxxy 3210                             (12) 

 

where iβ , 3,2,1,0=i are function of the original parameters in (9) and ε  are assumed to be 

independently and identically distributed with mean zero and a constant variance.3 A test of 

linearity involves testing the null hypothesis 0: 320 == ββH  against the alternative that 

0H  is not true. We employ an LM test with 2χ distribution and degree of freedom equal to 

2. Rejection of the null hypothesis would imply that the model is nonlinear.  

Next, using the model in equation (9) again, we also develop a spatial model where 

spatial autocorrelation is present not only in the transition function but also in the form of 

spatial lag. After taking the first order Taylor series approximation of the transition function 

in equation (10), this model could be expressed as:     

                                                           
3 Proof of derivation of the model in equation (12) is provided in appendix 1. 
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εββββρ +∗++++= xWxWxxWyy 3210                          (13) 

 

where ρ  represents the scalar spatial autoregressive parameter, the errors ε  are assumed to 

be independently and identically distributed with mean zero and a constant variance 2σ , all 

other terms are as previously defined. Considering the model in equation (13), it would 

therefore be possible to test for both spatial dependence and nonlinearity jointly. This will 

involve testing the null hypothesis 00: 320 === ββρ andH . To this end, an LM test 

with 2χ distribution is used. Failure to reject the null hypothesis would indicate that the 

model is linear and does not show presence of spatially lagged dependence. However, 

rejection could lead to the test of other null hypotheses: 

- Testing for nonlinearity only, assuming there is presence of spatial lag  

00: 320 ≠== ρββH  

- Testing for spatial dependence only, assuming the presence of nonlinearity 

00: 320 ≠≠= ββρH  

From a different perspective of the above, we also develop a spatial model where 

spatial autocorrelation is present in the transition function but in addition there are 

autoregressive error processes. After taking the first order Taylor series approximation of the 

transition function in (10) and substituting back into equation (9), this model is expressed as:   

   

εββββ +∗+++= xWxWxxy 3210      and       μελε += W           (14) 

 

Where λ  represents the coefficient of the autoregressive error term, μ  is a vector of 

random errors with mean zero and variance 2σ and all other terms are as previously defined. 

Considering the model in equation (14), it is also possible to test for both nonlinearity and 

spatial error dependence jointly. This will involve testing the null hypothesis

00: 320 === ββλ andH . The LM test with 2χ distribution is also used for this test. 

The acceptance of the null hypothesis would indicate that the model is linear and there is no 

presence of spatial autocorrelation in the form of autoregressive errors. However, if the null 
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hypothesis is rejected, other possible specifications need to be tested as well, through the 

following null hypotheses: 

- Testing for nonlinearity only, assuming there is presence of autoregressive errors  

00: 320 ≠== λββH  

- Testing for spatial dependence only, assuming the presence of nonlinearity 

00: 320 ≠≠= ββλH  

4. Estimation and Hypothesis Testing 

In this section, we derive analytical solution of the LM tests for the above-described models. 

Maximum likelihood estimation is used to estimate the various parameters in each model.  

Starting with the model in equation (12) the null hypothesis of nonlinearity

0: 320 == ββH  is simply tested with an LM test given as:  

 

[ ]
Nee

eXXXXe
LM

T

TTT

/**

*1* −

=β
                                                                                                              

(15) 

 

where ** βXye −= is the residual from the restricted model, )0,0,,( *
1

*
0

* βββ = represents 

the parameters of the restricted model, ),,,1( xWxWxxX ∗= and N  is the number of 

observations. 4  

 The model in equation (13) can be reformulated in intensive form as: 

 

εβρ ++= XWyy                           (16) 

 

where ),,,1( xWxWxxX ∗= , ),,,( 3210 βββββ =  and the errors ε  are assumed to be 

independently and identically distributed with mean zero and a variance 2σ . The LM test 

for testing the null hypothesis 00: 320 === ββρ andH  is given as: 

                                                           
4 It could be shown that the LM test equals to 2NR , where 2R  is the uncentered 2R  from the regression of 
the residual *e on X .  
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Where ** βXye −= is the residual from the restricted model, *β represents the parameters 

of the restricted model, Nee
T

/)( **2 =σ ,  [ ]WWWtrT T+= 2 . The proof of the derivation 

of the LM test in (17) is provided in Appendix 2a. 

