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Fluctuations in overlapping

generations economies∗

Mich Tvede†

Abstract

In the present paper stationary pure-exchange overlapping generations

economies with goods per date and m consumers per generation are

considered. It is shown that for an open and dense set of utility functions

there exist endowment vectors such that n-cycles exist for n ≤ +1 and

≤ m. The approach to existence of endogenous fluctuations is basic in
the sense that the prime ingredients are the implicit function theorem

and linear algebra. Moreover the approach is applied to show that for

an open and dense set of utility functions there exist endowment vectors

such that sunspot equilibria, where prices at every date only depends on

the state at that date, exist.
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1 Introduction

For dynamic economies, endogenous fluctuations are equilibria, where endoge-

nous variables vary with time even though no exogenous shocks are hitting

fundamentals. An early example of a cycle (prices alternate deterministically

between finitely many price vectors) in a overlapping generations economy

(or OG economies for short) is provided in Gale (1973) where it is noted that

“everyone has perfect foresight but cycling nevertheless occurs as a consequence

of the equilibrium price mechanism”. An effect of endogenous fluctuations is

that possibilities of otherwise identical consumers vary with the date of birth.

In the present paper the existence of endogenous fluctuations in stationary

pure-exchange OG economies is studied.

Cycles in pure-exchange OG economies have been an object of interest

in several papers. For simple economies with one good per date and one

consumer per generation, the existence of cycles has been studied in Gale

(1973), Benhabib & Day (1983) and Grandmont (1985) among others. For

economies with many goods per date and many consumers per generation, the

existence of cycles has been studied in Ghiglino & Tvede (1995, 2004). In

Ghiglino & Tvede (1995) it is shown that for almost all n and almost all lists
of individual utility functions, if the number of consumers per generation is at

least twice the number of goods per date, then there exist lists of endowment

vectors such that there exist n-cycles. In general, cycles in pure-exchange OG
economies are caused by the interaction of wealth effects and sustitution effects

in demand.

Stationary n-state sunspot equilibria (prices jump stochastically between n
price vectors and there is a transition matrix of probabilities for jumps between

all pairs of price vectors) in pure-exchange OG economies have been an ob-

ject of interest in some papers. For simple economies the existence of sunspot

equilibria has been studied in Shell (1977), Azariadis (1981) and Azariadis &

Guesnerie (1986) among others. In Azariadis & Guesnerie (1986) it is shown

that there exists stationary 2-state sunspot equilibria if and only if there ex-

ists a 2-cycle which is robust to small changes in fundamentals. However for

economies with many goods per date and many consumers per generation, sta-

tionary sunspot equilibria typically do not exist as indicated in Davila (1997)

and Citanna & Siconolfi (2007).

To understand the importance of the number of goods per date for the

existence/non-existence of stationary n-state sunspot equilibria it should be
noted that: for economies with one good per date, the net demand of the

old consumers is just equal to the real value of the stock of money, so past

prices have no impact on aggregate net demand of the old consumers, and; for
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economies with more than one good per date, past prices do have an impact

on aggregate net demand of old consumers as aggregate net demand of old

consumers depends on their consumption at the previous date as well as the

distribution of the stock of money. Put mathematically, for economies with

more than one good per date there are more equations than unknowns.

The question of existence of cycles has been addressed for productive OG

economies in Reichlin (1986), Julian (1988) and Benhabib & Laroque (1988)

among others. Moreover cycles also have been studied in optimal growth

economies in Benhabib & Nishimura (1979), Boldrin & Montrucchio (1986)

and Sorger (1994) among others.

In the present paper stationary pure-exchange OG economies with goods

per date and m consumers per generation are considered and a basic approach

for establishing existence of endogenous fluctuations is provided. Indeed in

order to establish existence of n-cycles (price vectors alternate deterministically
between n price vectors), where n ≤ +1 and ≤ m, two steps are needed: 1.
the implicit function theorem is applied to the market clearing condition for n
subsequent dates at a stationary equilibrium to show that price vectors for the

n subsequent dates can be changed in any direction by changing incomes across
dates and consumers, and; 2. linear algebra is applied to budget constraints

and equilibrium conditions to show that there exist endowment vectors such

that both budget constraints and equilibrium conditions are satisfied for the

changed price vectors and endowment vectors. Moreover n-cycles are shown
to be robust.

