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Abstract

The conventional view within the endogenous growth literature is that in-
terest income taxes impede economic growth and investment subsidies promote
economic growth. The present paper lays out a simple framework to see whether
this is still true when non-renewable resources enter the ”growth engine” in an
essential way. It is not! The framework allows a rich set of determinants of long-
run growth, including some fiscal policy measures, but interest income taxes and
investment subsidies are not among these.
The results not only contrast with the modern literature on taxes and en-

dogenous growth, but also with observations in the literature from the 1970’s
on non-renewable resources and taxation - observations which were not based
on general equilibrium considerations.
Keywords: Non-renewable resources, endogenous growth, greenhouse effect,

taxes, subsidies.
JEL Classification: H2, O4, Q3.

–––
We have benefitted from comments of Carl-Johan Dalgaard and seminar

participants at the ASSET conference, Cyprus, October 2002, and at University
of Copenhagen, May 2003. Remaining errors are ours.
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1 Introduction

The conventional view within the endogenous growth literature is that interest income

taxes impede economic growth and investment subsidies promote economic growth

(Lucas 1990, King and Rebelo 1990, Rebelo 1991, Jones et al. 1993, Barro and Sala-i-

Martin 1995, Stokey and Rebelo 1995, Milesi-Ferretti and Roubini 1998, Aghion and

Howitt 1998b). There may be disagreement as to the size of the effects, but not their

sign.

The present paper lays out a simple framework to see whether the conventional

view goes through when non-renewable resources enter the ”growth engine” in an

essential way. It does not! Indeed, the framework allows a rich set of determinants of

long-run growth, including some fiscal policy measures, but interest income taxes and

investment subsidies are not among these.

The conventional view rests on growth models that ignore non-renewable natural

resources. Some contributions (Robson 1980, Takayama 1980, Jones and Manuelli

1997, Aghion and Howitt 1998a (pp. 163-64), Scholz and Ziemes 1999, and Schou 2000,

2002) do examine endogenous growth in a framework where non-renewable resources

are present, but in these models the natural resources do not appear in the sector

constituting the growth engine of the model. This is a crucial feature and at the same

time it is unrealistic. Most production sectors, including educational institutions and

research labs, use fossil fuels for heating and transportation purposes, or minerals and

oil products for machinery, computers, etc.

Our analysis is based on a simple extension of the one-sector model of Stiglitz

(1974a, 1974b, 1975). In contrast to Stiglitz we focus on the case of increasing returns

at the aggregate level with respect to labor, ”broad” capital, and the resource taken

together. This case may arise as a result of the ”learning-by-investing” effect hypoth-

esized by Arrow (1962) or the non-rivalness of technical knowledge as emphasized by

Romer (1990). In fact, constant or even increasing returns to capital alone are not

excluded. Further, in order to face an interesting taxation problem we allow for a

negative externality of resource use (like the ”greenhouse effect”, say). This external-

ity is modelled in the simplest possible way, in line with Suzuki (1976) and Sinclair

(1992, 1994). While the focus of these authors was on sustainability of the level of

consumption and on emission abatement by a specific tax (a carbon tax), respectively,

the present paper focuses on growth effects of different kinds of taxes and subsidies.

Conventional endogenous growth models rely on exactly constant returns to capital

in the sector that drives growth. Slightly increasing returns lead to explosive growth
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(infinite output in finite time!)1, whereas slightly decreasing returns eventually lead

to a zero growth rate. As shown by Groth and Schou (2002), if an essential natural

resource enters the growth generating sector this knife-edge problem is alleviated: The

need to save increasingly on resource use counteracts the potentially explosive effects

of capital accumulation implied by increasing returns. But a stable steady growth

path exists only if there is population growth.

In a similar vein the present paper shows how other endogenous growth features

are overturned when the presence of non-renewable resources in the macro production

function is taken into account. It is demonstrated that an interest income tax and a

capital investment subsidy affect neither consumption growth nor the speed of resource

depletion in the long run. A policy directed at influencing these variables must change

the returns to conservation of the nonrenewable resource, and this is what a tax on

capital gains on the resource stock as well as a credibly announced declining tax

on resource use do (though in opposite directions). The key to our results is that

any balanced growth path of the economy has to comply with the linear differential

equation describing resource extraction,

Ṡ = −uS

where S is the stock of the resource, and u is the (proportionate) depletion rate.

Hence, policies acting on the depletion rate become important for growth, that is for

future consumption possibilities.

Our results not only contrast with the modern literature on taxation and growth,

but also with observations in the older literature on non-renewable resources (Stiglitz

1975, Dasgupta and Heal 1979, Ch. 12). In fact, these observations were concerned

only with taxation in a partial equilibrium framework.

Uhlig and Yanagawa (1996) also present an analysis arguing against the conven-

tional view on interest income taxation and growth. While the conventional view is

based on representative agent models, they use an OLG framework to demonstrate

that a rise in the tax on interest income may raise growth when the interest elasticity

of savings is sufficiently low and the revenue is used to lower labor taxes (leaving the

young generation with a larger disposable income from which they can make savings).

By taking into consideration the - realistic - presence of natural resources in the pro-

duction function, we show that also in a representative agent model, interest taxes

need not affect growth negatively in the long run.

1Cf. Solow (1994).
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The organization of the paper is as follows. The next section describes the elements

of the model. In Section 3 we study existence and stability of balanced growth paths

and the effects of an investment subsidy and of taxes on interest income, capital gains,

and resource use. Section 4 describes a first-best policy. It turns out, in the setup

we consider, that a declining tax on resource use and a capital investment subsidy

are necessary ingredients of a first-best policy, while capital-gains and interest income

should not be taxed. A summary of the conclusions is given in the final section.

2 The model

2.1 Technology and firms’ behavior

In order that the problem should be interesting, the non-renewable resource should be

necessary for production, but should not a priori rule out sustainable (non-decreasing)

consumption. Therefore, we follow Stiglitz (1974a, 1974b) and assume a production

function of Cobb-Douglas form. Let Yi(t) be firm i’s output, Ki(t) its capital input,

Ni(t) its labour input, and Ri(t) its input of the non-renewable resource, all at time

t. Then firm i produces according to:

Yi(t) = A(t)Ki(t)
α1Ni(t)

βRi(t)
γ, α1, β, γ > 0, α1 + β + γ = 1, (1)

where A(t) is total factor productivity, given by

A(t) = eθtK(t)α2S(t)λ, θ, α2, λ ≥ 0.

As in Suzuki (1976) and Sinclair (1992, 1994), total factor productivity is gradually

decreased in line with the extraction and use of the resource. This is interpreted as

the result of degradation of environmental quality associated with pollution from the

use of fossil fuels etc., the stock of pollution being proxied inversely by the remaining

resource stock S(t) (think of the greenhouse effect2). There is CRS with respect

to the three inputs that the firm can control. But if α2 > 0, aggregate capital,

K(t), has a positive external effect on productivity (the “learning-by-investing” effect

hypothesized by Arrow 1962). This gives rise to increasing returns at the aggregate

level and possibly “endogenous growth”; this is where we depart from the model in

Sinclair (1994).3 Increasing returns to scale at the aggregate level or at least in the

2This interpretation ignores the regeneration ability of the atmosphere and is (at best) applicable
only for a limited span of time, namely as long as emissions from resource use is much higher than
the regeneration ability.

3Empirical evidence furnished by, e.g., Hall (1990) and Caballero and Lyons (1992) suggests that
there are quantitatively significant increasing returns to scale or external effects in U.S. and European
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sector(s) constituting the ”growth engine” of the economy is standard in models of

semi-endogenous growth (as Jones 1995) as well as models of strictly endogenous

growth (as Romer 1990).4 Though we name K just ‘capital’, one may interpret K as

‘broad capital’ including technical knowledge and human capital.