The LM test for the presence of spatial lag assuming the presence of nonlinearity       

( 0:0 =ρH ) is given as:   

NJ

Wye

LM

T
2

2

/

1

*

⎥⎦
⎤

⎢⎣
⎡

= σ
βρ

             

(18) 

where βXye −= , ),,,1( xWxWxxX ∗= , ),,,( 3210 βββββ =  and  

[ ] [ ] [ ]
⎥
⎦

⎤
⎢
⎣

⎡
++=

2
2

σ
ββ WXMWX

WWWtrNJ
T

T

. 

Alternatively, it is also possible to test for nonlinearity assuming the presence of spatial lag. 

The ML test is given as: 

 

[ ]
Nee

eXXXXe
LM

T

TTT

/**

*1*

/*

−

=ρβ                                                                                       (19) 

 

where ** βρ XWyye −−= is the residual from the restricted model, and the other terms 

are defined as before.  

Reformulating the model in equation (14) in intensive form yields: 

εβ += Xy    and             μελε += W                             (20) 
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where ),,,1( xwxwxxX ∗=  , ),,,( 3210 βββββ =  and the errors μ  are assumed to be 

independently and identically distributed with mean zero and variance 2σ . The LM test for 

jointly testing for nonlinearity and the presence of autoregressive errors is given as: 

 

[ ]
Nee

eXXXXe

T

Wee

LM
T

TTT
T

/

1

**

*1*

2
**

2

/ *

−

+
⎥⎦
⎤

⎢⎣
⎡

= σ
βλ

        

   (21) 

 

where ** βXye −=  and the other terms defined as before. The proof of the derivation of 

the LM test in (21) is provided in Appendix 2b. 

  The LM test for the presence of autoregressive errors assuming nonlinearity            

( 0:0 =λH ) is given as: 

 

T

Wee

LM

T
2

2

/

1

*

⎥⎦
⎤

⎢⎣
⎡

= σ
βλ

                                            

(22) 

where βXye −=  and the other terms are defined as before. 

Alternatively, to test for nonlinearity, assuming the presence of autoregressive errors, 

the LM is given as:  

 

[ ]
Nee

eXXXXe
LM

T

TTT

/**

*1*

/*

−

=λβ
                                                                                                        

(23) 

 

where ))(( ** βλ XyWIe −−= , N is the number of observation and the other terms are 

defined as before. 

5. Monte Carlo Simulation 

In this section we investigated the performance of the above-described LM tests using 

Monte Carlo simulations. We first start with a data generating process where variables are 

artificially created to fit models described in equations (12), (13) and (14) respectively. We 

generated a 625 x 625 weight matrix corresponding to a regular 25 x 25 grid structure, using 
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a queen criterion.5 Next we generated the independent variable x  from a random uniform 

distribution. Subsequently, we also created the lagged dependent Wx  and the interaction 

term xWx ∗ . The matrix of independent variables ),,,1( xwxwxxX ∗=  is maintained 

fixed in the replications. For the simulation, we consider 1000 replications. The dependent 

variable is generated for each model by fixing the parameters 0α , 1α , 0δ , 1δ , c  to unity and 

following the structure of equations. We started the simulation by looping over the following 

values for the parameter gamma : 0, 0.1, 0.3, 0.5, 1, 10 and 100. For the spatial lag and 

spatial error model, we also looped over following values for parameters ρ  and λ : 0, 0.1, 

