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Cellular Automata (CA) are usually considered the most efficient technology to
understand the spatial logic of urban dynamics: they are inherently spatial, they are
simple and computationally efficient and are able to represent a wide range of pattern
and situations.

Nevertheless the implementation of a CA requires the formulation of explicit spatial
rules which represents the greatest limit of this approach. Whatever rich and complex
the rules are, they aren’t able to capture satisfactorily the variety of the real processes.
Recent developments in natural algorithms, and particularly in Artificial Neural
Networks (ANN), allow to reverse the approach by learning the rules and the
behaviours in urban land use dynamics directly from the Data Base, following a bottom-
up process.

The basic problem is to discover how and to what extent the land use change of each
cell i at time #+/ is determined by the neighbouring conditions (CA assumptions) or by
other social, environmental, territorial features (i.e. political maps, planning rules)
which where holding at the previous time ¢. Once the NN has learned the rules, it is able
to predict the changes at time t+2 and following.

In this paper we show and discuss the prediction capability of different architectures of
supervised and ANN.

The Case study and Data Base concern the land use dynamics, between two temporal

thresholds, in the South metropolitan area of Milan.
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1. Introduction

Land use dynamics and fragmentation of settlements is a crucial question for planning.
In the general framework of sustainability objectives, the policies to control a suitable
process of urbanisation involve more and more deep knowledge on complex criteria of
location chosen by the different agents. Planners realize that is crucial to understand and
provide the best possible explanation for the observed spatial distribution of urban
activities.

Principles and technologies of Artificial Intelligence (Al) in general, and of NN and CA
in particular, offers the potentiality to increase the knowledge in urban dynamics by
multiplying the information capacity of the GIS and by offering a new approach to
territorial modelling. Most geocomputation currently deals with models on spatio-
temporal dynamics in urban land-use and morphogenesis.

Among them some applications, mainly based on Cellular Automata, have opened more
promising directions for the goal: Clarke, Hoppen and Gaydos (1997) modelled the
historical development of San Francisco area; (Batty, Xie and Sun 1999; Wu 1998) built
several urban models and in particular a model on the residential development in the
fringe of Buffalo; Portugali, Benenson and Omer (1994; 1997) have focused their
research on models of socio-spatial segregation; the many contributions of Engelen,
Ulje and White (White and Engelen 2000) have produced several CA based models
with integration of several economic theories.

Cellular Automata appear to be the most attractive and favoured technique for
implementing high resolution models of spatial dynamics for a number of reasons:

. They are inherently spatial; their definition on a raster of cells, and on

neighbouring relationships are crucial;

. They are simple and computationally efficient;
. They are dynamic and can then represent a wide range of situations and
processes;

It is worthwhile to note that, in most of the models carried out until now, CA are based
on explicit spatial rules which allow to simulate different dynamic behaviours on the
base of a “’trial and error” procedure.

But this condition, the explicit and exogenous formulation of assumptions, represents
the greatest limit of this approach, since it reduces the variability of the different
territorial contexts on the base of few theoretical principia (spatial interaction, diffusion

processes and so on), inhibiting the discovery and arise of new features in urban



dynamics. Given the complexity and variability of the location behaviours it appears
important to learn from the reality the true factors affecting the single location with
respect to the surrounding conditions.

Recent developments in the natural algorithms, and particularly in Neural Networks,
allow to reverse the approach by learning the rules and the behaviours directly from the
Data Base, following an inductive bottom-up process.

The aim of this paper is therefore to present an integrated approach on land use
dynamics where the transition rules of urban spatial evolution are learnt by Neural
Network. The proposed innovation concerns the heart of the CA itself: the growth rules
searching and identification.

In the paper the potentialities of NN are experimented with two different architectures:
SOM (Self Organizing Maps), (Kohonen 1995) and a set of Supervised NN (Semeion
1998).

SOM allow to investigate the different dynamic behaviors by showing the strengths of
the underpinning relationships with the environment. The classification produced by
SOM identifies the most relevant clusters of cells for transition rules in quantitative and
qualitative terms.

Then, for forecasting purposes, a set of Supervised NN is applied to learn the transition
rules and to produce a possible future scenario of urbanization.

