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Abstract 

 

We present a unified graphical framework accounting for the nature and impact of spillover 

effects. The dynamics of the learning process with a specific spillover transfer mechanism can 

be illustrated by recurring to this four-quadrant picture. In particular, a whole cycle of 

technological learning is explained with help of such a graphical representation of the basic 

learning process in the presence of knowledge spillovers. 

We hypothesize two different functional specifications of spillover exchanges among firms 

within a local innovation system. Each conceivable shape for the knowledge transfer 

relationship among firms expresses a possible mode and intensity of information processing 

arising from technology spillovers. A general proposition regarding the relative efficiency of 

the two alternative formal models with spillovers effects is derived. The basic models with 

spillover effects are then extended in several relevant directions 

 

Keywords: Learning; knowledge; technology spillovers; knowledge externalities; local 

innovation systems 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7051514?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2 

1. Introduction 

In this paper we present a theoretical modeling of the learning process with knowledge 

externalities to R&D and other learning inputs within a local innovation system, be it a 

region, a technological district, an industry or a technological cluster with fast rates of 

accumulation of new technological knowledge. As there are several definitions of localized 

technological knowledge and learning opportunities (according to stressing for instance the 

technical space, or to the regional space of firms), we can therefore find several possible 

applications to the basic modeling. The analysis of the learning firm interacting with a 

specific region in the production of new technological knowledge is just one of those. 

The analytical model we develop is amenable to a graphical representation. Thus we provide a 

unifying graphical framework, consisting of a four-quadrant picture, to analyze the process of 

knowledge accumulation by learning firms located and operating in a specific region or 

industry, which simultaneously stresses the nature of the basic learning process and the 

importance of true knowledge spillovers in the generation of new knowledge.  

We adopt the following approach to constructing stocks or pools of available knowledge 

arising from spillover effects. First, the magnitude or state of aggregate knowledge available 

within a region or industry can be reconstructed through historic accumulation of flows of 

knowledge. Thus, the aggregate level of knowledge can always be updated after every 

learning loop is completed, or at every point in discrete time, once a time unit of measurement 

is fixed at the outset of our analysis. Secondly, every firm within a region or industry is 

treated symmetrically regarding both spillover effects and magnitude of external knowledge 

available. Such statement meaning that the amount of aggregate knowledge borrowed from 

any available source, the region or industry under analysis, or even some other distant region 

or industry, is regarded as being the same by every firm. And finally, we model both the loss 

of appropriation of benefits from innovation and the distance between different technological 

bases or regional sources in terms of single parameters, weighting respectively the 

connectivity and the absorptive intensities associated to new flows of technological 

knowledge by firms.  

This paper is structured as follows. In the next section, the nature of a local innovation system 

is briefly characterized and contrasted with a neoclassical view of technology transfer. Then, 

in Section 3, a unified graphical framework accounting for the nature of a specific spillover 

transfer mechanism is presented and commented. After, in Section 4, we move to the 
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mathematical modeling of spillover effects assuming in turn the spillover transfer function 

presented earlier and an alternative way of specifying the transfer technological knowledge. 

The main results are then analytically derived and presented (Section 5) and later commented 

(Section 6). Our basic models are compared to other relevant models with spillover effects 

(Section 7) and then extended in several directions (Section 8). Finally, Section 9 concludes 

the paper. 

 

2. On the nature of a Local Innovation System 

Growing literature refers to the localized nature of the learning process, a property of the 

learning process explaining the emergence of mutations in the economic system. 

Technological knowledge implies the competence and capability necessary to use 

information, within the specific context of each agent, as well as to participate in 

communication and, eventually, to generate additional information. Technological knowledge 

is ‘localized’ in tacit learning processes that are embedded into the background and 

experience of each innovator and hence highly idiosyncratic. In particular, technological 

knowledge tends to be localized in well-defined technical, institutional, regional and 

industrial situations. By being specific to each industry, region or firm, technological 

knowledge becomes therefore costly to use elsewhere, increases its appropriability and 

reduces its spontaneous circulation in the economic system (Antonelli, 1999). 