There may also be an irreducibly exogenous element in technology growth, rep-

resented by the parameter θ. By allowing both α2 and θ to be positive, we are able

to demonstrate whether and when the source of growth - exogenous or endogenous -

matters for the results.

There is a large number of similar firms and each of them takes the aggregate

capital and resource stocks as given. Assuming perfect competition and using current

output as the numeraire, profit maximization leads to:

α1
Yi
Ki
= (1− σ)(r + δ), 0 ≤ σ < 1, δ ≥ 0, (2)

β
Yi
Ni
= w, (3)

γ
Yi
Ri
= (1 + τu)p, (4)

where r + δ is the capital cost (rate of interest plus rate of capital depreciation), w is

the real wage, and p is the real price of a unit flow of the resource (we ignore the time

argument of the variables when not needed for clarity). The parameter σ represents a

subsidy to absorb part of the cost of buying capital services (for brevity an ”investment

subsidy”), and τu is a (possibly time-dependent) tax on resource use (like a carbon

tax).

Since all firms hire factors in the same proportions aggregate output can be written

Y ≡
X
i

Yi = eθtKαNβRγSλ, α ≡ α1 + α2, (5)

where K ≡
P

iKi, N ≡
P

iNi, and R ≡
P

iRi. Assuming market clearing, K,N, and

manufacturing. Antweiler and Trefler (2002) examine trade data for goods-producing sectors and find
evidence for increasing returns to scale.

4The term ”semi-endogenous growth models” refers to models where, first, per capita growth is
driven by some internal mechanism (in contrast to exogenous technology growth). Second, unlike
”strictly endogenous growth”, sustained per capita growth requires the support of some growing
exogenous factor, typically the labor force. While strictly endogenous growth requires α > 1 (when
γ > 0), semi-endogenous growth may be an attractive alternative, requiring only α+β > 1. For most
of the results of the present paper the distinction is not important.
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R can also be interpreted as the aggregate supplies, and (2), (3), and (4) imply

r =
α1
1− σ

Y

K
− δ, (6)

w = β
Y

N
, (7)

p =
γ

1 + τu

Y

R
. (8)

2.2 Households

There is a fixed number of infinitely-lived households (families), all alike. For con-

venience we let the number of households be one, the representative household. It

has N members, each supplying one unit of labor inelastically. We let household size

grow at a constant exogenous rate n ≥ 0, i.e., N = N(0)ent, N(0) > 0. The house-

hold consumes and saves, and savings can be either in loans, physical capital or the

resource stock. At the aggregate level loans and deposits sum to zero (closed econ-

omy, no government debt). Let p̂ denote the price of a unit of stock of the (not yet

extracted) resource. Then, assuming no extraction costs we have in equilibrium p̂ = p,

and financial wealth, V, satisfies

V = K + pS, (9)

where S is the resource stock owned by the household.

We assume utilitarian preferences with iso-elastic instantaneous utility and a con-

stant rate of time preference ρ. The intertemporal utility function then is

U0 =

Z ∞

0

c1−ε − 1
1− ε

Ne−ρtdt, ε > 0, ρ > n ≥ 0, (10)

where ε is the (constant) numerical value of the elasticity of marginal utility5. The

assumption ρ > n is introduced to ease convergence of the integral.

The household has perfect foresight and chooses a path (c, S)∞t=0 to maximize U0
subject to c ≥ 0, S ≥ 0, and

V̇ = (1− τ r)r(V − pS) + (1− τ cg)ṗS + wN − T − cN, V (0) given, (11)

lim
t→∞

V e−(1−τr)
R t
0 r(s)ds ≥ 0. (12)

Here τ r < 1 represents a constant rate of tax on interest income (if τ r < 0 one should

think of a subsidy to interest income), τ cg < 1 is a constant rate of tax (subsidy

5In case ε = 1, the expression c1−ε−1
1−ε should be interpreted as ln c.
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if negative) on capital gains, and T is a lump sum tax (amounting to a transfer, if

negative); finally, (12) is the no-Ponzi-game condition. We abstract from wage income

taxes and consumption taxes because their effects are trivial in a model without utility

of leisure.

Taxation of capital gains on resources in the ground are rarely seen in the real

world6. However, τ cg together with τ r can be seen as particular representations of a

global tax on all types of capital income. In the present model where the household

can invest in two different kinds of physical assets (the resource and physical capital),

a comprehensive capital income tax corresponds to the special case τ r = τ cg. But in

order to understand fully the differential roles of taxes on the two different assets, we

allow τ cg and τ r to differ (including the limiting case τ cg = 0).

Existence of an interior solution to the household decision problem implies, first,

the Keynes-Ramsey Rule
ċ

c
=
1

ε
[(1− τ r)r − ρ] , (13)

second, the (tax-adjusted) Hotelling Rule

(1− τ cg)ṗ

p
= (1− τ r)r, (14)

and, third, a transversality condition implying that (12) holds with equality. The

Hotelling Rule is a no-arbitrage condition between investing in the resource (leaving it

in the ground) and investing in ordinary financial assets. In case of a comprehensive

tax on capital income, i.e., τ cg = τ r, the condition reduces to the well-known, simple

Hotelling rule, ṗ/p = r.

2.3 Government

At any time the government balances its budget by adjusting T so that

τupR+ τ rrK + τ cgṗS + T = σ(r + δ)K. (15)

The only public expense is the subsidy σ paid out to firms to reduce their capital costs.

On the revenue side we have the tax τu on resource use (the “carbon tax”) imposed

on firms, while the interest income tax τ r, the capital gains tax τ cg, and the lump-sum

tax T (or transfer) are imposed on households.

There is a given finite resource stock to extract from, hence, what matters for

resource extraction is not the level of the tax τu, but its rate of change, as pointed

6Dasgupta & Heal (1979, p. 368) discuss existence and partial equilibrium consequences of such
taxes.
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out by Sinclair (1992, 1994). We assume that the government credibly announces

τ̇u = −(1 + τu)ψ, lim
t→∞

ψ = ψ̄ ≥ 0, (16)

where ψ may generally be time-dependent (in a smooth way), but is constant in the

limit to ensure compatibility with balanced growth in the long run. We shall call ψ the

postponement stimulus, since ψ > 0 implies a declining tax rate, thereby stimulating

postponement of extraction.7

3 Economic development

Output is used for consumption and for investment in capital goods, so that

K̇ = Y − C − δK, K(0) > 0, (17)

where C ≡ cN is total consumption. The resource stock S diminishes with resource

extraction:

Ṡ = −R, S(0) > 0. (18)

The definitional non-negativity condition on S implies, from (18), the restrictionZ ∞

0

R(t)dt ≤ S(0), (19)

showing the finite upper bound on cumulative extraction of the resource over the infi-

nite future. Obviously, from this restriction it follows that resource use must approach

zero for t→∞.

The transversality condition of the household is that (12) holds with equality; this

implies, by (9) and (14),

lim
t→∞

K(t)e−(1−τr)
R t
0 r(s)ds = 0, and (20)

lim
t→∞

S(t)e
τcg

1−τcg (1−τr)
R t
0 r(s)ds = 0. (21)

The last condition requires (when τ cg > 0 and limt→∞ r(t) > 0) not only that no finite

part of the resource stock will be left unused forever, but also that the resource stock

diminishes at a sufficient speed.