The case study is the south metropolitan area of Milan, whose extension is
approximately 675 Km, which is a rich agricultural area with few historical small
centers. The area is under pressure for the spillover, in fragmented residential and
productive settlements, of Milan.

The paper is organized as follow:

the second section presents a short overview on NN and their potentialities in urban
analysis and forecast; the third paragraph sketches a brief description of the study area
and the GIS used. The methodology is explained in the following forth part which
describes the research path.

Section 5 is devoted to show the NN SOM implementation results. The implementation
of different architectures of Supervised NN is presented in the section 6-8:The input
data and the methodology in section 6; the learning and validation phase in section 7
and the results obtained in prediction in section 8.

Some final comments and perspectives on the adopted approach conclude the paper in

section 9.



2. Neural Networks

With the development of NN, which are Artificial Intelligence based technologies, in
recent years news opportunities have emerged to enhance the tools we use to process
spatial Data. Their specific advantage relies non only in the enhancement of speed and
efficiency in handling urban Data, but specifically in providing a tool to develop new
theories and techniques. While the traditional modelling approach is based on explicit
“a priori” rules formulation, through an Al connessionistic approach rules are found “a
posteriori” on the base of a learning process of a distributed “unit processing”
architecture.

NN model is a parallel distributed Information system consisting of a set of adaptive
processing elements (nodes) and a set of unidirectional data connections (weights).

The most successful applications in territorial Analysis and Planning rely on pattern
classification, clustering or categorisation, optimisation (Openshaw and Abrahart 2000;
Reggiani 2000; Leung and Fischer 2001), modelling scenic beauty from extracted
landscape attributes (Bishop 1994), suitability analysis for development (Sui 1992;
Deadman and Gimblett, 1995).

The novelty of our approach lies in the use of NN as a powerful tool for prediction and
building virtual scenarios on urbanisation process. The results have been achieved
through different categories of “training regimen” able to react to different information
environment.

The training processes can be divided into three basic categories: monitored training,
supervised training, and self-organisation. The monitored training is typical of
associative networks, which are NN with essentially a single functional layer that
associated one set of vector x,, X, ...X, with another set of vector y,, y,, ...y.. The
primary classification of ANN are into feedforward and recurrent classes. Another
categorisation of ANN is into autoassociative NN if y vectors are assumed to be equal
to the corresponding x vectors. In a Heteroassociative network y, # x;

There are many algorithms and procedures to optimize the weight matrix during the
learning phase and many algorithms for dynamically query the ANN already trained.

In this research we used a Recirculation Neural Network (RCNN) (Hinton and
McLelland, 1988). The ANN have shown to be highly efficient in determining the fuzzy
similarities among different Records in any Data Base (DB) and the relationships of
gradual solidarity and gradual incompatibility among the different Variables. The ability
of ANN to produce prototypical generators, to discover ethnotypologies and to simulate




possible scenarios was already experimented by the authors to investigate the complex

structure of urban sustainability in the Italian cities (Diappi, Buscema, Ottana, 1998).
Supervised training implies a regimen in which the NN is supplied with a sequence of
examples (X, Y)), (X;, Y,)... (Xi, Y.).. of desirable or correct input/output pairs. As
each input X, is entered into the NN, the “correct output” Y, also is supplied to the
network. In our study the input is given by the territory information at time t and the
“correct output” is the corresponding information at time t+1. Once the NN is trained
and has learned the rules of transition, it will be able to produce the “desired” land use
transformation of the present state of territorial system supplied as Input to the NN.

In self-organizing training, a network modifies itself in response to X Inputs. This
category of training is able to obtain a surprisingly number of information processing
capabilities: development of pattern categories based on clustering, estimation of
probability density functions, development of continuous topological mapping from
Euclidean space to curved manifolds (Hecht-Nielsen 1990). Self-organizing training
includes the Self-Organizing Map (SOM), presented in section 5.

SOM is able to develop a continuous topological mapping /' : B € R— C < R" by
means of self-organization driven by Y examples in C, where B is a rectangular subset
of n-dimensional Euclidean space and C is a bounded sub set of m-dimensional
Euclidean space, upon which a probability density function p (Y) is defined. In the
paper their ability to classify has been used to distinguish the prototypical land use

dynamics in the case study area.