Technological innovation takes place within a particular structure, a specific context of 

industrial products and production processes. Analysis of the conditions and context for 

effective technological communication to take place in turn lies at the heart of the innovation 

system approach (Antonelli, 2001).  

We would like to know: What are the basis conditions for localized technological knowledge 

to become collective and for external increasing returns in the production of knowledge to 

take place?  

Within communication networks, we see that the magnitude and impact of the effective flow 

of information which is both emitted and received by each agent can perceived to be the 

outcome of the interaction between to classes of events: (1) the connectivity event, according 

to which the flows of effective communication and the exchange of information take place; 

(2) the receptivity event, according to which the results of the research and learning efforts of 

each firm in the system are effectively assimilated.  
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Figure 1: The basic innovation process and the innovation capability of the firm 

This picture, by making explicit a mode of interference between the process of technological 

change and the local context, is also clearly inspired in insights from evolutionary theory. To 

this approach, what matters is the complex interaction between technology and local contexts. 

In turn this means that a local context is an entity playing a role in the process of creation and 

diffusion of technologies through specific learning mechanisms that mostly rely on the 

specific institutional framework of the local entity under consideration. 

And such an emphasis on the complex interaction between the process of technological 

change and the local context leads us in turn to the main difference between this approach and 

other theoretical approaches like neoclassical economics. While neoclassical theory reduces 

the impact of technology on the local context to a simple, quantitative, difference in the speed 

of diffusion of technology, evolutionary theory stresses the role of different local contexts due 

to different institutional frameworks have on processes of innovation exhibiting qualitative 

differences.  
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We consider now two extreme cases of modeling spillover effects which basically arise by 

neglecting from our analysis relevant contextual conditions for technology transfer. Either 

case can be structured within a neoclassical theoretical framework, as Romer (1990) actually 

does. In fact Romer (1990) assumes that the output of new designs produced by researcher j 

can be written as a continuous, deterministic function of the inputs applied. Romer makes also 

the extreme assumption that anyone engaged in research has free access to the entire stock of 

knowledge. All researchers can therefore take advantage of A, the stock of knowledge, at the 

same time. Summing across all people engaged in research, the aggregate stock of designs 

evolves according to )(tAHA Aδ=� , where � is a productivity parameter and HA stands for 

total human capital employed in research. The figure below illustrates exactly how to reach 

this very conclusion. 
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Figure 2: Horizontal accumulation of knowledge – the two extremes 

 
This view of technology transfer and diffusion, according to which firms are supposed to 

adopt a new technology more or less instantaneously, in the sense that no diffusion lags exist, 
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case. Obviously, quite opposite assumptions about secrecy and property rights would have 

now to be considered.  

Thus, an individual researcher j possessing an amount of human capital hj and having access 

to a portion Aj of the total stock of knowledge implicit in previous designs, will produce new 

designs at the rate of )(tAhA jj δ=� . 

Check on this regard the main diagonal of the figure above where graphical measures of flows 

of knowledge for each and every individual researcher are depicted. The aggregate output of 

researchers under this extreme scenario is therefore the smallest possible of all. 

 

3. Four-quadrant graphical representation 

The dynamics of the learning process with spillover effects can be illustrated by recurring to a 

four-quadrant picture as follows. Such particular explanation of the evolution of A(t), the 

aggregate stock of knowledge over time, will be called Model I in the next section.  

We begin to trace a chronological succession of a few learning loops around the four 

quadrants, each one of them starting and ending in the same quadrant and respecting a logical 

order of learning events and moves. The underlying causality nexus of the process of 

knowledge accumulation is expected to reveal the interaction and potential synergies between 

flows and stocks of research and development expenditures and other learning inputs over 

time.  

The analytical modeling tools supporting our four-quadrant graphic representation below 

consist basically of four fundamental functions, each one of them plotted in a specific plan or 

quadrant, and applied to a local innovation system with, by hypothesis, N identical firms. 