The system characterized by the technology (1), the intertemporal utility function

(10), and the dynamic resource conditions (17) and (18), will be called an economic

7Solving the differential equation (16) gives τu(t) = (1 + τu(0))e
−
R t
0
ψ(s)ds − 1, where we assume

τu(0) > −1. Hence, we allow τu(t) to be (or become) negative.
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system. A viable economic system is a system where C, Y,K,R, and S are (strictly)

positive for all t ≥ 0 (”no collapse”).
The quadruple (τ r, τ cg, σ, (ψ)∞t=0) of tax and subsidy instruments will be called a

policy. Given the policy (τ r, τ cg, σ, (ψ)∞t=0), an equilibrium of a viable economic system

is a path for prices and quantities such that: (i) households maximize discounted

utility, taking the time paths of the interest rate, the resource price, and the wage

rate as given; (ii) firms maximize profits choosing inputs of capital, labor, and the

resource, taking the prices of these inputs as given; (iii) the government adjusts lump

sum taxes T so that the budget constraint (15) is satisfied at any t; and (iv) in each

market, the supply is equal to the demand.

Let the output-capital ratio, the consumption-capital ratio, and the resource de-

pletion rate be denoted z, x, and u, respectively, i.e.,

z ≡ Y

K
, x ≡ C

K
, u ≡ R

S
,

These ratios turn out to be central to the analysis. Let gm denote the growth rate of

a variable m (> 0), that is gm ≡ ṁ/m. Then, we may write (17) as

gK = z − x− δ. (22)

Similarly, by (18),

gS = −u. (23)

In an equilibrium (5) holds, implying, by logarithmic differentiation, using (23),

gY = αgK + βn+ γgR + θ − λu. (24)

Similarly, (6), (8), (14), and (16) lead to

gY − gR + ψ =
1− τ r
1− τ cg

(
α1
1− σ

z − δ), (25)

and (6) and (13) yields

gC = gc + n =
1

ε

∙
(1− τ r)(

α1
1− σ

z − δ)− ρ

¸
+ n. (26)

Note that any equilibrium satisfies (22), (23), (24), (25), and (26).

3.1 Balanced paths

A path (C, Y,K,R, S)∞t=0 will be called a balanced growth path (henceforth abbreviated

BGP) if C, Y,K,R, and S change with constant relative rates for all t > 0 (some or all
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these rates may be negative). An equilibrium path (C, Y,K,R, S)∞t=0 which is a BGP

will be called a balanced growth equilibrium (abbreviated BGE)8.

Lemma 1 For any BGE (C, Y,K,R, S)∞t=0 the following holds:

(i) gC = gY = gK ≡ g∗, a constant;

(ii) gR = gS = −u = −u∗, where u∗ is some positive constant;

(iii) z and x are positive constants, and ψ = ψ̄;

(iv) g∗ and u∗ satisfy

(1− α)g∗ + (γ + λ)u∗ = βn+ θ, (27)

[ε− (1− τ cg)] g
∗ − (1− τ cg)u

∗ = εn− ρ+ (1− τ cg)ψ̄; (28)

(v) τ cg(g
∗ + ψ̄) < (1− τ cg)u

∗.

Proof See Appendix.

The necessity of (v) is due to the transversality conditions (20) and (21).

From the equations (27) and (28) immediately follows:

Proposition 1 The capital gains tax τ cg and the postponement stimulus ψ̄ can affect

growth in a BGE, but the interest income tax τ r and the investment subsidy σ cannot.

This result can be explained in the following way. Equation (27), linking g∗ and

u∗ independently of policy parameters, is dictated by mere technical feasibility, given

the aggregate production function (5). In contrast, (28) represents the effects of the

market mechanism. These effects are such that τ r and σ are decoupled from the

determination of growth. Indeed, profit maximization implies (8), hence, in a BGE,

ṗ/p = g∗+u∗+ψ̄, and then net returns on saving, (1−τ r)r, equals (1−τ cg)(g∗+u∗+ψ̄),
by the Hotelling rule, whatever the size of τ r. The fact that the consumer can choose

to save in different assets (physical capital or the resource stock) implies that the net

returns on saving in physical capital must adjust to the net returns on saving in the

resource. Therefore, (1 − τ cg)(g
∗ + u∗ + ψ̄) can be substituted for (1 − τ r)r in the

Keynes-Ramsey rule. In this way τ r as well as σ (and α1), through (6), are excluded

from the subsystem of zero order in the causal structure. In short, an increase in τ r

leads to a portfolio adjustment, implying less demand for capital so that K/N goes

down and r goes up until (1−τ r)r is as before. And an increase in σ increases demand
for capital so that K/N goes up and z goes down until r = α1z/(1−σ)−δ is as before.

8The values taken by the variables along a BGE are marked by ∗.

11



3.2 Existence and stability

Let D be the determinant of the linear system (27) and (28):

D ≡ (1− τ cg)(1− α− γ − λ) + (γ + λ)ε. (29)

Given D 6= 0, by solving the system (27) and (28) we find the growth rate of output

and the depletion rate, respectively, along a BGE:

g∗ =
(1− τ cg)(βn+ θ) +

£
εn− ρ+ (1− τ cg)ψ̄

¤
(γ + λ)

D
, (30)

u∗ = −g∗R =
[(α+ β − 1)n+ θ] ε− (1− τ cg)(βn+ θ) +

£
ρ− (1− τ cg)ψ̄

¤
(1− α)

D
.

(31)

Now, by (25), (22), and (27) we find

z∗ =
1− σ

α1

∙
1− τ cg
1− τ r

(g∗ + u∗ + ψ̄) + δ

¸
, and (32)

x∗ =

h
(1− σ)1−τcg

1−τr (1− α− γ − λ) + (γ + λ)α1
i
u∗ +

h
(1− σ)1−τcg

1−τr − α1
i
(βn+ θ)

(1− α)α1

+(1− σ)
1− τ cg
1− τ r

ψ̄

α1
+
1− σ − α1

α1
δ, (33)

where the formulas for g∗ and u∗ can be inserted (the resulting formulas, given in

Appendix, are volumnious and not particularly illuminating).

Let π denote the vector (α1, β, γ, α2, λ, θ, α, δ, n, ε, ρ, σ, ψ̄, τ r, τ cg), and let P be

the set of π ∈ R15 such that α1, β, γ, α2, λ, θ, δ, n, ε, ρ, σ, ψ̄ ∈ R+, τ r < 1, τ cg < 1,

α = α1 + α2, and the parameter inequalities stated in (1), (2), and (10) are satisfied.

Let P ∗ ⊂ P be the subset satisfying the requirements: D 6= 0, u∗, z∗, and x∗ are

strictly positive, and (v) of Lemma 1 is satisfied. This subset P ∗ will be called the

BGE supporting set. We have:

Lemma 2 The set P ∗ ⊂ P has a non-empty interior.

Proof See Appendix.

Proposition 2 Let the parameter vector π ∈ P . Assume D 6= 0, and let ψ(t) = ψ̄

for all t ≥ 0. Then:

(i) There exists a BGE if and only if π ∈ P ∗.

(ii) For any given π ∈ P ∗, the BGE (g∗, u∗, z∗, x∗) is unique.
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Proof See Appendix.

Remark 1. In the Stiglitz case, α+ β + γ = 1, λ = 0, and τ cg = τ r = σ = ψ̄ = 0, the

existence requirements z∗ > 0 and x∗ > 0 are automatically satisfied, and the only

thing to check is whether the parameters are consistent with u∗ > 0.

Remark 2. In case D = 0, a BGE can exist only in the knife-edge case βn + θ

= −
£
ψ̄ + (εn− ρ)/(1− τ cg)

¤
(γ + λ), and in this case existence implies a continuum

of BGE’s.

From now we consider π as given and belonging to the BGE supporting set P ∗.

Generally, we allow ψ to be time-dependent9, except in the limit. Therefore, a BGE

(g∗, u∗, z∗, x∗) may be realizable only asymptotically. We shall use the phrase ”there

exists a BGE ...” as a shorthand for ”there exists, at least asymptotically, a BGE ...”.

The dynamics of the model can be reduced to a three-dimensional system in u, z,

and x. In view of the assumption ψ(t) → ψ̄ for t →∞, the system is asymptotically

autonomous. The associated steady state (u∗, z∗, x∗) is a BGE with g∗ = z∗ − x∗ − δ.