3. The study case, the Data and the GIS

The southern ring of metropolitan area of Milan presents large extensions of tilled land
and natural parks with rare urban centres historically grown on agricultural activities.
More recently, in the 70’ties the area has undergone a rapid urbanization process,
principally produced by spill-over effects from the city of Milan.

The scattered and dispersed form of both residential and industrial new settlements is
rapidly producing an high land consumption which is compromising the productivity of
one of the richer agricultural areas in Europe. The forecast of urban sprawl is therefore a
crucial issue which increases the scientific interest to test a new approach in urban
modelling.

The available GIS on the area concern the land use coverage only at two temporal

thresholds: 1980 and 1994. Even if this is an evident limit, it should be considered that



urban sprawl in the area is a quite recent phenomenon whose interpretation and
description would be biased if based on a longer temporal series of data.

The model uses a regular square grid of 500 m with 2703 cells in total. The land uses
taken into consideration are: residential, commercial, industrial and “green” or unbuilt
land wich denotes rural areas.

In this study the information given to the NN has the same structure of a CA. The
following information for each cell are supplied to the Neural Network:

e Land use of the cell i at time 7 (1980)

e Land use of the neighbouring cells at time # (1980)

e Land use of the cell i at time #+1 (1994)

The state, of the cell or the neighbourhood, is described in term of share for each land
use with respect to the total surface of the unit. We have processed only the three
urbanized functions (residence, industry, commerce) because the unbuilt, green land use

share is redundant, being a linear combination of the other three.

4. The methodology

The initial idea was to test the approach in a “toy” example, based on a small scale
urbanisation process produced by a CA evolving for explicitly given rules.
Implementing an Associative NN on the system at different time steps our aim was to
test to what extent the NN are able to capture the imposed rules. The small toy was
implemented using with different neighbourhood, size and time lags. At the end the
experiment was successful: the NN was able to understand the CA rules, and relevant
information on the sensitivity of the NN to the Data were also available (Bolchi, Diappi,
Franzini, 2001).

But the same Associative NN, applied to the real Data Base of the south of Milan,
produced very poor results.

The scenario reconstructed in the querying phase, depicted a static situation where even
the estimated new residential cells were much lower than expected.

With an implementation of a different NN, the SOM (Self Organizing Map ) we tried to
investigate the fuzzy clusters of land use dynamics and to find out their prototypical
profiles. These profiles, called codebooks show the different activation levels of the
variables (nodes) allowing to investigate the underpinning relationships among
variables.

Finally, for forecasting purposes a set of supervised NN had been implemented. The



approach has been reversed: the state at # and 7+ of cell becoming urbanized during the
observed time lag represents a “model” which other cells will follow during the time lag

t+1, t+2.

5. The classification of the land use dynamics with SOM

The NN SOM, a powerful tool of classification, have been developed mainly by
Kohonen (1995) between 1979 and 1982. As said before SOM are AutoPoietic NN,
where the target is not predefined, but dynamically built up during the learning phase.
Their architecture comprises two layers: an input one, acting simply as a buffer, that
doesn’t modify the data, and an output one, known as Kohonen layer (or matrix), which
is formed by units regularly organized in the space and which evolves during the
training following a spatial organization process of the data characteristics, named
Feature Mapping (Fig. 1a). The construction of these maps allow a close examination of

the relationships between the items in the training set.

INPUT LAYER

(b)

Figure 1 - the SOM topology (@) and the weight update function (b)

When the training phase has calculated the weight matrix, the classification maps each
input vector to the output unit with the minimum Euclidean distance from the codebook.
The SOM attitude to “classify” makes possible to perform a mapping with two main
peculiarities:

e C(lustering: the net performs a logical division of the input space into regions
(cluster), associating a point in the N-dimensional input space to the two-
dimensional output matrix. In the dimension reduction process the principal
components discriminating data are dominant.

e Self-organisation: before the training the weights vectors topology depends only on
the initialising criterion: if it is random weights will be casually organised into their
hyper-cube. The learning criterion tends to move the weights vectors toward the

input vectors seen during the training. The vector moving affects not only the winner



unit vector, but also its neighbourhood according to a decreasing function (fig 15).
SOM NN on square grids of 9,16, 25 nodes have been trained to group the data. The
more explaining output was obtained with a 4x4 nodes grid; this resulted the best in

order to show each group sufficiently different from each other.