They are: a standard function of knowledge production, or accumulation, one for every single 

learning firm; an external increasing returns function, which is relevant to the extent that the 

production of new knowledge is also the result of knowledge externalities; a connectivity, or 

leakage, function of flows of knowledge, linking every firm with its outer competitive 

environment or context, reflecting the extent of transaction costs supported by each firms in 

technology communication; and a receptivity, or absorptive, function, representing each 

firm’s capability of absorption of external technological knowledge. Contextual parameters � 

and �, main representatives of the last two functions, are both positive constants, strictly less 

than one. The higher they get, ceteris paribus, the more intense knowledge spillovers between 

firms turn out to be. 
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Figure 3: The cycle of horizontal accumulation of knowledge 
 

We explain the cycle of technological learning with help of this graphical representation of 

the basic learning process in the presence of knowledge spillovers as follows. We start in the 

3rd quadrant at the level A(t–1) of external knowledge after connection and reception. The 

generation of new knowledge by one learning firm depends not only on the level of the 

available pool of knowledge but also on the internal R&D effort and other learning inputs 

purchased by it. We thus depict in this quadrant a knowledge accumulation function, by 

stressing both the state of aggregate knowledge available to every firm in the region or 

industry, and a firm’s specific R&D efforts and knowledge stock (these latter elements 

accounting for the slope of the curve depicted). The incremental amount of new knowledge 

generated by the learning firm will in turn be added to its own specific stock of knowledge.  

We then plot in the 2nd quadrant an external increasing returns function, according to which 

individual flows of knowledge can be aggregated to yield the aggregate stock of knowledge 

available. The underlying rationale is that once spilled over, new flows of knowledge can 

eventually be borrowed by firms within a specific region or industry. It shows as well that the 

size of the stock of external knowledge is a function of the number of economic agents within 

the region or industry, with which each firm is able to (effectively) communicate. It is 
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expected that the larger the number of firms spilling over (some fraction of) their knowledge 

flows, the larger the level of aggregate knowledge available to generate new knowledge.  

True, not all of this knowledge is immediately understood and applicable to the generation of 

new knowledge by any particular firm in the region or industry under study. And thus we plot 

in the 1st quadrant a connectivity function, representative of the fraction or the extent to which 

the gains from innovation are not uniquely appropriated by the learning firm. Communication 

and appropriation of the gains from innovation by the learning firm is partial and imperfect in 

general. 

Now, the absorption of new knowledge borrowed from some distant region or industry can in 

fact be subject to quite long lags. We depict in the 4th quadrant an absorptive function to 

precisely characterize such phenomenon. This weighting function is supposed to be 

interpreted as representing the fraction of available knowledge effectively received by a 

learning firm and later used to generate new knowledge. And we are back to the 3rd quadrant 

where we have started in the first place, the level of external knowledge after connection and 

reception being higher however, that is, A(t). And therefore we close one cycle of the learning 

process.  

 

4. Mathematical modeling of spillover effects 

Any economic and technology study of spillover effects involves implicit or explicit 

assumptions about the way technological knowledge and innovations, once originated in some 

points of the economic system, spread over the system itself. We hypothesize two different 

functional specifications of spillover exchanges among firms within a local innovation 

system. Each specific shape of the knowledge transfer relationship among firms expresses a 

possible form and intensity of information processing of technology spillovers. 

A distant source of inspiration for these two possible specializations in our research arose 

after reviewing the jargon emerged from the diffusion studies tradition, which is now well 

established, and the measurement problems and solutions in diffusion and adoption studies. 

Some of the elements of these analyses will be used in one way or another in the remainder of 

this paper. For instance, established ideas such as: at the inter-firm level, the existence of 

diffusion lags; and at intra-level firm, the gradualism of internal adoption of one innovation.  

The outcome of the theoretical approach adopted in this paper is clearly that we are dealing 

with two alternative full formal models of technological spillovers, hereon labeled Model I 
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and Model II. We begin our mathematical modeling with the common specification of an 

individual production function of new localized knowledge. Then we address the modeling of 

alternative technological spillover functions.  