0.2, 0.3, 0.5, 0.7 and 0.9. For each replication, the LM tests are computed and compared to 

their asymptotic critical value at 05.0=α . The proportion of time the null hypothesis is 

rejected is reported. Table 1a, b, c shows the percentage of rejection of the null hypothesis 

corresponding to each combination of ρ  and λ  in the case of the spatial lag model. The 

size of each corresponds to the probability of rejection when 0== rhogamma . All three 

tests show relatively good size (about 10%). These tests also show high power, especially for 

large values of gamma. Similar pattern is observed with in Table 2a, b, c for the spatial error 

model. The size of each corresponds to the probability of rejection in case

0== lambdagamma . The size of all tests is about 10% and they all show strong power 

against the null.      

6. Empirical Application: Economic Growth Analysis of U.S. Counties, 1969-2003 

6.1. Background Review on Economic Growth and Convergence Clubs 

Countries of the world are characterized by larges disparities in terms of per capita income 

and growth rates. While some countries are extremely rich, others are extremely poor. Also, 

while some countries are growing fast, others are experiencing slow growth. Similar patterns 

can be observed at lower spatial scale levels, for instance for counties and states in the U.S. 

Economic growth studies try to explain disparities between countries or regions in terms of 

real per capital income or growth rates. Despite differences between regions, the neoclassical 

growth theory predicts that in the long run economic forces will contribute to regions 

becoming similar in terms of per capita income. This key proposition of neoclassical growth 

theory is known as the convergence property. In particular, regions with similar 

                                                           
5 The queen criterion consider all the regions (cells) having a side in common to the north, south, east and west 
as neighbors, as well as those having a vertex in common. 
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characteristics will converge to the same steady state.6  These groups of regions are known as 

convergence clubs. Identifying these groups has been a challenging task in the economic 

growth literature. Some studies have proposed exogenous approaches, oftentimes based on 

spatial statistics or threshold values in initial per capita income or human capital variables to 

identify groups (Florax and Nijkamp 2005, Le Gallo and Dall’erba 2006, Pede et al. 2007). 

These methods are rather ad hoc and assume an abrupt transition between groups, which is 

not always realistic. Other studies propose endogenous procedures based on the regression 

tree method (Johnson and Durlauf 1995) or a predictive density approach (Canova 2004). 

Unlike the previous methods, the latter allow for a relatively gradual transition between 

groups and the number of groups is endogenously determined rather than determined a 

priori and exogenously. Recently O’hUallachain (2007) proposed an endogenous procedure 

based on principal components analysis and cluster analysis to identify convergence clubs as 

well as transition clubs. Their procedure assumes that growth transitions are uniform, but in 

fact, it is also likely that the spatial dynamic of the growth process is gradual, and follows a 

smooth transition. In other words, nonlinear spatial dynamic may be the driving force in 

growth transitions. 

This empirical application proposes a procedure to endogenously determine the 

convergence clubs for the economic growth analysis of U.S. counties, allowing for a gradual 

regime switching structure in the form of a smooth transition autoregressive process. The 

methodology described in section 3 is applied to per capita income data for 3074 U.S. 

counties provided by the Bureau of Economic Analysis (BEA) over the period 1969-2003 to 

determine convergence clubs.  

6.2. Estimation and Testing 

We first start with estimation of parameters in the spatial logistic STAR model (SLSTAR) in 

equation (9). Following the neoclassical growth theory we consider an unconditional growth 

model as in Rey and Montouri (1999). The real per capita income growth over the period 

1969-2003 is expressed as a function of the real per capita income in the initial year 1969, 

and we consider a smooth transition of the growth which is governed by the transition 

function G. The model reads as:       

 

                                                           
6 The steady state is the state where capital and output are no longer growing over time. 
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[ ] εγδδαα ++++=⎥
⎦

⎤
⎢
⎣

⎡
cyWGyy

y

y
,),ln())ln(()ln(ln 1969196910196910

1969

2003

          (24) 

 

where 2003y  and 1969y   represents the real per capita income in 1969 and 2003, respectively. 