We call the BGE saddle-point stable if there exists a unique solution converging to the

steady state for t→∞. And we call the BGE totally unstable if all three eigenvalues

of the associated Jacobian have positive real part. In order not to endanger saddle-

point stability the assumption λ/2 < 1 − γ is convenient (and quite innocent since,

empirically, γ is likely to be quite low, say less than .05).

Proposition 3 If D > 0 and λ/2 < 1−γ, then a BGE is saddle-point stable. On the

other hand, if D < 0 and in addition

σ ≤ 1− α1/α, and τ cg ≈ τ r, (A1)

then (at least for λ ”small”) a BGE is totally unstable.

Proof See Appendix.

The policy assumption (A1) is invoked in order to have a clear-cut instability

implication of D < 0. The assumption is ”natural” in the sense that its first part says

that the investment subsidy does not overcompensate the positive external effect of

investment, and its second part says that the capital gains tax is not very different

from other capital income taxes.10

9This is because, as we shall see (Section 4), in the first-best solution ψ is only asymptotically
constant.
10The qualifier referring to ”smallness” of the externality λ is explained in the Appendix.
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3.3 Economic growth

We shall concentrate on the case D > 0 which seems also the most realistic case since

D ≤ 0 requires a considerable amount of increasing returns (i.e., α+γ ≥ 1−λ+ (γ+λ)ε
1−τcg

> 1 for λ ”small”). The per capita growth rate in a BGE is

g∗c = g∗ − n =
(1− τ cg) [(α+ β + γ + λ− 1)n+ θ]−

£
ρ− (1− τ cg)ψ̄

¤
(γ + λ)

D
. (34)

Now, when is stable positive per capita growth possible in spite of the diminish-

ing input of the resource? To answer this, we first introduce a purely technological

condition that is necessary for g∗c > 0.

Lemma 3 Assume D > 0. A BGE with g∗c > 0 can exist only if (α + β − 1)n + θ

> 0.

Proof Consider a BGE. From Lemma 1, u∗ > 0. Hence, by (27), (1−α)g∗ < βn+ θ,

and since g∗ = g∗c + n, this implies (1− α)g∗c < (α+ β − 1)n+ θ. ¤

Proposition 4 Assume D > 0. Then a BGE has g∗c > 0, if and only if the parameters

satisfy

(α+ β − 1)n+ θ > max

∙
(

ρ

1− τ cg
− ψ̄ − n)(γ + λ), 0

¸
. (35)

When θ = 0 (the case of no exogenous technical progress), g∗c > 0 if and only if

α+ β > 1 and n > max

∙
(

ρ

1− τ cg
− ψ̄)

γ + λ

α+ β + γ + λ− 1 , 0
¸
. (36)

Proof Assume D > 0. Then, (35) follows immediately from (34) and Lemma 3. If

θ = 0, then, (35) is equivalent to (36) since, by Lemma 3, g∗c > 0 ∧ θ = 0⇒ α+β > 1

∧ n > 0. ¤

When α+β = 1 or n = 0, the right hand side of (35) gives a lower bound for the rate

of exogenous technical progress required to compensate for the growth drag resulting

from non-renewable resources. The capital gains tax τ cg tends to increase this bound,

while the postponement stimulus ψ̄ (acting similarly to a decrease in the rate of time

preference) tends to decrease it. If there is increasing returns with respect to capital

and labor, endogenous growth may occur. We define endogenous growth to be present

if g∗c > 0 even when θ = 0. As the last part of the proposition shows, endogenous per

capita growth requires not only increasing returns with respect to capital and labor,

but also a sufficient amount of population growth to let the increasing returns come

into action, given the preferences of the representative household. These features are
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needed to offset the effects of the inevitable decline in resource use.11 If on the other

hand the opposite of (35) is true, the long-run perspective is famine and a Malthusian

check on population − if not doomsday.
Notice that population growth may be important not only for existence of endoge-

nous growth, but also for stability. If θ is large enough to generate growth without

the assistance of increasing returns, then the BGE may be stable even if there is no

population growth. But if growth is endogenous, then, under laissez-faire, stability

requires population growth.12 Indeed, if θ = n = ψ̄ = τ cg = 0, then g∗c = g∗ > 0

requires D < 0, by (30), and this implies instability. The interpretation is not that

population growth stabilizes an otherwise unstable BGE. Stability-instability is gov-

erned by the sign of D, independently of n. Rather, given D > 0, letting n decrease

from a level above the critical value in (36) to a level below, changes g∗c from positive

to negative, i.e., growth comes to an end. This is in contrast to standard endogenous

growth models with non-renewable resources (such as Schou 2000) where population

growth is not necessary for stable growth. The difference is explained by the fact that

the resource does not enter the ”growth engine” of these models.

The source of growthmatters for the question whether population growth is good or

bad for growth. Equation (34) shows that in the Stiglitz-case where θ > 0 is combined

with constant returns to scale with respect to K,N and R, and no externalities,

population growth either does not affect g∗c (if λ = 0) or affects g∗c negatively (if

λ > 0). But if there are increasing returns, population growth affects g∗c positively
13.

This is the net result of three different effects: There is a direct positive effect on

output growth because a growing population means a growing labor force, magnifying

the effects of increasing returns to scale. In addition, there is an indirect effect because

population growth also affects resource extraction as seen from (31), though the sign

of this effect is ambiguous without further specification. Thirdly, higher population

growth naturally means more mouths to feed, and this implies a drag on growth in

per capita consumption possibilities.

11A numerical example is: α1 = .60, α = .90, β = .30, γ = .015, λ = .005, n = .01, θ = 0, δ = .07,
ε = 2.00, ρ = .02, σ = .33, ψ̄ = .007, and τ cg = τ r = 0; then D > 0 (stability), g∗c = .016 and
u∗ = .02.
12In Groth and Schou (2002) we explore further this fact and its relation to the knife-edge property

of conventional endogenous growth models without non-renewable resources.
13This trait should not be seen as a prediction about individual countries in an internationalized

world, but rather as pertaining to larger regions, perhaps the global economy.
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3.4 Effects of taxes and subsidies

To prepare the ground for the analysis of tax and subsidy effects we make some

observations on the rate of interest. Of course, if g∗c > 0, then, by the Keynes-Ramsey

Rule, r > ρ/(1− τ r), which is positive. More generally, in view of (6) and (32),

r∗ =
1− τ cg
1− τ r

(g∗ + u∗ + ψ̄), (37)

from which follows that, as a rule, r∗ > 0. To be precise, let P̄ be the set of all pa-

rameter vectors π = (α1, β, γ, α2, λ, θ, α, δ, n, ε, ρ, σ, ψ̄, τ r, τ cg) in the BGE-supporting

set P ∗ such that if δ is substituted by zero, then the new vector is also in P ∗. Clearly,

P̄ is non-empty14.

Lemma 4 For all π ∈ P̄ , r∗ > 0.

Proof Consider a given π ∈ P̄ . Fix all coordinates of π except δ. Consider π as a

function π(δ) of δ. Let r∗ in the BGE corresponding to π(0) ∈ P ∗ be called r∗0. Since

z∗ > 0 in a BGE, r∗0 > 0, by (6). Then for any δ > 0 such that π(δ) ∈ P ∗, r∗ = r∗0 > 0,

by (37), since g∗ and u∗ are independent of δ. ¤

The only policies capable of affecting long-run growth are the capital gains tax τ cg
and the postponement stimulus ψ̄. Assuming D > 0 and r∗ > 0, we have, from (34),

∂g∗c
∂τ cg

= −(1− τ r)(γ + λ)

(1− τ cg)D
r∗ < 0, (38)

∂g∗c
∂ψ̄

=
(1− τ cg)(γ + λ)

D
> 0. (39)

Thus, an increase in the capital gains tax impedes growth. The explanation is that

taxing capital gains on leaving the resource in the ground fuels resource extraction.