The production function of new localized technological knowledge of any individual firm i is 

therefore assumed to be given by the following differential equation (where a dot hereon 

stands for time derivate): 

)()()( tAthAtA Aii
µγδ=� ,         (1) 

where � a productivity parameter of the research department (and other learning-based 

departments), h is firm i’s amount of own research efforts and learning inputs, Ai(t) is the 

stock of knowledge of firm i at time t and AA(t) is the pool of knowledge available at time t to 

every identical firm within the local innovation system. Parameters � and � measure the 

marginal productivity of each respective component. Each stock of knowledge component of 

this production function is indispensable given the hypothesis of imperfect substitution of 

knowledge sources assumed in the model.  

In accounting for spillover effects upon the production of new knowledge in our modeling, it 

is assumed that the level of productivity achieved by one specific firm depends not only on its 

own research efforts and learning inputs but also on the level of the pool of knowledge 

accessible to it. Since the productivity of a firm’s own research is affected by the size of the 

pool, or pools, of knowledge it can draw upon, there is an interaction between the size of 

individual firm and aggregate R&D (research and development) efforts and learning inputs. 

This specific functional form of production of new knowledge follows both an analogous 

function in Romer (1990) and a related production function of an individual firm in Griliches 

(1995). Regarding Romer’s modeling, we have simply added another multiplicative term 

representing the pool of knowledge available to each and every firm within the innovation 

system. Focusing primarily on measuring the contribution of industrial R&D through 

econometric studies, Griliches develops a simple model of within-industry spillovers effects:  

Yi = B(Xi)(1 - �) (Ki)�(KA)�, 

where Yi is the output of the i-th firm which depends on the level of conventional inputs Xi, its 

specific knowledge capital Ki, and on the state of aggregate knowledge in this industry KA. 
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We begin to address now the mathematical modeling of a plausible technological spillover 

function. Let us start then with the distinctive characteristic of Model I. The individual 

production functions can then be aggregated to yield: 

)()()(
1

tANtAtA i

N

i iA
��� αβαβ ==� =

.        (2) 

Recall that we have tried to give some intuition of the evolution of AA(t) over time with help 

of Figure 3 above. An alternative way of aggregation of knowledge exchanges, consisting of 

adding up a constant fraction of all Ai(t) instead of their time derivatives, gives rise to the 

following spillover function characterizing Model II: 

)()()(
1

tNAtAtA i

N

i iA αβαβ ==� =
� .        (3) 

This time the connectivity and receptivity parameters characteristic of local innovation 

systems are related to each firm’s stock of knowledge, not to each firm’s flow of knowledge. 

However, later on when establishing comparisons of relative efficiency of communication 

systems, and therefore of dynamic efficiency of different local innovation systems, we will 

assume for the sake of simplicity that the levels of these parameters do not change with 

fundamental changes in the technology exchange environment. 

 

5. Analytical derivation of results 

It is time to derive some analytical results for our basic models. We begin with by presenting 

the common methodology employed in our work, which is based on expressing relevant 

technology variables in terms of steady rates of growth of technology. Then we address the 

mathematical derivation of results in Model I and later in Model II. 

Technological progress occurs when A, a technology variable, increases over time. We make 

the assumption that A is growing at a constant rate: 

gteAtAgtAtA )0()()(/)( =⇔=� ,        (4) 

where g is a parameter representing the growth rate of technology, and A(0) > 0 is the initial 

condition of the differential equation (4). 

We define a steady state as a situation in which the various relevant quantities grow at 

constant rates. Hence, in a steady state the growth rate of Ai is equal to the growth rate of AA, 

that is, these two values grow at the same rate g. 
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Partly because of its empirical appeal, an economic situation in which capital, output, 

population, and technology are growing at constant rates is often analyzed in growth models. 

According to one particular stylized fact describing some feature of the U.S. economy in the 

long run, the average growth rate of output per person has been positive and relatively 

constant over time – i.e., the United States exhibits steady, sustained per capita income 

growth. Unfortunately, we are not aware of the existence of any empirical data showing that 

steady growth rates of technological progress have been taken place over decades within 

regional and technological systems of innovation. 