cl1 c12 c13 c14

%
|
)

CR80
CP80
Cccso

RD

CR80
CP80
CC80
RD
NR80
NP8O
NC80
CR94
cPo4
cco4
CR80
cP8o
cc8o
RI
NR80
NP8O
NC80
CR94
CP94
cc94
CR80
CP80
cc8o
RI
NR8O
NP8O
NC80
CR94
CP94
cco4
CR80
CP80
cc8o
RI
NR8O
NP80
NC80
CR94
cPo4

c31 c32 c33 C.
8 2 8 2 3 8 8 % » 3 $S 8 8 S 3 3 8 3 3 3 8 8 8 88 8 8 8 3 > 3 388 8 L 8883 3 3
5 & 8 £ £ 2 8 85 8 5 8 8 £ %2 85 85 8 & & 8 £ %2 86 858 8 8 8 £ 2 2 86 & 8
c41 c42 c43 c44
' 4 w
‘
CR80 Cell, residential, 1980 CR94 Cell, residential, 1994
CP80 Cell, productive, 1980 CP94 Cell, productive, 1994
CC80 Cell, commercial, 1980 CC94 Cell, commercial, 1994
RD Road distance
NR80 Neighbourhood, residential, 1980 I Codebooks range, values over the mean
NP80 Neighbourhood, productive, 1980 Codebooks range, values under the mean
NC80 Neighbourhood, commercial, 1980 Codebook

Figure 2 - The codebooks

The spatial analysis carried out by SOM has been displayed by:

e cluster profiles and their codebook;

e charts with colour hatched plot of the zones, based on output units assignment.

In figure 2 all the codebooks, as prototypical profiles of each cluster, shows the most
relevant features in land use dynamics. On the x-axis are the variables, on the y-axis
their activation level. On the figure is charted the envelope of the records assigned to
each single cluster and, in yellow line, the codebook.

The colour map (Fig.3) shows the spatial organisation of the classes; it is crucial to

know if cells belonging to the same class are also spatially clustered, or if similar



dynamic behaviour affects cells scattered in the territory.

In Fig.2, the first row (CL 1-1 = CL 1-4) shows groups of stable (in the period)
agricultural areas; but moving right along the first row the level of naturality is
decreasing; no significant different land uses are taking place but the mean distance to
the roads drops showing potential “risk” of urbanisation. In Fig. 3 and CL 1-3 and 1-4
free cells are close to urbanised areas.

Shifting from CL 1-1 along the column an increasing road equipment copes with new
residential settlements, which, in CL 4-1 infill the consolidated urban centres.

In the fourth column the industrial land use dynamics emerges both in less
infrastructured and isolated areas (CL 3-4) and near the exiting ones. Looking in the
map (fig. 3) it is worthwhile to note that industrial settlements tend to aggregate
spatially, near or far from the urban centres, and road accessibility is not an essential
prerequisite for them.

In the fourth row the infilling processes in existing urban areas are represented: from the
residential growth in CL 4-1 and to the expansion near the existing industrial areas (CL
4-4); between the two groups CL 4-2 shows peripheral residential growth near industrial
areas and CL 4-3 classifies the emergence of new linear forms of urbanisation with land

use mix along the main roads. The spatial logic of commercial activities is shown in CL
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Figure 3 — The spatial distribution of the SOM clusters



3-2 where, as expected, a concentration process near the most important urban centres is
taking place.

In conclusion, the adoption of the SOM as a tool to investigate the different dynamics
seems fruitful and opens new research directions. In fact the different Codebooks may
be interpreted in a “if then else “ approach: given these surrounding conditions at time ¢

at time #+/ the dynamics will change in this way.

6. The prediction through Supervised ANN

The NN which generates prediction on land use dynamics is Supervised (SANN).
Trained on the base of Input/Output examples the NN is able to reproduce the expected
Output starting from the same Input. This means that the NN should learn, from the set
of cells which change their land use in the time lag considered, the connections between
the final state at time 7+/ (the target) and the local and neighbouring conditions at
time ¢.