It is sketched how the approach can be applied to establish existence of sta-

tionary n-state sunspot equilibria. Next it is sketched how stationary sunspot
equilibria can be shown not to be robust as indicated in previous work. How-

ever existence of stationary sunspot equilibria may still be of interest because

economies with endowment vectors in a neighborhood of economies with sta-

tionary sunspot equilibria should be expected to have sunspot equilibria close

to stationary.

The usual approach to existence of endogenous fluctuations is by appli-

cations of bifurcation theory to stationary equilibria. In order to apply bi-

furcation theory it has to be shown that there exist fundamentals such that

the matrix of first-order derivatives of the dynamical system has an eigenvalue

of −1 for the period doubling bifurcation or a pair of complex eigenvalues of
modulus one for the Naimark-Sacker (Hopf) bifurcation. Thus the approach

of the present paper is basic compared to the usual approach as it rests on the

implicit function theorem and linear algebra rather than bifurcation theory.

The paper is organized follows. In Section 2 the structure of economies,

assumptions and the notion of equilibrium is presented. In Section 3 the main
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result of the present paper and a sketch of the proof are presented. In Section

4 the proof of the main result is presented. Finally in Section 5 it is sketched

how the approach can be used to establish the existence of stationary sunspot

equilibria.

2 Set-Up

Consider a stationary pure-exchange overlapping generations economy where

time extends from −∞ to∞. At every date there is a finite number of goods

and a finite number m of consumers, who live for two dates, is born.

Let pt = (p
1
t , . . . , pt) ∈ R++ be the price vector at date t and let (pt)t be a

price system.

Consumers are described by their identical consumption setsX = R2 , their
endowment vectors ωi = (ωyi ,ω

o
i ) ∈ X, where ωyi ,ωoi ∈ R , and their utility

functions ui : X → R. An economy is a list of consumers (ωi, ui)i.
Consumer i is supposed to satisfy the following assumptions

(A.1) ui ∈ C2(X,R).
(A.2) Dui(x) ∈ R2++.
(A.3) zTD2ui(x)z < 0 for all z ∈ R2 \ {0}.
(A.4) For all a ∈ R there exists y ∈ X such that if u(x) = a then x ≥ y.
All assumptions are standard. The set of utility function satisfying (A.1)-(A.4)

is endowed with the Whitney topology and the set of lists of individual utility

functions (ui)i is endowed with the product topology.
The problem of consumer i in generation t for a pair of price vectors

(pt, pt+1) and an income wit, where wit = pt · ωyi + pt+1 · ωoi , is

max
(xy,xo)

ui(x
y, xo)

s.t. pt · xy + pt+1 · xo ≤ wit
For every pair of price vectors (pt, pt+1) and income wit there exists unique
solution to the problem of consumer i. Therefore let fi : R2++×R→ X be the

demand function of consumer i.
Let r = i ω

y
i + i ω

o
i be the vector of available resources, then an equi-

librium is a price system and a list of individual endowment vectors such that

all markets clear.
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Definition 1 An equilibrium is a price system and a list of individual en-

dowment vectors ((pt)t, (ωi)i) such that

i

f yi (pt, pt+1, pt · ωyi + pt+1 · ωoi ) +
i

f oi (pt−1, pt, pt−1 · ωyi + pt · ωoi ) = r

for all t.

3 Cycles

A n-cycle is an equilibrium where price vectors alternate deterministically be-
tween n price vectors.

Definition 2 A n-cycle is an equilibrium ((pt)t, (ωi)i) such that pt+n = pt for
all t. A non-trivial n-cycle is a n-cycle that is not a k-cycle for any k < n.

In Kehoe & Levine (1984) it is shown that every economy has a 1-cycle or

a steady state. For simplicity n-cycles are denoted ((pj)
n
j=1, (ωi)i).

Let U(p, (wi)i) denote the set of lists of individual utility functions for which
the × -matrices

(Dwf
y
1 . . . Dwf

y
)

and

I + (−1)n−1((Dwf y1 . . . Dwf
y
)−1(Dwf o1 . . . Dwf

o))n,

where Dwf
y
i = Dwf

y
i (p, p, wi) and Dwf

o
i = Dwf

o
i (p, p, wi), have rank .

Lemma 1 Suppose that m ≥ . Then U(p, (wi)i) is open and dense for all
(p, (wi)i).

Remark: Since the proof of Lemma 1 is rather long and not too complicated

it is delegated to the Appendix.