However, there is evidence of sustained growth rates of localized technological knowledge 

and technological change. The evidence about the regional and technological clustering of 

innovative activities, together with high rates of growth of total factor productivity, can be 

interpreted as a confirmation that relevant increasing returns are at work in the production of 

technological knowledge and technological change. 

Let’s further assume in our modeling that � + � = 1. This simplifies the analysis greatly. We 

are now able to derive analytically the constant value of the rate of growth of knowledge in 

various theoretical set-ups following well-known technical procedures. We actually believe 

that the differential equation for the rate of growth of the stock of knowledge of an individual 

firm must necessarily take in the constant returns functional restriction just shown above in 

order for the models to have a steady state with constant growth rates. 

This formulation of the spillover phenomenon is, most certainly, rather simplistic and based 

on untenable assumptions. To stress one in particular, note again that constant returns to scale 

are assumed with respect to Ai and AA.  

We start by analyzing Model I of spillover effects. What is the growth rate in this model along 

a steady state growth path? Differential equation (1) together with differential equation (2) 

can be solved simultaneously for the steady-state growth rate g. First rewrite the equations as: 

�
�
�

=
=

−

−

.//
//

1

1

µγ

γµ

δαβ
δ

AiAA

iAii

AhANAA

AhAAA
�

�

         (5) 

In a steady state, the rate of growth of knowledge is constant. Hence, if we take logs and 

differentiate both these equations in (5) with respect to time, we obtain that the steady-state 

rate of growth of the stock of knowledge is: 

µαβδ )( Nhg = ,          (6) 
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once we assume that the constants of integration satisfy )0()0( iA NAA αβ= . 

Thus growth is now endogenous. In fact g is a function of parameters of the model alone.  

Given that these firms are all identical, we have:  

)()( tNAtA iA αβ= .          (7) 

To sum up, by have taken the technology parameter AA to be equal to the total stock of 

accumulated knowledge which is available and borrowed within the innovation system, we 

have the corresponding steady-state growth rate given in (6). 

We begin to work on Model II now. With such purpose in mind we can summarize our Model 

II of spillover effects by representing the evolution over time of the two variables Ai and AA 

according to the system of differential equations (1) and (3). We want then to find the solution 

to this system.   

To solve this system of differential equations, we apply the following analytical procedure. 

First, integrating (3), and recalling the exponential rule of integration which is necessary as 

Ai(t) is growing at the constant rate g, yields (after ignoring the constant of integration) 

)()/1)(()( tAgNtA iA αβ= .         (3’) 

Substituting this analytical expression for AA(t) into equation (1) yields (after using the 

equality � = 1 –  � )  

ii AgNhtA µαβδ )/()( =� .         (1’) 

Dividing both sides of this equation by Ai(t) and rewriting it in the form 

µαβδ )/(/ gNhAA ii =� ,    

which, by definition, stands for the growth rate of Ai(t), allow us to derive the value of g after 

some algebraic manipulations: 

[ ] )1/(1
)(

µµαβδ += Nhg .          (8) 

The unknowns of integration AA(0) and Ai(0) here associated are assumed to satisfy the 

equation )0())/(()0( )1/(1
iA AhNA µδαβ += . It is a bit of coincidence, however, that the level of 

AA at time zero is precisely the value that one would obtain after multiplying ��NAi(0) by g-1. 

And finally the aggregate stock of knowledge available within the innovation system is given 

by the equation 
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[ ] )()/()( )1/(1 tAhNtA iA
µδαβ += .        (9) 

Comparing to corresponding equation (7) of Model I, one difference catch immediately the 

eye: the coefficient of Ai(t) is no longer ��N alone. Of course the growth rate embedded in 

Ai(t) is also different. 

 

6. Comments on the analytical results 

We begin to comment and make sense of the main results of Model I. Then we move on to 

Model II and finally we put both results together and try to relate them in a meaningful way. 

We would like to understand, among other things, under what conditions the maximum 

efficiency of innovation systems can be achieved due to selection of an appropriate 

communication network structure and technology. 