This creates a tendency to faster exhaustion of the resource stock, hence faster decline

in resource use, implying that mere sustainability of per capita consumption takes up

a larger share of the ongoing capital accumulation, leaving less aside for growth. An

announced declining tax on resource use (ψ̄ > 0) has the opposite effects. Indeed,

the declining tax implies a lower required before-tax return on leaving the marginal

resource in the ground. This defers resource extraction, and thereby growth is en-

hanced.15

14The example in footnote 11 shows this.
15Introducing a tax rate on capital gains of .3, with the parameters from footnote 11, g∗c in a

BGE will fall with almost one fifth to about .013. Removal of the postponement stimulus reduces
g∗c further to .012. Whether growth is exogenous or endogenous does not matter for the qualitative
effects of the policies (as long as α < 1).
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The exact effects on the depletion rate of the two policies are, from (31),

∂u∗

∂τ cg
= (1− α)

1− τ r
(1− τ cg)D

r∗ > 0, when α < 1, (40)

∂u∗

∂ψ̄
= −(1− τ cg)(1− α)

D
< 0, when α < 1,

respectively.16

As already commented on above, the interest income tax rate τ r and the capital

subsidy rate σ affect neither growth nor resource extraction in a BGE. These policy

parameters affect only levels. Assuming D > 0, and r∗ > 0, the level effects of all four

policy parameters are, using (26), (22) (38), and (13):

∂z∗

∂τ cg
= −(1− σ)ε(γ + λ)

(1− τ cg)α1D
r∗ < 0, (41)

∂x∗

∂τ cg
= −(1− σ)ε− (1− τ r)α1

(1− τ cg)α1

γ + λ

D
r∗ S 0 for ε T (1− τ r)α1

1− σ
, (42)

∂z∗

∂ψ̄
=

(1− σ)(1− τ cg)ε(γ + λ)

(1− τ r)α1D
> 0 (43)

∂x∗

∂ψ̄
= (

(1− σ)ε

(1− τ r)α1
− 1)(1− τ cg)(γ + λ)

D
T 0 for ε T (1− τ r)α1

1− σ
, (44)

∂z∗

∂τ r
=

∂x∗

∂τ r
=

1− σ

(1− τ r)α1
r∗ > 0, (45)

∂z∗

∂σ
=

∂x∗

∂σ
= − 1

1− σ
z∗ < 0. (46)

The counterpart of the dampening effect on growth of a higher capital gains tax is

a lower rate of interest, that is, a lower marginal and average product of capital as seen

by (41). For reasonable values of the desire for consumption smoothing, ε, also the

consumption-capital ratio is diminished, cf. (42). The effects of a higher postponement

stimulus go the opposite way. As to the effect of a change in τ r, whatever the size of

τ r, net returns on saving, (1−τ r)r∗, equals, by the Hotelling rule, (1−τ cg)(g∗+u∗+ψ̄),
where g∗ and u∗ are independent of τ r. That is, if τ r goes up, r∗ goes up also, leaving

(1 − τ r)r
∗ unchanged. The increase in r∗ is reflected in the increase in the marginal

and average product of capital shown in (45). Finally, a higher capital subsidy rate

σ stimulates demand for capital services and twists the capital intensity upwards and

the output-capital ratio downwards, as seen by (46).17

16On the other hand, if α > 1, an increase in τ cg as well as a decrease in ψ̄ diminishes the depletion
rate in the BGE. These counter-intuitive effects are due to the fact that if α > 1, then changes in
capital accumulation are self-enforcing and creates divergence if not counterbalanced by changes in
the depletion rate in the same direction.
17It may be added that the level effects of τr and σ can endanger existence of a BGE and thereby

indirectly affect growth. For example with σ > .53, keeping the other parameter values in footnote
11 unchanged, we get x∗ < 0, implying non-existence of a BGE.
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The results here are in contrast to traditional endogenous growth models without

natural resources (e.g., Lucas 1990, King and Rebelo 1990, Rebelo 1991, Jones et

al. 1993, Barro and Sala-i-Martin 1995, Stokey and Rebelo 1995, Milesi-Ferretti and

Roubini 1998, Aghion and Howitt 1998b) where taxation of interest income as well

as investment subsidies influence long-run growth. In these models, what stimulates

saving and investment stimulates growth. However, when the growth engine depends

on a non-renewable resource this alternative stock variable causes policy instruments

directed towards capital accumulation as such to be unimportant for the growth rate.

But policies affecting resource extraction (the bottleneck of the economy) are assigned

a central role.

In general the key to having policy affecting long-run growth is the presence of a

linear differential equation in the model (as noted by Romer 1995). In the present

framework the resource extraction relation, Ṡ = −uS, is such an equation. Inspection
of the growth accounting relation (27) confirms that generally (i.e., when α 6= 1) only
policies affecting u∗ can matter for long-run growth.18

3.5 A special case: Constant returns to capital

In the case α = 1 we have a kind of AK model augmented with an explicit role for

both the labor force and natural resources in production. The growth rate and the

depletion rate simplify to

g∗c =
(1− τ cg) [(β + γ + λ)n+ θ]−

£
ρ− (1− τ cg)ψ̄

¤
(γ + λ)

D
,

u∗ =
βn+ θ

γ + λ
,

where in this case D = (ε − 1 + τ cg)(γ + λ). It is interesting that under laissez-

faire (τ cg = ψ̄ = 0), only an elasticity of intertemporal substitution (1/ε) below 1

is compatible with stability (D > 0). But a positive τ cg stabilizes, by making the

condition D > 0 more likely to occur.

This is the only case where, given D > 0, a decrease in τ cg or an increase in

ψ̄ promotes growth without affecting resource extraction in the BGE. This counter-

intuitive feature is due to the ”growth accounting” relation (27) saying that, when

α = 1, the balance between gY and gK requires unchanged u.

For the case of no exogenous technical progress (θ = 0) we see that α = 1 combined

with population growth may generate stable endogenous per capita growth. This con-

18Note that this conclusion would not change by the addition of extraction costs to the model.
Such costs leave the fundamental linearity, Ṡ = −uS, unaffected.
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trasts with the model without non-renewable resources (γ = 0), where a situation

with α = 1, β > 0, and population growth is not compatible with a steady state, but

implies explosive growth. In the present model, population growth is not only com-

patible with, but necessary for positive stable growth. One of the models examined in

Aghion & Howitt (1998a, pp. 162-63) is an AK model with a non-renewable resource.

In that model, however, labor does not appear in the production function. Because of

this specification, long-run growth is not possible in that model.

4 First-best solution

For the case of constant returns to scale and exogenous technical progress, Sinclair

(1994) showed that the negative resource externality leads to too slow growth in the

long run and that its correction requires a declining tax on resource use. In this section

we show that this and related results come true also if growth is endogenous and when

alternative tax and subsidy instruments are available.

Consider the problem of maximizing (10) subject to the conditions (5), (17), (18),

and the usual non-negativity constraints. We call the solution to this problem (when

it exists) an optimal allocation or the social planner’s rule, indexed by ”SP”. Given

DSP ≡ 1− α+ (ε− 1)γ 6= 0, the GDP growth rate and the depletion rate in a steady
state of the optimal allocation are19, respectively,

g∗SP =
βn+ θ + (εn− ρ)γ

DSP
, and (47)

u∗SP =
γ

γ + λ

[(α+ β − 1)n+ θ] ε− (βn+ θ) + (1− α)ρ

DSP
. (48)

As also Sinclair (1994) observed, the resource externality λ has no effect on the optimal

growth rate, but only on the rate of resource depletion, which is smaller the larger

is λ. The explanation is that a higher cost in terms of lower productivity in the

future implies a lower required return on leaving the marginal resource in the ground.