End of remark

Let Pn ⊂ (R++)n denote the set of lists of n price vectors (pj)nj=1, such that
the × (n− 1)-matrix (p1 − p2 . . . pn−1 − pn) has rank n− 1.
Theorem 1 Suppose that n ≤ + 1 and ≤ m. For every price vector and
list of individual incomes (p, (wi)i), list of individual utility functions (ui)i ∈
U(p, (wi)i) and neighborhood Nw of (wi)i, there exists a neighborhood Np of p
such that for all (pj)

n
j=1 ∈ N n

p ∩Pn, there exists (ωi)i such that ((pj)j, (ωi)i) is
a non-trivial n-cycle and (wji )i,j ∈ N n

w , where w
j
i = pj · ωyi + pj+1 · ωoi for all i

and j.
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Sketch of proof: The proof consists of two major steps. Here the steps are

explained and in the next section the steps are done in detail.

In the first step the following system of equations is considered

i

fyi (p1, p2, w
1
i ) +

i

f oi (pn, p1, w
n
i ) = r

i

fyi (p2, p3, w
2
i ) +

i

f oi (p1, p2, w
1
i ) = r

...

i

fyi (pn−1, pn, w
n−1
i ) +

i

f oi (pn−2, pn−1, w
n−2
i ) = r

i

fyi (pn, p1, w
n
i ) +

i

f oi (pn−1, pn, w
n−1
i ) = r.

(1)

For a price vector and a list of individual incomes (p, (wi)i) the implicit function
theorem can applied to the system of equations (1) at ((pj)j, (w

j
i )i,j, r), where

pj = p, wji = wi and r = i f
y
i (p, p, wi) + i f

o
i (p, p, wi) to obtain some of

the individual incomes as functions of lists of price vectors and the rest of the

individual incomes.

In the second step for a list of price vectors, a list of individual incomes

and a vector of available resources ((pj)j , (w
j
i )i,j, r) the following systems of

equations are considered

p1 · ωyi + p2 · ωoi = w1i

p2 · ωyi + p3 · ωoi = w2i
...

pn−1 · ωyi + pn · ωoi = wn−1i

pn · ωyi + p1 · ωoi = wni

(2)

for all i and

i

ωyi +
i

ωoi = r. (3)

A list of individual endowment vectors (ωi)i, such that the systems of equations
(2) and (3) are satisfied, is found.

The first step is used to find a list of price vectors (pj)j and the second
step is used to find a list of individual endowment vectors (ωi)i such that
((pj)j, (ωi)i) is a n-cycle.

End of sketch
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Remark: As explained in Section 2 consumption sets are unbounded rather

than bounded from below. Clearly both steps in the proof of Theorem 1

remain valid for consumption sets that are bounded from below. However if

consumption sets are bounded from below and the endowment vectors have to

be in the consumption sets, then the second step could fail.

End of remark

For a n-cycle there are n − 1 equilibrium conditions because of Walras

law and n − 1 prices because demand functions are homogenous of degree
zero. Therefore n-cycles should be expected to be robust in following sense:
if an economy has a n-cycles, then there exists a sequence of economies that
converges to the economy such that every economy in the sequence has a n-
cycle and for every economy in the sequence there exists a neighborhood such

that every economy in the neighborhood has a n-cycle.

Proposition 1 Suppose that ((pj)j, (ωi)i) is a non-trivial n-cycle for (ui)i.
Then in every neighborhood of (ui)i there exist (ui)i and a neighborhood of
(ωi)i such that for every (ωi)i in the neighborhood of (ωi)i there exists (pj)j
such that ((pj)j, (ωi)i) is a non-trivial n-cycle for (ui)i.

Remark: Since the proof of Proposition 1 is based on the proof of Lemma 1 it

is delegated to the Appendix.

End of remark

4 Proof of Theorem 1

The proof of Theorem 1 consists of two lemmas.

Definition 3 A price-income n-cycle for r ∈ R is a list of price vectors

and a list of individual incomes ((pj)
n
j=1, ((w

j
i )i)

n
j=1) such that the system of

equations (1) is satisfied.