To recall, first of all, the growth rate of knowledge in Model I is given by equation (6): 
µαβδ )( Nhg = . As a consequence, the model is characterized by a (mitigated, as � < 1) scale 

effect. The larger the number of firms N doing research and development, the more 

externalities there will be in generating new technological knowledge within the innovation 

system and therefore the faster the innovation system will grow. In other words, the growth 

rate should be positively correlated with the scale of the economy, as measured by the number 

of firms N. This scale effect turns out to be a common feature of most endogenous growth 

models as well. 

The implication of our model that there are scale effects associated to the research process 

with knowledge spillovers is bound to be criticized once data shows that the doubling of firms 

doing research within an innovation system has never doubled growth rates, or been close to 

it. To our knowledge, such data has not been gathered yet. 

It is time comment on Model II’s main results. Observe that equation (3) states that the 

acceleration of AA(t) is proportional to the velocity of Ai(t). To see this just differentiate (3) 

with respect to time to yield 

)()()(
1

tANtAtA i

N

i iA
���� αβαβ ==� =

.        (10) 

Compare this modeling option to equation (2) from Model I, where in practice a relation 

between the velocity of AA(t) and the velocity of Ai(t) is established instead. 
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If we rather wanted to include the effect of exogenous, time-related, technological progress at 

the outset, then the differential equation governing the evolution of AA(t) in time (10) would 

be selected. Let’s show why this is so. To begin with, integrate both sides of equation (10) 

with respect to time, which yields 

ctNAtA iA += )()( αβ� ,          (10’) 

where c is an arbitrary constant of integration. Integrating (10’) yields 

cttAgNtA iA += )()/1)(()( αβ .        (10’’) 

It is clear the existence of a time trend translating exogenous technological progress in 

equation (10’’), so long as c is a positive constant. Had we adopted this line of justification 

for the basic Model II, we would proceed by setting c = 0 at once. 

What lessons can now be learnt by confronting both results drawn from Models I and II? It is 

assumed throughout this paper that the effective flow of information within the innovation 

system is determined by the structure and efficiency of the communication system in place. 

We have devised two alternative communication models with different modes of assessing to 

external technological knowledge. Now is time to undertake some comparative analysis and 

establish if possible a number of relevant results.  

We begin to present a definition of efficiency of a communication structure related to the 

ultimate dynamic efficiency of a local innovation system; and then we present our main 

conclusions regarding the relative efficiency of the two communication system labeled Model 

I and Model II under the implicit assumption that the values of the main parameters and 

constants of integration remain the same in the two alternative theoretical settings.  

DEFINITION: The relative efficiency of any two communication systems is assessed by the 

associated values of AA(t). The most efficient communication system is the one such that AA(t) 

is highest at every time t. 

PROPOSITION: Regarding the relative efficiency of the two communication systems Model I 

and Model II, 

(i) AA(t) in Model I > (<) AA(t) in Model II � g in Model I > (<) g in Model II; 

(ii) g in Model I > (<) g in Model II � g in Model I > (<) 1; 

(iii) g in Model I > (<) 1 � either hδ  or  Nαβ  (or both) is (are) sufficiently large (small). 
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The main result regarding the relative efficiency of Models I and II can be presented in terms 

of the following figure. One possible way to interpret result (ii) in the Proposition above is: 

whenever it is possible to set up in place at a low installation cost a structure of 

communication which relies essentially on exchanging every new flow of knowledge in real 

time (the case of g in Model I > 1), one should do it. Otherwise, when real time transfers of 

information are inefficient (the case of g in Model I < 1), on should rely basically on 

transferring in a diffuse way part of the pool of accumulated knowledge. 