Thereby resource extraction is stretched out, offsetting a higher λ such that the drag

on output growth stemming from the exhaustible resource, i.e., (γ + λ)u, by (27), is

unaffected. Then a larger λ shows up only as a smaller resource depletion rate.20

We want to compare the optimal allocation with the market equilibrium. There

are two distortions, the negative externality from resource use and the positive exter-

nality from aggregate capital. Define ”laissez-faire” as the policy (τ r, τ cg, σ, (ψ)∞t=0) =

19For derivation, see Appendix.
20Also, the steady state values of zSP and xSP are independent of λ.
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(0, 0, 0, 0), and let D(0) denote the value of D for τ cg = 0, i.e., D(0) ≡ 1 − α − γ −
λ+ (γ + λ)ε, cf. (29). We have:

Proposition 5 Assume the parameters α1, β, γ, α, λ, θ, δ, n, ε, ρ are such that a BGP

exists under both laissez-faire and the social planner’s rule. Assume D(0) > 0.

(i) If λ > 0, then laissez-faire implies g∗ < g∗SP .

(ii) If λ = 0, but α1 < α, then laissez-faire implies g∗ = g∗SP , but z∗ > z∗SP .

Proof See Appendix.

Hence, irrespective of whether growth is exogenous or endogenous, under laissez-

faire the negative resource externality leads to too slow growth in the long run; in

the "normal" case where α < 1 this reflects a too fast resource depletion, cf. (27).

Further, the positive capital externality entails too little capital investment so that

z∗ and r∗ become too high and too little scope for consumption in the long run is

provided even if the growth rate is appropriate.21

Are the available tax and subsidy instruments adequate for correcting these dis-

tortions? It seems almost trivial that the capital externality can be compensated by

subsidizing investment by σ = 1−α1/α. But what about the negative resource exter-

nality and the resulting drag on growth? On the face of it, both a declining tax on

resource use and a negative capital gains tax could deliver the required premium on

delaying extraction and making scope for optimal growth. It turns out, however, that

only the first policy is adequate. Indeed:

Proposition 6 Whenever an optimal allocation exists, it can be implemented as an

equilibrium allocation if and only if the policy: σ = 1 − α1/α, ψ = λu/γ, and τ cg =

τ r = 0, is applied.

Proof See Appendix.

The social planner’s Hotelling Rule

d(∂Y
∂R
)

dt
= (

∂Y

∂K
− δ)

∂Y

∂R
− ∂Y

∂S
(49)

is helpful in understanding this result. The rule states that along an interior optimal

path the return (capital gain) on leaving the marginal unit of the resource in the

21Existence of an optimal allocation is guaranteed for any parameter vector (α, β, γ, λ, δ, n, θ, ε, ρ)
such that DSP as well as u∗SP , z∗SP , and x∗SP are strictly positive, provided α+γ+λ ≤ 1 (footnote
11 shows an example). For the case α + γ + λ > 1, which violates concavity of the maximized
Hamiltonian, we have not been able to prove existence.
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ground must equal the marginal return on the alternative asset, capital, minus the

marginal extraction cost in terms of lower productivity in the future. Under laissez-

faire (ψ ≡ 0) this cost is not internalized, resulting in a too high required private

return on delaying extraction, thereby speeding up extraction. The proper correction

comes into sight when we divide through by ∂Y/∂R in (49) and use the Cobb-Douglas

specification to get

gY − gR = αz − δ − λ

γ
u.

The corresponding relation for the market economy is the no-arbitrage condition (25).

Inserting σ = 1−α1/α and τ cg = τ r = 0 into this condition we see that the postpone-

ment stimulus should be set at ψ = λu/γ, i.e., proportional to the current depletion

rate, whether the system is in steady state or outside.

As to the roles of τ cg and τ r our results are in contrast to Dasgupta and Heal (1979)

who state (on p. 368) that a capital gains tax when accompanied by an equally high

interest income tax does not distort resource extraction at all. Also, Stiglitz (1975,

p. 78) maintains, from inspecting the Hotelling rule, that an economy will pursue an

excessively conservationist resource extraction policy when the tax on capital gains is

lower than the tax on interest income. However, though these observations may be

true in partial equilibrium, they do not hold in general equilibrium where the rate of

interest is endogenous. Whatever the value of τ r, a positive capital gains tax tends to

incite too little conservation and impede growth.

5 Conclusion

Based on a Cobb-Douglas one-sector model, allowing for increasing returns to scale

and an essential non-renewable resource, this paper has studied the influence of vari-

ous policy instruments on long-run growth. Contrary to the predictions of standard

endogenous growth theory neither a tax on interest income nor a subsidy to capital

accumulation affect the long-run growth rate. However, policies directed towards the

returns to resource conservation do influence growth. For example, taxing the capital

gains, due to the rising price of the resource as its scarcity grows, makes extraction too

favorable − to the detriment of long-run growth possibilities. A tax on resource use
(like a carbon tax) matters if it is time-varying. When it keeps declining over time, it

favours conservation and growth, and this is desirable if externalities like a greenhouse

effect are present. Hence, the conclusion from the model is that policies concerned

with natural resources ultimately mean more for welfare than do traditional capital

taxes and subsidies.

21



The qualitative effects of taxes and subsidies are in most cases independent of

whether the source of growth is exogenous or endogenous. But the source of growth

matters for the role of population growth. In the endogenous growth case (tantamount

to increasing returns to scale) population growth is needed for the existence of stable

positive per capita growth, and higher population growth leads to higher per capita

growth.

A problem left for future research is whether and how the results are modified when

resource extraction depends on capital and labor as inputs. Productivity increases

in the extractive industries may (besides discoveries of new deposits) be one of the

reasons why, contrary to the prediction of the model, the data for the last century do

not indicate a rising resource price trend (Nordhaus 1992).

6 Appendix

Proof of Lemma 1. Consider a BGE (C, Y,K,R, S)∞t=0. (i) By definition of a BGE,

gC , gY , and gK are constant. By constancy of gC, z is a constant, in view of (26).

This implies, first, that gY = gK , and, second, that x is constant, in view of (22).

Therefore, gC = gK. The common constant value of gC , gY , and gK is called g∗. (ii) By

definition of a BGE, gS is constant. Hence, by (23), u is a constant, say u∗, implying

gR = gS = −u∗, and therefore R(t) = R(0)e−u
∗t. In view of R(0) > 0 we have u∗ > 0

since otherwise (19) would be violated. (iii) and (iv) That z and x are constants

has already been proved; by definition of a BGE they must also be positive. From

(24), with gY = gK = g∗ and gS = −u∗, follows (27). Inserting (25) in (26) gives
g∗ = 1

ε
[(1− τ cg)(g

∗ − g∗R + ψ)− ρ] + n, which is a contradiction unless ψ is constant,

and by (16) this constant must be ψ̄. Inserting gR = −u∗ and reordering gives (28).
(v) In view of (25), (1−τ cg)(g∗−g∗R+ψ) = (1−τ r)r, since, by (6), r = α1z/(1−σ)−δ,
where z is constant in the BGE. Inserting u∗ = −g∗R and ψ = ψ̄ gives

(1− τ cg)(g
∗ + u∗ + ψ̄) = (1− τ r)r. (50)

Now, the desired conclusion follows from the transversality conditions (20) and (21),

by Lemma A below. ¤

Lemma A. Let limt→∞ gK = g∗, limt→∞ gS = −u∗, and limt→∞ r(t) = r, where r

satisfies (50). Then the transversality conditions (20) and (21) taken together are

equivalent with the inequality in (v) of Lemma 1.
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Proof We have

(20) ⇔ g∗ − (1− τ r)r < 0⇔ g∗ < (1− τ cg)(g
∗ + u∗ + ψ̄) (from (50))

⇔ τ cgg
∗ < (1− τ cg)(u

∗ + ψ̄); (51)

(21) ⇔ −u∗ + τ cg(1− τ r)

1− τ cg
r < 0⇔ −(1− τ cg)u

∗ + τ cg(1− τ r)r < 0

⇔ τ cg(1− τ cg)(g
∗ + u∗ + ψ̄) < (1− τ cg)u

∗ (from (50))

⇔ τ cg(g
∗ + ψ̄) < (1− τ cg)u

∗.