The errors ε  are assumed to be independently and identically distributed with mean zero 

and a constant variance. The parameters in this model are estimated using the optimization 

routine in R. Results of the estimation of parameters in equation (24) are summarized in 

Table 3.  

The results presented in Table 3 indicate that there are two regimes delimited by a 

threshold value or location parameter (c = 9.96). When the average per capita income at the 

neighbors in the initial year is less than the threshold value, then the region belongs to the 

first regime. When it is higher than the threshold value, then the region belongs to the 

second regime. The transition from one regime to another is determined by the smoothness 

parameter of magnitude 10.37. The parameters 0δ , 1δ , and γ  are insignificant and they are 

also sensitive to the choice of initial parameters. However, the parameters 0α , 1α , and  c  are 

significant and appear to be robust to the choice of initial parameters. The negative 

coefficient on the initial level of per capita income denotes that there is β-convergence 

occurring in the growth process. Moreover, the significance of the location parameter may 

suggest the presence of potential nonlinearities in the growth process. 

The transition function ),,( cWxG γ is represented in Figure 1. As expected, for low 

values of the average per capita income at the neighbors, the transition function is almost 

zero and the growth process is simply linear. But for large values of the average per capita 

income at the neighbors the transition function converges to one. Between the groups 

represented by high and low average per capita incomes, the growth transition is nonlinear. 

The low value of the estimated smoothness parameter explains why the growth transition 

process is relatively slow.  

The above analysis suggests that there are two convergence clubs delimited by a 

threshold value, and also there is presence of nonlinearity which has yet to be tested. 

Following the procedure described above, we proceed to testing for nonlinearity in the 

above described spatial processes. Results pertaining to the nonlinearity tests in the spatial 

error and spatial lag models are presented in Table 4. Starting with the spatial error model, 
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the null hypothesis 00: 320 === ββλ andH  was rejected at 5%.  The individual tests 

on the null hypothesis 0: 320 == ββH and 0:0 =λH were also rejected at 5%. This 

indicates that there is presence of autoregressive errors and nonlinearity in the growth 

process. Similar results were obtained when we consider the spatial lag model. The 

coefficient of the spatial lag is significant and there is also presence of nonlinearity.  

These results suggest that the growth process might appropriately be explained by a 

spatial lag process with autoregressive disturbances incorporating nonlinearity in the form of 

smooth transition autoregressive. These results are still preliminary and further consideration 

and extension are expected in the future.   

 

7. Conclusion 

This paper investigates nonlinearity in two spatial process models: the spatial error and the 

spatial lag. A gradual regime-switching structure is allowed in the spatial processes in the 

form of smooth transition autoregressive. A procedure has been proposed to test for the 

presence of autoregressive parameters and/or of nonlinearity. Monte Carlo results indicate 

that the proposed tests have high power in general, in particular when the smoothness 

parameter is large. With regard to size, all the tests behave relatively well, with a size of about 

10%. The empirical application on the economic growth of U.S. counties indicates two 

convergence clubs, and evidence of the presence of nonlinearity in the spatial growth 

transition process has been confirmed in the proposed tests. In addition to the strong 

evidence of nonlinearity, both spatial error and spatial lag were found to be significant, 

suggesting that there is spatial dependence in the growth process.  