 

 
Figure 4: The relative efficiency of two alternative communication systems: Model I and Model II 

 

The meaning of “sufficiently” large (or small) in the Proposition above is better understood 

by looking at the next picture. There it is depicted a frontier line demarking two regions of 

highest dynamic efficiency, a line which is defined in terms of two sets of parameters and 

variables: those internal to any firm; and those characterizing the access to external 

technological knowledge.  
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Figure 5: Frontier line and regions of relative efficiency with two alternative communication systems: Model I 

and Model II 

It is clear that the location of the frontier of equal communication efficiency is directly 

affected by the parameter �. Firms which operate with production functions of localized 

knowledge with high � (that is, close to one), ceteris paribus, will be more likely to be 

sensitive to changes in their internal parameters and variables ( hδ ) when selecting the most 

efficient model of communication. On the contrary, firms which operate with a production 

function characterized by low values for � (that is, close to zero) will less sensitive to given 

changes in their external environment parameters and variables ( Nαβ ). 

Our next move is to establish some comparisons of what we have got derived so far with 

general models addressing technological spillovers. 

 

7. Comparison to other models with spillovers 

It is an interesting exercise to compare some assumptions and results just derived with general 

representations of aggregate pool of knowledge and knowledge production function made in 

the context of stylized modeling of spillover effects by Griliches (1995) and Antonelli (1999). 

To be concrete, we would like to compare equation (9) (or equation (7) above for that same 

matter) with the analytical expression for aggregate level of knowledge capital assumed in 

Griliches to begin with. Subsequently we plan to examine the expressions for the production 
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of localized knowledge at the innovation system level in Antonelli by comparing it with 

equations (9) (or (7)) as well and also with equations (8) (or (6)). 

Firstly, Griliches (1995) interprets also the index in Ki in his model of spillover effects as 

referring to industries rather than to firms. If the pools of knowledge differ for different 

industries or areas, the aggregate level of knowledge capital of the i-th industry should be 

defined as: 

KAi = �j wij Kj, 

rather than a simple sum of all specific industry research and development capital levels. That 

is, KAi is the amount of aggregate knowledge borrowed by the i-th industry from all available 

sources. Kj measures the levels of available knowledge in these sources, while wij, labeled as 

the ‘weighting’ function, is interpreted as the effective fraction of knowledge in j borrowed by 

industry i. Plausibly wij becomes smaller as the ‘distance’, in some sense, between i and j 

increases. The econometric procedure recommended requires then finding an additional 

distributed (lag) over space function to construct a measure of the stock of borrowed 

knowledge. 

It should, however, be clear that wij and Kj are conceptually interrelated given that Kj reflects 

the cumulative nature of knowledge, namely because two-way knowledge transfers between 

any two different contiguous industries occur over time. Reflecting the dynamic reality of the 

learning process, the rate of growth of knowledge deducted in our models (equations (6) and 

(8)) after aggregating the individual production functions is reduced by exactly taking into 

account the weighting �� < 1.  

As to Antonelli (1999), the point we would like to make has got to do with the general 

expression chosen for the production function of localized technological knowledge at the 

innovation system level. Antonelli defines the maximum attainable efficiency of innovation 

systems as follows: 

LTKs = f(R&Ds, LEARNINGs)(gIP), 

where LTKs is the localized technological knowledge produced in the innovations system, 

R&Ds and LEARNINGs are the aggregate R&D expenditures and learning activities 

conducted in the system, g is the average effect of external technological knowledge actually 

communicated (that I, delivered and received by each firm in the innovation system) on its 

own innovation efficiency, and IP the communication capability given by the interaction 

probability of the system. 
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Apparently, our functional form for the aggregate stock of knowledge available to firms 

within the innovation system, as given by equations (9) (or (7)) after mathematical derivation 

using each firm’s production function of knowledge (equation 1), is different in a fundamental 

way. In fact the endogenous growth rates of knowledge in our modeling, as given by 

equations (8) (or (6)), are expressed as multiplicative functions of analogues of the aggregate 

amount of R&D expenditures and learning activities, the average effect of external 

technological knowledge actually communicated, together with the communication capability. 

 

8. Three extensions to the basic models 

We consider now three plausible extensions to our models, each one of them being illustrated 

and embedded within a different basic model. A first extension deals with the possibility of 

receptivity being a function of firms’ own R&D and learning inputs. A second extension 

addresses the possibility of time lags in spillovers effects. 