The last inequality ensures (51) since, by (16), ψ̄ ≥ 0. ¤

The output-capital and consumption-capital ratios. Inserting (30) and (31)

into (32) gives

z∗ =
1− σ

α1

1− τ cg
1− τ r

[(α+ β + γ + λ− 1)n+ θ] ε+ (γ + λ)εψ̄ + (1− α− γ − λ)ρ

D

+
1− σ

α1
δ. (52)

Inserting (31) into (33) gives

x∗ =
(1− σ)1−τcg

1−τr

©
[(α+ β + γ + λ− 1)n+ θ] ε+ (1− α− γ − λ)ρ+ (γ + λ)εψ̄

ª
α1D

−
(1− τ cg)(βn+ θ) + (γ + λ)

£
εn− ρ+ (1− τ cg)ψ̄

¤
D

+
1− σ − α1

α1
δ. (53)

Proof of Lemma 2. The example in footnote 11 shows that P ∗ has a non-empty

interior. ¤

Proof of Proposition 2. Let π ∈ P and assume D 6= 0. (i) As to the ”if”-part we
can construct a BGE in the following way. Given π ∈ P ∗, let u∗, z∗, and x∗ be defined

as in (31), (52), and (53), respectively. By definition of P ∗ we know u∗, z∗, and x∗

are strictly positive, and (v) of Lemma 1 is satisfied. Let Q = (C, Y,K,R, S)∞t=0 be a

path satisfying u ≡ R/S = u∗, z ≡ Y/K = z∗, and x ≡ C/K = x∗ for all t. This path

has gR = gS = −u∗, from (23). We calculate g∗ from (30). By construction, u∗ and g∗

satisfy (27) and (28). By (27) and (24), g∗ is the common value of gY and gK along

the path Q, given gR = −u∗. Further, given g∗ and u∗, z∗ satisfies (32), which implies

the Hotelling rule (25). Now, combining (28) and (25) shows that g∗ satisfies (26);

hence, with r = α1
1−σz

∗ − δ, and gc = g∗ − n the Keynes-Ramsey rule (13) is satisfied.

Finally, with r = α1
1−σz

∗ − δ, (25) implies (50); hence, in view of (v) of Lemma 1 the
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transversality conditions are satisfied, by Lemma A , and the path Q is a BGE. On

the other hand, since D 6= 0, π /∈ P ∗ implies, by definition of P ∗, that at least one of

z∗, x∗, and u∗ is non-positive or (v) of Lemma 1 is not satisfied. Hence, no BGE exists.

(ii) Given π ∈ P ∗, uniqueness of the BGE (g∗, u∗, z∗, x∗) follows from (30), (31), (52),

and (53). ¤

Proof of Proposition 3. Using (22), the identities z ≡ Y/K and x ≡ C/K imply

ż = (gY − z + x+ δ)z. (54)

ẋ = (gC − z + x+ δ)x, (55)

Define the relative taxation index

ξ ≡ 1− τ r
1− τ cg

> 0.

Inserting (22) and the Hotelling Rule, (25), into (24) yields

gY =
α− ξ

1−σα1γ

1− γ
z − α

1− γ
x− λ

1− γ
u+

γ

1− γ
ψ +

βn+ θ + (ξγ − α)δ

1− γ
. (56)

Inserting this expression into (54), we find

ż =

"
(
α− ξ

1−σα1γ

1− γ
− 1)z + 1− α− γ

1− γ
x− λ

1− γ
u

+
γ

1− γ
ψ +

βn+ θ + (1− α− γ + ξγ)δ

1− γ

¸
z. (57)

Inserting gC = gc + n and the Keynes-Ramsey Rule, (26), into (55) gives

ẋ =

∙
(
(1− τ r)α1
(1− σ)ε

− 1)z + x+ n− ρ

ε
+ (1− 1− τ r

ε
)δ

¸
x. (58)

Differentiating the identity u ≡ R/S with respect to time and using (18), we get

u̇ = (gR + u)u. (59)

By (25) and (56), this gives

u̇ = (
α− ξ

1−σα1

1− γ
z − α

1− γ
x+

1− γ − λ

1− γ
u+

1

1− γ
ψ +

βn+ θ + (ξ − α)δ

1− γ
)u. (60)

The dynamics of z, x, and u are completely described by the system (57), (58),

and (60). Along a BGE this system is in steady state, i.e., ż = ẋ = u̇ = 0, by Lemma

1. We form the Jacobian evaluated in a steady state:

J =

⎡⎣ ∂ż
∂z

∂ż
∂x

∂ż
∂u

∂ẋ
∂z

∂ẋ
∂x

∂ẋ
∂u

∂u̇
∂z

∂u̇
∂x

∂u̇
∂u

⎤⎦ =
⎡⎢⎢⎣ (

α− ξ
1−σα1γ

1−γ − 1)z∗ 1−α−γ
1−γ z∗ − λ

1−γz
∗

( (1−τr)α1
(1−σ)ε − 1)x∗ x∗ 0
α− ξ

1−σα1
1−γ u∗ − α

1−γu
∗ 1−γ−λ

1−γ u∗

⎤⎥⎥⎦ . (61)
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The determinant of J is

det J = − ξD

(1− σ) (1− γ) ε
a1z

∗x∗u∗, (62)

which is negative if and only if D > 0. The trace of J is

tr J = (
α− ξ

1−σα1γ

1− γ
− 1)z∗ + x∗ +

1− γ − λ

1− γ
u∗

≥ 1− ξγ

1− γ

α1
1− σ

z∗ − z∗ + x∗ +
1− γ − λ

1− γ
u∗ (since

α1
1− σ

≤ α, by (A1))

=
1− ξγ

1− γ
(
g∗ + u∗ + ψ̄

ξ
+ δ)− g∗ − δ +

1− γ − λ

1− γ
u∗ (by (32) and (22))

=
(1− ξ)g∗ + (1− ξγ)(u∗ + ψ̄ + ξδ)

ξ(1− γ)
+
1− γ − λ

1− γ
u∗ − δ

≈ (2− λ

1− γ
)u∗ + ψ̄ > 0 (since ξ ≈ 1, by (A1), λ/2 < 1− γ, and ψ̄ ≥ 0).

This shows that the three eigenvalues cannot all be negative (or have negative

real part). Hence, if D > 0, i.e., det J < 0, there is one negative and two positive

eigenvalues. Now, even though z, x, and u are all ‘jump variables’, by substituting

uS for R in the production function (5) we get z = eθtKα−1NβuγSγ+λ, showing that,

given K,N, and S, the values of z and u are not independent. In view of the implied

boundary value condition one negative eigenvalue and two positive eigenvalues implies

saddle-point stability.