Lemma 2 Suppose that m ≥ . For all (p, (wi)i) and (ui)i ∈ U(p, (wi)i) if
r =

i

fyi (p, p, wi) +
i

f oi (p, p, wi)

then there exist a neighborhood Np of p, a neighborhood Nw of (wi)i and a
differentiable map Γ : N n

p × (pr{ +1,...,m}Nw)
n → (pr{1,..., }Nw)

n such that for

all (pj)
n
j=1, where pj ∈ Np for all j, and (w

j
i )i,j, where (w

j
i )i ∈ Nw for all j,

(wji )i∈{1,..., },j = Γ(p1, . . . , pn, (w
j
i )i∈{ +1,...,m},j)

if and only if ((pj)
n
j=1, ((w

j
i )i)

n
j=1) is a price-income n-cycle for r.
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Proof: For (p, (wi)i, r), where r = i f
y
i (p, p, wi) + i f

o
i (p, p, w), suppose

((pj)j, (w
j
i )i)j) is defined by p1 = . . . = pn = p and w

1
i = . . . = w

n
i = wi, then

((pj)j, (w
j
i )i)j) is a solution to the system of equations (1). Let the × matrices

A and B be defined by A = (Dwf
y
1 . . . Dwf

y
) and B = (Dwf

o
1 . . . Dwf

o), then

the derivatives of the system of equations (1) with respect to ((wji )i=1)
n
j=1 is⎛⎜⎜⎜⎝

A B

B
. . .
. . . A

B A

⎞⎟⎟⎟⎠ .
Consider the following operations on matrix of derivatives of the system of

equations (1): the first row-block is multiplied by −BA−1 from the left and

added to the next row-block,... , the second last row-block is multiplied by

−BA−1 from the left and added to the last row-block. Then the matrix of

derivatives of the system of equations (1) becomes⎛⎜⎜⎜⎜⎜⎝
A B

A −BA−1B
. . .

...

A (−1)n−2B(A−1B)n−2
A+ (−1)n−1B(A−1B)n−1

⎞⎟⎟⎟⎟⎟⎠ .

Therefore the matrix of derivatives of the system of equations (1) has rank

n, because the × matrices A and I + (−1)n−1(A−1B)n have rank by

assumption and A+ (−1)n−1B(A−1B)n−1 = A(I + (−1)n−1(A−1B)n).
Hence according to the implicit function theorem there exist a neighbor-

hood Np of p, a neighborhood Nw of (wi)i and a differentiable map Γ :

N n
p ×(pr{ +1,...,m}Nw)

n → (pr{1,..., }Nw)
n such that for all (pj)

n
j=1 where pj ∈ Np

for all j, and (wji )i,j where (w
j
i )i ∈ Nw for all j

(wji )i∈{1,..., },j = Γ(p1, . . . , pn, (w
j
i )i∈{ +1,...,m},j)

if and only if ((pj)
n
j=1, ((w

j
i )i)

n
j=1) is a price-income n-cycle.

2

Definition 4 For a list of price vectors, a list of individual incomes and a

vector of total endowment ((pj)
n
j=1, ((w

j
i )i)

n
j=1, r), an endowment n-cycle is

a list of individual endowment vectors (ωi)i such that the systems of equations
(2) and (3) are satisfied.
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Lemma 3 Suppose that n ≤ + 1. For all (pj)
n
j=1 ∈ Pn, ((wji )i)nj=1 and r, if

i,j w
j
i = ( j pj) · r, then there exists an endowment n-cycle.

Proof: For all ((pj)j, (w
j
i )i,j, r) where i,j w

j
i = ( j pj) · r, if (ωi)i satisfies the

system of equations (2) except the last equation and the system of equations

(3), then the last equation of the system of equations (2) is satisfied too, so

(ωi)i is an endowment n-cycle.
For (pj)

n
j=1 let the n× 2 -matrix P be defined by

P =

⎛⎜⎝ pT1 pT2
...

...

pTn pT1

⎞⎟⎠
and let the (n− 1)× 2 -matrix (Q1Q2) be the matrix P without the last row.
Then (ωi)i is an endowment n-cycles if and only if⎛⎜⎜⎜⎜⎜⎝

P
. . .

P
Q1 Q2

I I · · · I I I I

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎝ ω1

...

ωm

⎞⎟⎠ =

⎛⎜⎜⎜⎝
w11
...

wn−1m

r

⎞⎟⎟⎟⎠ .

Consider the following operations on the matrix above: the column-block

for ωm is multiplied by −1 and added to the column-block for ω1; . . . ; the
column-block for ωm is multiplied by −1 and added to the column-block for
ωm−1; . . . ; the row-block for consumer 1 except the last row is multiplied by
−1 and added to row-block for consumer m; . . . ; the row-block for consumer
m− 1 except the last row is multiplied by −1 and added to the row-block for
consumer m, and; the column-block for ωoi is multiplied by −1 and added to
the column-block for ωyi . Then the matrix above becomes⎛⎜⎜⎜⎜⎜⎝

P
. . .