Results presented in this paper are still preliminary. Further investigation in the 

testing procedure is needed to substantiate the results. Also, there are several possibilities to 

extend this research. First, the transition variable in the transition function could be a lagged 

dependent variable instead of the lagged independent. Second, we could consider a third 

order Taylor series approximation of the transition function as suggested by Luukkonen et 

al. (1988). Third, we could also consider a spatial STAR model which combine spatial lag 

and spatial error in the form of ARAR model. Finally, we could also consider different 

specification of the weight matrix.     
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Table 1a: Testing for spatial lag assuming nonlinearity 
gamma 

rho 0 0.1 0.3 0.5 1 10 100 
0 0.09 0.08 0.07 0.10 0.09 0.09 0.07 

0.1 0.33 0.31 0.30 0.31 0.34 0.34 0.35 
0.2 0.82 0.84 0.81 0.82 0.82 0.81 0.83 
0.3 0.99 0.98 0.99 0.99 0.99 0.99 0.99 
0.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
0.7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
0.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Table 1b: Testing for  nonlinearity assuming the presence of spatial lag 
gamma 

rho 0 0.1 0.3 0.5 1 10 100 
0 0.07 0.15 0.54 0.85 0.98 1.00 1.00 

0.1 0.08 0.14 0.55 0.86 0.99 1.00 1.00 
0.2 0.07 0.13 0.56 0.84 0.99 1.00 1.00 
0.3 0.08 0.15 0.53 0.85 0.98 1.00 1.00 
0.5 0.07 0.12 0.55 0.84 0.97 1.00 1.00 
0.7 0.06 0.14 0.54 0.86 0.99 1.00 1.00 
0.9 0.08 0.15 0.55 0.88 0.98 1.00 1.00 

Table 1c: Testing for  both nonlinearity and spatial lag
gamma 

rho 0.00 0.10 0.30 0.50 1.00 10.00 100.00 
0 0.12 0.19 0.54 0.84 0.98 1.00 1.00 

0.1 0.40 0.49 0.78 0.94 0.99 1.00 1.00 
0.2 0.89 0.91 0.97 0.99 1.00 1.00 1.00 
0.3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
0.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
0.7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
0.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 2a: Testing for spatial error assuming nonlinearity 
gamma 

lambda 0 0.1 0.3 0.5 1 10 100 
0 0.09 0.08 0.09 0.07 0.07 0.09 0.08 

0.1 0.32 0.32 0.31 0.33 0.33 0.31 0.31 
0.2 0.79 0.81 0.83 0.82 0.82 0.83 0.82 
0.3 0.98 0.99 0.98 0.98 0.99 0.99 0.99 
0.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
0.7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
0.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Table 2b: Testing for  nonlinearity assuming the presence of spatial error 
gamma 

lambda 0 0.1 0.3 0.5 1 10 100 
0 0.10 0.19 0.60 0.88 0.99 1.00 1.00 

0.1 0.10 0.20 0.61 0.90 0.99 1.00 1.00 
0.2 0.13 0.22 0.61 0.90 1.00 1.00 1.00 
0.3 0.13 0.21 0.60 0.85 0.99 1.00 1.00 
0.5 0.20 0.27 0.62 0.86 0.98 0.99 1.00 
0.7 0.30 0.34 0.60 0.80 0.95 0.98 0.98 
0.9 0.45 0.48 0.55 0.66 0.80 0.86 0.89 

Table 2c: Testing for  both nonlinearity and spatial error 
gamma 

lambda 0 0.1 0.3 0.5 1 10 100 
0 0.11 0.19 0.57 0.86 0.99 1.00 1.00 

0.1 0.31 0.38 0.69 0.90 1.00 1.00 1.00 
0.2 0.74 0.81 0.93 0.98 1.00 1.00 1.00 
0.3 0.98 0.98 0.99 1.00 1.00 1.00 1.00 
0.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
0.7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
0.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 3: Estimated parameters of the spatial STAR model 
 

  coefficients standard errors t-value 

α0 5.12 0.76 6.74 

α1 -0.48 0.08 -6.00 

δ0 -7.94 8.59 -0.92 

δ1 0.81 0.86 0.94 
γ 10.37 29.23 0.35 
c 9.96 0.07 142.29 
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Table 4: Nonlinearity tests in growth process of U.S. counties 

Models Null Hypothesis  LM test value 
χ2 critical value 

5% 

H0: rho = 0 and β2=β3=0 1729.98 7.82 

Spatial lag  H0: rho = 0  950.80 3.84 

H0:  β2=β3=0 102.10 5.99 
        

H0: lambda = 0 and β2=β3=0 1059.17 7.82 

Spatial error  H0: lambda = 0  942.18 3.84 

H0: β2=β3=0 57.73 5.99 
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Figure 1: The Logistic Transition Function G against Wx 
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Appendix 1. 