A first plausible extension, to be addressed by using Model I, is to assume that receptivity, 

rather than being given by a parameter �, is better represented as a function of the firm’s own 

R&D and learning inputs, say a linear one �h (< 1). In some models, like Schankerman (1979, 

ch.5), the amount borrowed depends also on the level of own research expenditures, thus 

allowing for an interaction and potential synergy between the internal and external flows of 

research expenditures. The growth rate then becomes: 

µµ αβδ )()( 1 Nhg += .          (11) 

We immediately see in (11) that growth increases with the size of the firm as measured by the 

firm’s labor supply devoted to R&D and learning activities. The productivity parameter of h 

in the rate of growth of knowledge is therefore greater (1 + �) after aggregating the individual 

production functions than at the micro level (1), reflecting not only the private but also the 

social returns to research and development and learning activities. 

To sum up our comments on the productivity parameter � in g, made on several occasions 

above. If there are significant externalities to R&D and learning activities within an 

innovation system or industry, then the computed rate of growth should be higher at the 

innovation system or industry than at the firm level. 

As to the second extension to be dealt with next, it consists of modifying our basic Model II 

by allowing technological spillovers to be subject to (quite long) lags. Contrasting with this 
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new interpretation of Model II, one could put forward a view of Model I as basically real-time 

information processing, which derives its networking efficiency from employing electronic-

based communications technologies. 

The hypothesis of R&D and learning inputs spillovers does not really require the assumption 

that these effects are contemporaneous across firms and industries. In fact it is unlikely, 

though possible, that real technological spillovers are contemporaneous. 

Let the parameter lag revealing the diffuse nature of spillover effects be denoted by d. It is 

measured in calendar time (say number of years). Thus the stock of aggregate knowledge 

effectively available to every firm at time t consists of part of flows of knowledge produced 

just up to time t’ = t – d.  

It can be shown that the new aggregate stock of knowledge available within the innovation 

system can be set in terms of the aggregate stock of knowledge of the basic Model II as 

follows: 

).()( dtAtA AdA −=−           (12) 

Moreover it can be shown that the constant growth rate in this extension, g, satisfies the 

following equation: 

.)(1 µµµ αβδ Nheg dg =⋅+          (13) 

To recall, the right-hand side of this equation gives the growth rate in Model I. As a result, 

and relating to the conclusions already drawn by comparing growth rates in Models I and II, 

the next figure depicts a smaller region where the growth rate in modified Model II is strictly 

higher than the growth rate in Model I. That is, as long as we have d > 0, the curve depicted 

in the figure crosses the 45 degree ray to the left of coordinates (1, 1). One communication 

technology is therefore loosing the capability of promoting dynamic efficiency within the 

innovation system as compared to the alternative communication method as d gets larger and 

larger ceteris paribus. 
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Figure 6: The relative efficiency of a new pare of communication systems: Model I and modified Model II 

Finally, the third and last extension made to our two models. It intends to reflect the 

complexity of technological spillovers in real world concerning both their origins and 

differing, long time lags. Next figure shows a possible taxonomy of connectivity and 

reception parameters. 

 

 
Figure 7: Communication links and innovation systems: determinants of the connectivity and reception 

parameters 
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It becomes clear that two new sets of parameters of communication arise, { }βα ,  and { }βα , , 

dependent on the nature of various interactions observed between firms. New communication 

links can be established with the outer regional, technological and/or sectoral context of any 

firm, the efficiency of which is plausibly different from that of communication links within 

the closer regional or technological proximity (again from the perspective of a firm). 

 

9. Conclusions 

Real-world situations arise with many different communication technologies. Thus one would 

expect to reach different dynamic efficiencies in a local innovation system depending on what 

communication is allowed. We have devised two distinct models of structuring 

communication networks. We have also assessed the dynamic efficiency of each network in 

terms of some fundamental parameters and variables. Afterwards we have determined the 

relative efficiency of each communication technology and established a major result 

expressed in terms of a proposition. In the end we have advanced and developed three 

important extensions to the basic models. 
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