P
Q1 −Q2 Q2

I

⎞⎟⎟⎟⎟⎟⎠ .

If the matrix P has rank n and the matrix Q1 −Q2 has rank n− 1, then the
matrix above has rank +mn− 1.
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The matrix Q1 − Q2 = (p1 − p2 . . . pn−1 − pn)T has rank n − 1, because
(pj)

n
j=1 ∈ Pn. Consider the following operations on the matrix P : The first

n− 1 rows are added to the last row, and; the last column-block is multiplied
by −1 and added to the first column-block. Then the matrix becomes

Q1 −Q2 Q2
n

j=1 p
T
j

.

Therefore the matrix P has rank n as the matrix Q1 − Q2 has rank n − 1.
Hence there exists a endowment n-cycle.

2

5 Sunspot Equilibria

In the present section it is explained how the approach to existence of n-
cycles can be applied to existence of stationary n-state sunspot equilibria. In
stationary n-state sunspot equilibria there are n price vectors p1, . . . , pn and a
transition matrix π such that if the price at date t is pj, then the price at date
t+ 1 is pk with probability πjk > 0 so k πjk = 1.
If the price at date t is pj, then the problem of consumer i is

max
(xy,(xk)k)

k

πjkui(x
y, xk)

s.t.

⎧⎪⎨⎪⎩
pj · xy + p1 · x1 = wj1i

...

pj · xy + pn · xn = wjni

Let gi = (g
y
i , (g

j
i )j) : R

(1+n)
++ ×Rn×]0, 1[n→ R (1+n) be the demand function of

consumer i.

Definition 5 A stationary n-state sunspot equilibrium is a list of n
price vectors, a list of individual endowment vectors and a transition matrix

((pj)j, (ωi)i,π) such that

i

gyi (pj, (pj )j , (pj · ωyi + pj · ωoi )j ,πj)

+

i

gji (pk, (pk )k , (pk · ωyi + pk · ωoi )k ,πk) = r

for all j and k. A non-trivial n-state sunspot equilibrium is a n-state
sunspot equilibrium where pk = pj and πjk = 0 for all j and k.
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In order to establish the existence of stationary n-state sunspot equilibrium
two steps are needed.

In the first step the following system of equations are considered.

i

gyi (p1, (pj)j, (w
1j
i )j, π1) +

i

g1i (p1, (pj)j, (w
1j
i )j, π1) = r

...

i

gyi (p1, (pj)j, (w
1j
i )j, π1) +

i

g1i (pn, (pk)k, (w
nk
i )k, πn) = r

...

i

gyi (pn, (pj)j, (w
nj
i )j, πn) +

i

gni (p1, (pk)k, (w
1k
i )k,π1) = r

...

i

gyi (pn, (pj)j, (w
nj
i )j, πn) +

i

gni (pn, (pk)k, (w
nk
i )k,πn) = r

For a price vector and a list of individual incomes (p, (wi)i) the implicit function
theorem can applied to the system of equations at ((pj)j, (w

jk
i )i,j,k, r), where

pj = p, wj,ki = wi and r = i f
y
i (p, p, wi) + i f

o
i (p, p, wi) to obtain the

individual incomes of the consumers with i ≤ as functions of lists of price

vectors and the individual incomes of the consumers with i ≥ +1. There are

n2 equations and mn2 individual incomes, so it is necessary that m ≥ .

In the second step the following systems of equations are considered.

p1 · ωyi + p1 · ωoi = w11i
...

p1 · ωyi + pn · ωoi = w1ni
...

pn · ωyi + p1 · ωoi = wn1i
...

pn · ωyi + p1 · ωoi = wnni

for all i and

i

ωyi +
i

ωoi = r.

For ((pj)j, (w
jk
i )i,j,k, r), where i w

jk
i + iwkj = (pj + pk) · r for all j and k,

if all budget constraint are satisfied for all consumers except consumer i = m,
all budget constraints pj · ωym + pk · ωom = wjkm where k > j are satisfied for
consumer i = m and all resource equations are satisfied, then all equations are
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satisfied. Therefore for ((pj)j, (w
jk
i )i,j,k, r), where iw

jk
i + i wkj = (pj+pk)·r

for all j and k, linear algebra can be applied to the two systems of equations
to obtain individual endowment vectors as functions of lists of price vectors,

lists of individual incomes and total resources. There are + (m− 1)n2+(n−
1) + . . .+ 1 equations and 2 m individual endowments, so it is necessary that