Now, assume on the contraryD < 0. Then det J > 0, and on the face of it there are

two possible cases: Either all three eigenvalues are non-negative or there is one positive

eigenvalue and two eigenvalues with non-positive real part. However, there exists a

number λ̄ > 0 such that for λ < λ̄ this last-mentioned case can be excluded. Indeed,

if λ = 0, then J is block-triangular, and u∗ > 0 is an eigenvalue. And since both the

determinant and the trace of the upper left 2 × 2 sub-matrix of J is positive (at least
given the policy assumption (A1)), the other two eigenvalues are also positive. By

continuity, all three eigenvalues will be positive also if λ ∈ (0, λ̄) for some sufficiently
small positive number λ̄. ¤

Optimal allocation. The current-value Hamiltonian for the optimal allocation prob-

lem, described in Section 4, is

H =
c1−ε − 1
1− ε

N + µ1(Y − cN − δK)− µ2R, (63)

where Y = eθtKαNβRγSλ, and µ1 and µ2 are the co-state variables associated with
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physical capital and the resource stock, respectively. Necessary first order and transver-

sality conditions for an interior solution are:

c−ε = µ1, (64)

µ1γ
Y

R
= µ2, (65)

µ̇1 = ρµ1 − (α
Y

K
− δ)µ1, (66)

µ̇2 = ρµ2 − λ
Y

S
µ1, (67)

lim
t→∞

e−ρtµ1K = 0, (68)

lim
t→∞

e−ρtµ2S = 0. (69)

From (64) and (66),

gc =
1

ε
(αz − δ − ρ). (70)

Similarly, (65), (66), and (67) lead to

gY − gR = αz − δ − λ

γ
u. (71)

The equations (22), (24), (54), (55), and (59) are still valid. If an optimal allocation

is a BGP, gC, gY , gK, gR, and gS are constant, by definition. Hence, along a BGP

also z, x, and u are constant, gC = gc + n = gY = gK = g∗SP , and gR = gS = −u∗SP .
Inserting into (71) and using (70) gives

(ε− 1) g∗SP − γ + λ

γ
u∗SP = εn− ρ. (72)

Combining this with the growth accounting relation (27) gives (47) and (48), assuming

DSP 6= 0. The values of z and x along a BGP are

z∗SP =
[(α+ β + γ − 1)n+ θ] ε+ (1− α− γ)ρ

αDSP
+

δ

α
,

x∗SP =
[(α+ β + γ − 1− αγ)n+ θ] ε− α(βn+ n) + (1− α)(1− γ)ρ

αDSP
+
(1− α)δ

α
.

Transitional dynamics. Inserting (22) and (71) into (24) yields

gY = αz − α

1− γ
x+

βn+ θ − (α− γ)δ

1− γ
. (73)

Inserting this expression into (54), we find

ż =

∙
(α− 1)z + 1− α− γ

1− γ
x+

βn+ θ + (1− α)δ

1− γ

¸
z. (74)
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Inserting gC = gc + n and (70) into (55) yields

ẋ =

∙
(
α

ε
− 1)z + x+ n− ρ

ε
+ (1− 1

ε
)δ

¸
x. (75)

By (71) and (73), (59) gives

u̇ = (
−α
1− γ

x+
γ + λ

γ
u+

βn+ θ + (1− α)δ

1− γ
)u. (76)

The dynamics of z, x, and u are completely described by the system (74), (75), and

(76). Along a BGP the system is in steady state. The Jacobian evaluated in steady

state is

JSP =

⎡⎣ (α− 1)z∗SP 1−α−γ
1−γ z∗SP 0

(α
ε
− 1)x∗SP x∗SP 0

0 − α
1−γu

∗SP γ+λ
γ
u∗SP

⎤⎦ ,
which is block-triangular, hence one of the eigenvalues is γ+λ

γ
u∗SP > 0. The determi-

nant of the upper left 2 × 2 sub-matrix of JSP is

det JSP = − α

(1− γ)ε
DSP z∗SPx∗SP .

When DSP > 0 this is negative so that there is one negative and two positive eigen-

values, implying saddle-point stability.

Let the parameters α, β, γ, λ, δ, n, θ, ε, ρ be such that DSP as well as u∗SP , z∗SP ,

and x∗SP are strictly positive (footnote 11 shows an example). Then a unique BGP

exists, and there is (at least locally) a unique feasible path (C, Y,K,R, S)∞t=0, fulfilling

the first order conditions, such that the associated triple (z, x, u)∞t=0 → (z∗, x∗, u∗) for

t → ∞. To show that this path is optimal, at least when α + γ + λ ≤ 1, two steps
remain.

Step 1. The path satisfies the two transversality conditions. Indeed, using succes-

sively (66) and (70),

lim
t→∞

(
K̇

K
+

µ̇1
µ1
− ρ) = g∗SP + lim

t→∞
(δ − αz) = g∗SP − lim

t→∞
(ε
ċ

c
+ ρ)

= (1− ε)g∗SP + εn− ρ < 0,

where the inequality follows from (72), since u∗SP > 0. Hence, (68) is satisfied.

Similarly, using (67) and (65),

lim
t→∞

(
Ṡ

S
+

µ̇2
µ2
− ρ) = −γ + λ

γ
u∗SP < 0,
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showing that (69) is satisfied. In view of (64) and (65), µ1 > 0 and µ2 > 0 for

all t ≥ 0. Hence, the path (C, Y,K,R, S)∞t=0, which is our candidate for an optimal

solution, satisfies

lim
t→∞

h
e−ρtµ1(K̃ −K) + e−ρtµ2(S̃ − S)

i
≥ 0,

for all feasible paths (C̃, Ỹ , K̃, R̃, S̃)∞t=0.

Step 2. We check whether the Hamiltonian is jointly concave in the state variables

(K,S) after the controls c and R have been substituted by their maximizing values.

We get from (64) and (65)

c = µ
− 1
ε

1 ,

R = (γeθtNβµ1
µ2
)

1
1−γS

λ
1−γK

α
1−γ ≡ A1S

λ
1−γK

α
1−γ .

Inserting this into (63) gives the maximized Hamiltonian

Ĥ =
µ
− 1−ε

ε
1 − 1
1− ε

N + µ1e
θtKαNβSλAγ

1S
λγ
1−γK

αγ
1−γ − µ

1− 1
ε

1 N − µ1δK − µ2A1S
λ

1−γK
α
1−γ

≡ A2 +A3S
λ

1−γK
α
1−γ − µ1δK,

where

A2 ≡ (
µ
− 1−ε

ε
1 − 1
1− ε

− µ
1− 1

ε
1 )N,

A3 ≡ (µ1e
θtNβγ)

1
1−γµ

−γ
1−γ
2 (γ−1 − 1) > 0 since γ < 1.

It follows that Ĥ is concave in (K,S) if and only if λ+α
1−γ ≤ 1, i.e.,

α+ γ + λ ≤ 1. (77)

From Step 1 and Step 2 follows that when α+γ+λ ≤ 1, the path (C, Y,K,R, S)∞t=0

is optimal, cf. Theorem 14 in Seierstad and Sydsæter, 1987, p. 236.

Proof of Proposition 5. Let the parameter vector (α1, β, γ, α, λ, θ, δ, n, ε, ρ) be

such that a BGP exists both under laissez-faire and the social planner’s rule. Assume

D(0) > 0 and consider the laissez-faire BGE. By Proposition 6, a first-best BGE has

ψ̄ = λu∗SP/γ > 0 and σ = 1− α1/α. (i) Assume λ > 0. Then, a shift from first-best

to laissez-faire affects g∗ only through the decrease of ψ̄ to zero, and this effect is

negative, since ∂g∗/∂ψ̄ = ∂g∗c/∂ψ̄ > 0, by (39). (ii) Assume λ = 0, α1 < α. Then, a

shift from first-best to laissez-faire changes only σ, which decreases from 1−α1/α > 0

to zero. This decrease in σ does not affect g∗, but increases z∗ in view of (46). ¤
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Proof of Proposition 6. The dynamic system, (57), (58), and (60), for the market

economy is seen to be identical to that of the optimal allocation, (74), (75), and (76),

if and only if

σ = 1− α1/α, ψ =
λ

γ
u, and τ cg = τ r = 0.

This proves the proposition. ¤
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