Considering a Logistic STAR model given as: 

 εγδδαα ++++= ),,()()( 1010 cwxGxxy  

The first order Taylor series approximation reads as: 
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Substituting back into the equation of the STAR model gives: 
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Appendix 2a. 

Developing LM test for nonlinearity in the spatial Lag Model using Maximum Likelihood 

The following proof shows the derivation of the LM test for testing the null hypothesis  

*
0 0: ββρ == andH  

Considering the model  

εβρ ++= XWyy  

where y  is an 1×N vector of observations on the dependent variable, W  is an NN ×  
weight matrix which defines the spatial structure of regions, ρ is the autoregressive 
coefficient, X an kN ×  vector of independent variables, β  is 1×k  vector associated with 
the independent variables, and ε  is an 1×N vector representing the error tern and is 
distributed with mean 0 and variance 2σ  

Using the simplification suggested by Ord (1975), the log-likelihood function may be written 
as:  

2
2

2

)()(
)ln(

2
)2ln(

2
)1ln(

σ
βρβρσπρ XWyyXWyyNN

wL
T

i
i

−−−−−−−−= ∑  

From the FOC, the ML estimates of β  and 2σ in a spatial lag model are obtained as: 

yWIXXX TT
ML )()( 1 ρβ −= −

 

and 

N

XWyyXWyy ML
T

ML )()(2 βρβρσ −−−−
=  

Substituting β  and 2σ  in the likelihood function yield the concentrated form given as 
follow: 

⎥
⎦
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⎢
⎣
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eeeeN
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ln

2
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Where  0e  and Le  are residuals in a regression of y  on X and Wy  on X , respectively.  

The asymptotic variance matrix follows as the inverse of the information matrix 



25 
 

[ ] [ ] [ ] [ ] [ ]

[ ]

1

42

22

222

2

2
0

)(

0

)(
−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
++

=

σσ

σσ
β

σσ
β

σ
ββ

ρ

ρ

ρρρρ
ρρρ

NWtr

XXXWX

WtrXWXXWXW
WWtrWtr

AsyVar

TT

TTT
T

 

 Where 1)( −−= WIWW ρρ   

Taking the FOC  
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Evaluated at the restricted values *0 ββρ == and the FOC becomes 
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The asymptotic variance matrix evaluated at the restricted value *0 ββρ == and

becomes: 
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Appendix 2b. 

Developing LM test for nonlinearity in the spatial error model using Maximum Likelihood 

The following proof shows the derivation of the LM test for testing the null hypothesis 

*
0 0: ββρ == andH  

Considering the model  

εβ += Xy             With μελε += W  

where y  is an 1×N vector of observations on the dependent variable, W  is an NN ×  
weight matrix which defines the spatial structure of regions, and μ is an 1×N  vector of 

random error terms distributed with mean 0 and variance 2σ while ε  is an 1×N  vector of 
random error terms distributed with mean 0 and nonspherical variance-covariance matrix 

11 )'()( −− −−=Ω WIWI λλ . 

The log likelihood is given as: 
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The First Order Conditions are given as: 
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The block diagonal asymptotic variance-covariance matrix is given as: 
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At the restricted values 0* == λββ and  the First Order Condition are given as:  
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And the asymptotic variance-covariance matrix as: 

[ ]

1

2

4

2

00

0
2

0

00
1

−

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+ WWWtr

N

XX

T

T

σ

σ

 

The LM test for the null hypothesis 0* == λββ and  is derived as: 
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