2 m ≥ + (m− 1)n2 + (n− 1) + . . .+ 1.
For a stationary n-state sunspot equilibrium there are n2−((n−1)+. . .+1)

equilibrium conditions because of Walras law, n − 1 prices because demand
functions are homogenous of degree zero and n(n − 1) probabilities. For at
least two goods ≥ 2 the joint transversality theorem (Theorem I.2.2. in

Mas-Colell (1985)) can be used study robustness of sunspot equilibria. Indeed

suppose that ((pj), (ωi)i,π) is a non-trivial n-state sunspot equilibrium where

the derivative of the equilibrium conditions with respect to (ωi) has rank ln
2−

((n−1)+ . . .+1). Then there exist neighborhoods Np of (pj)j, Nω of (ωi) and
Nπ of π such that the set of economies in Nω with stationary n-state sunspot
equilibria in Np ×Nω ×Nπ has measure zero.

Appendix

Proof of Lemma 1

Suppose that ≤ m. Then clearly U(p, (wi)i) is open for all (p, (wi)i) so it
remains to be shown that U(p, (wi)i) is dense. In the sequel it is shown that if
(ui)i /∈ U(p, (wi)i), then in every neighborhood of (ui)i, there exists (ui)i such
that (ui)i ∈ U(p, (wi)i).
Let j ∈ C2(R2 , [0, 1/2]) be a function, where there exist ν > μ > 0 such

that j(z) = 1/2 for z ≤ μ and j(z) = 0 for z ≥ ν. Then perturbations of
the utility function of consumer i of the form

ui(x) + j(x− x̄)(x− x̄)TS(x− x̄),

where S is a symmetric 2 × 2 -matrix, are considered in the sequel. For x =
x̄ the first-order derivative and the second-order derivative of the perturbed
utility function are Dui(x) and D

2ui(x)+S so the first-order derivative is not
perturbed while the second-order derivative is perturbed.

Clearly a consumption bundle x is the solution to the problem of consumer
i for a pair of prices (p, p) and an income wi if and only if there exists λi > 0

12



such that

Dui(x)− λi
p
p

= 0

pT (xy + xo) = wi.

(4)

Note that if the utility function is perturbed at a solution to the problem,

then the solution remains the solution because the first-order derivative is not

perturbed.

For convenience let fi = fi(p, p, wi), D
2ui = D2ui(fi(p, p, wi)), Dwfi =

Dwfi(p, p, wi) and Dwλi = Dwλi(p, p, wi), then the derivatives of the demand
function and the Lagrange multiplier with respect to income are defined by

D2uiDwfi −Dwλi p
p

= 0

pT (Dwf
y
i +Dwf

o
i ) = 1.

Let Sα be a symmetric 2 × 2 -matrix defined by
Sα = (D2u−1i + αI)−1 −D2ui.

and suppose that ui is perturbed by gα, where gα : X → R is defined by

gα(x) = j(x− fi)(x− fi)TSα(x− fi).
If α converges to zero, then Sα converges to the zero-matrix. Therefore there
exists ᾱ > 0 such that if 0 < α < ᾱ, then the perturbed function ui+gα satisfies
(A.1)-(A.4). Hence if α converges to zero, then the sequence of perturbed
functions (ui + gα)α converges to the unperturbed function ui. Moreover for
the perturbed functions all coordinates of Dwfi are different from zero except

for finitely many values of α because

(D2ui + Sα)Dwfi −Dwλi p
p

= 0

pT (Dwf
y
i +Dwf

o
i ) = 1

so

Dwfi = Dwλi(D
2ui + Sα)

−1 p
p

= Dwλi(D
2u−1i + αI)

p
p

.

For a perturbed function ui+gα, where all coordinates of Dwfi are different
from zero, and vi ∈ R2 , where pT (vyi + voi ) = 0, let ∆β be a diagonal 2 × 2 -
matrix defined by

β(D2ui + Sα)vi +∆β(Dwfi + βvi) = 0

13



and suppose the perturbed function ui + gα is perturbed by hβ, where hβ :
X → R is defined by

hβ(x) = j(x− fi)(x− fi)T∆β(x− fi).
If β converges to zero, then ∆β converges to the zero-matrix because all coordi-

nates of Dwfi are different from zero. Therefore for all 0 < α ≤ ᾱ there exists
β̄ > 0 such that if 0 < β < β̄, then the twice perturbed function ui + gα + hβ
satisfies (A.1)-(A.4). Moreover if Dwfi and Dwλi satisfy equation (4) for the
perturbed function ui + gα, then Dwfi + βvi and Dwλi satisfy equation (4)
for the twice perturbed function ui + gα + hβ because p

T (vyi + v
o
i ) = 1 and

(D2ui + Sα + ∆β)(Dwfi + βvi) = (D2ui + Sα)Dwfi. Hence the derivative of
the demand function with respect to income for the twice perturbed function

is Dwfi + βvi.
In order to show that for a dense set of lists of individual utility func-

tions the matrix (Dwf
y
1 . . . Dwf

y
) has rank , suppose that all coordinates of

the vector Dwfi are different from zero for all i ≤ . Consider the matrix

(Dwf
y
1 . . . Dwf

y
) + γV where V y = (vy1 . . . v

y
) = (1/ )∆p − (Dwf y1 . . . Dwfy)

and ∆p is a diagonal × -matrix with (1/p1, . . . , 1/p ) in the diagonal, and
V o = (vo1 . . . v

o) = −(Dwf o1 . . . Dwf
o). Then the determinant of

(Dwf
y
1 . . . Dwf

y
) + γV y

is (1− γ) times a polynomial of degree in γ/(1− γ) where the coefficient in
front of (γ/(1− γ)) is ( p1 . . . p )−1. Therefore there exists γ̄ > 0 such that if
0 < γ < γ̄, then the perturbed matrix has rank .

In order to show that for a dense set of lists of individual utility functions

the matrix I + (−1)n−1((Dwf y1 . . . Dwfy)−1(Dwf o1 . . . Dwf
o))n has rank , sup-

pose that all coordinates of the vector Dwfi are different from zero for all i ≤ .

Consider the matrix (Dwf
y
1 . . . Dwf

y
)+δV where V y = −(Dwfy1 . . . Dwfy) and

V o = (1/ )∆p − (Dwf o1 . . . Dwf o). Then the determinant of
I + (−1)n−1(((Dwfy1 . . . Dwf

y
) + δV y)−1((Dwf o1 . . . Dwf

o) + δV o))n

is a polynomial of degree n in δ/(1 − δ) where the coefficient in front of
(δ/(1 − δ)) n is (−1) (n−1)(det(Dwf y1 . . . Dwf

y
))−n. Hence there exists δ̄ > 0

such that if 0 < δ < δ̄, then the perturbed matrix has rank .

Proof of Proposition 1

Suppose that ((pj)j, (ωi)i) is a non-trivial n-cycle for (ui)i, so the system of

equations (1) is satisfied for wji = pj · ωyi + pj+1 · ωoi for all i and j and

14



r = i ω
y
i + i ω

o
i . In the system of equations (1) the last equation is re-

dundant because of Walras law and the last price can be normalized to one

because demand functions are homogenous of degree zero. Suppose that the

matrix of derivatives with respect to prices has full rank for the modified sys-

tem of equations (where the last equation is disregarded and the last price

normalized to one). Then locally prices are differentiable functions of endow-

ments according to the implicit function theorem. Therefore there exists a

neighborhood of (ωi)i such that for every (ωi)i in the neighborhood of (ωi)i
there exists (pj)j such that ((pj)j, (ωi)i) is a non-trivial n-cycle for (ui)i.
In the sequel it is shown that if ((pj)j, (ωi)i) is a non-trivial n-cycle for (ui)i

and the matrix of derivatives with respect to prices has not full rank for the

modified system of equations,, then in every neighborhood of (ui)i, there exists
(ui)i such that ((pj)j, (ωi)i) is a n-cycle for (ui)i and the matrix of derivatives
with respect to prices has full rank for the modified system of equations for

(ui)i.
The matrix of derivatives of the system of equations (1) with respect to

prices is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Dn +A1 B1 Cn
C1 D1 +A2 B2

. . .
. . .

. . .

Cn−2 Dn−2 +An−1 Bn−1
Bn Cn−1 Dn−1 +An

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where

Aj =

i

Dpjf
y
i (pj, pj+1, w

j
i ) +Dwif

y
i (pj, pj+1, w

j
i )ω

yT
i

Bj =

i

Dpj+1f
y
i (pj, pj+1, w

j
i ) +Dwif

y
i (pj, pj+1, w

j
i )ω

oT
i

Cj =

i

Dpjf
o
i (pj , pj+1, w

j
i ) +Dwif

o
i (pj, pj+1, w

j
i )ω

yT
i

Dj =

i

Dpj+1f
o
i (pj, pj+1, w

j
i ) +Dwif

o
i (pj, pj+1, w

j
i )ω

oT
i .

For the modified system the matrix of derivatives with respect to prices is the

matrix above without the last row and the last column.

Suppose that the utility function of consumer i is perturbed while the utility
functions of the other consumers are not perturbed. Let S ⊂ {1, . . . , n} be a
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set such that f ji = f
k
i for all j, k ∈ S and if j = S, then there exists k ∈ S such

that f ji = f
k
i . Then (f

j
i )j∈S is the different consumption bundles for consumer

i in the n-cycle.
Suppose that the utility function of consumer i is perturbed to

ui(x)− α

1 + α
j∈S

j(x− f ji )(x− f ji )TD2ui(f
j
i )(x− f ji )

where j ∈ C2(R2 , [0, 1/2]) is defined as in the proof of Lemma 1 with ν <
minj,k∈S,j=k f ji − fki . If α converges to zero, then (α/(1 + α))D2ui(f

j
i ) con-

verges to the zero-matrix. Therefore there exists ᾱ > 0 such that if 0 < α < ᾱ,
then the perturbed function satisfies (A.1)-(A.4). If the matrix of deriva-

tives with respect to prices for demand of the unperturbed utility function

is Dpj ,pj+1f
j
i + Dwif

j
i f

jT
i + Dwif

j
i (ω

T
i − f ji )T , then the matrix of derivatives

with respect to prices for the demand of the perturbed utility function is

(1 + α)(Dpj ,pj+1f
j
i +Dwif

j
i f

jT
i ) +Dwif

j
i (ω

T
i − f ji )T .

The perturbed modified matrix, where the utility function of consumer i
is perturbed, is equal to the sum of unperturbed modifed matrix and α times
the matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Hn + E1 F1 Gn
G1 H1 + E2 F2

. . .
. . .

. . .

Gn−2 Hn−2 + En−1 Fn−1
Fn Gn−1 Hn−1 +Gn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where

Ej = Dpjf
y
i (pj, pj+1, w

j
i ) +Dwif

y
i (pj, pj+1, w

j
i )f

y
i (pj, pj+1, w

j
i )
T

Fj = Dpj+1f
y
i (pj, pj+1, w

j
i ) +Dwif

y
i (pj, pj+1, w

j
i )f

o
i (pj, pj+1, w

j
i )
T

Gj = Dpjf
o
i (pj, pj+1, w

j
i ) +Dwif

o
i (pj, pj+1, w

j
i )f

y
i (pj, pj+1, w

j
i )
T

Hj = Dpj+1f
o
i (pj, pj+1, w

j
i ) +Dwif

o
i (pj, pj+1, w

j
i )f

o
i (pj, pj+1, w

j
i )
T .

Therefore if the perturbed modified matrix is multiplied by a vector q =
(q1, . . . , qn) ∈ R n−1, where q1, . . . , qn−1 ∈ R and qn ∈ R −1, from the left
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and the right, then it is a linear function in α. The coefficient in front of α is

n−2

j=1

qj
qj+1

T

(Dpj ,pj+1f
j
i +Dwif

j
i f

jT
i )

qj
qj+1

+
qn−1
qn

T

(Dpn−1,pnf
n−1
i +Dwif

n−1
i fn−1Ti )−2−2

qn−1
qn

+
qn
q1

T

(Dpn,p1f
n
i +Dwif

n
i f

nT
i )−−

qn
q1

,

where (Dpn−1,pnf
n−1
i +Dwif

n−1
i fn−1Ti )−2−2 is Dpn−1,pnf

n−1
i +Dwif

n−1
i fn−1Ti with-

out the 2 ’th row and the 2 ’th column.

The Slutsky matrix Dpj ,pj+1f
j
i + Dwif

j
i f

jT
i is negative semi-definite, so

vT (Dpj ,pj+1f
j
i +Dwif

j
i f

jT
i )v is zero if and only if v and (pj, pj+1) are collinear

and negative otherwise. Therefore the coefficient in front of α is zero if and
only if q = 0 and negative otherwise. Hence the determinant of the perturbed
modified matrix is a polynomium of degree n−1 in α, where the coefficient in
front of α n−1 is not zero. Thus there exists β̄ > 0 such that if 0 < α < β̄, then
the perturbed modified matrix has full rank and locally prices are differentiable

functions of endowments according to the implicit function theorem.
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