The record supplied to the SANN contains 6 input variables and 3 output ones. The
input describe the state of the cell and of its neighbourhood at the time ¢, the output
variables represent only the cell state at the time ¢+1.

For the implementation of supervised NN, it is crucial to select “good examples to feed

the network. Therefore the records have been split into two different sets (Fig. 4).

1980 1994

m) excluded
=

=) ANN, training and prediction

1994 2008

E ] =) ANN, prediction

Figure 4 — The record sets used for the different processing phases
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o The first one, composed by 1662 records of “stable green” cells at both the times, has
been excluded from NN processing.

e The second one, containing 1041 records for the cells urbanised at one of at both
times, has been used for training and prediction.

e The third one, concerning green cells with urbanised neighbourhood at 1994, has
been used only for prediction;

The split into three sets tries to improve the learning capability of the SANN avoiding

the simultaneous presence of records in which the same Input generates different

Outputs. In fact although one of the peculiarity of the SANNSs is their ability to deal

with fuzzy behaviours, the process of inconsistent patterns should lead to

misinterpretations and errors.

The 1041 pattern selected for the experimentation have been randomly divided into two

sets (Set 1 and Set 2). Ten different architectures of SANNs have been trained with Set

1 and validated with Set 2. The same SANNs have been also trained with Set 2 and

validated with Set 1. In both cases the SANNs performances have been evaluated

through statistical functions.

In this way it was possible to evaluate the SANNSs prediction capability on the whole

1041 records set.

At the end, the average of the 1041 prediction values of the 10 SANNs have been

calculated, and again the prediction capability have been evaluated through statistical

functions. In Fig. 5 is shown a flow diagram of the procedure.

Total Patterns
(1041)

| Random selection |

Set 1 Set 2
(729) (312)
4 (
Training Training
Evaluation ldation Valida Evaluation
of ANNs of ANNs
Resultson 4] 10 ANNs 10 ANNs tal Results on
312 729
patterns Evaluation of patterns
ANNs Results |
on 1041 h
patterns

Figure 5 - the training and validation procedure for the SANNs
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The used NN are listed in table 1.

Set 1 Set 2
Topology Order Learning Law Topology Order Learning Law

FF Bm FF Bm

FF Bp FF Bp
FF Sn

Self DA Bp Self DA Bp

Self DA Bm

Self SA Bm

Self SA Bp

Tasm DA Bm Tasm DA Bm

Tasm DA Bp Tasm DA Bp

Tasm SA Bm Tasm SA Bm

Tasm SA Bp Tasm SA Bp
Tasm SA Cm
Tasm SA Sn

Learning Law:

Topology:

Order:

Bp = Back Propagation (standard)
Sn = Sine Net (Semeion)

Bm = Bi-Modal Network (Semeion)
Cm = Contractive Map (Semeion)

FF = Feed Forward (standard)
Self = Self Recurrent Network (Semeion)

Tasm = Temporal Associative Subjective Memory (Semeion)

DA = Dynamic and Adaptive Recurrency (Semeion)

SA = Static and Adaptive Recurrency (Semeion

Table 1 — The different architectures of SANN

7. Learning and validation of the SANNs

The Statistical functions used to evaluate the results are presented in Annexe 2. Each

function measures, separately, the error of each output vector component of SANNs

related to the correspondent Target value given in Input.

The first evaluation of the results is given by the statistical functions in table 2.

Residential Industrial Commercial Average
RMSE 0.06756 0.05543 0.03290 0.09338
Real Error -0.00262 -0.00938 -0.00550 -0.00583
Relative Error 0.05983 0.04911 0.01867 0.04254
Error Variance 0.11412 0.09735 0.05214 0.08787
NMSE 0.15737 0.22162 0.38873 0.25591
Squared R 0.84310 0.78374 0.62216 0.74967
Linear Corr. 0.91820 0.88529 0.78877 0.86409

Table 2 — Statistical measures of validation
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calculated values

100

It should be observed that, from a statistical point of view, the results are quite good for
the residential use, a little less for the industry and not so good for the commerce. The
difference is probably due to the different sample size for the three land uses. Since the
recent urbanisation process in the south of Milan concerns mainly residential sprawl,
many records are “good examples” for this land use. On the contrary the commercial
use, which is the less frequent, gives the worst results. This is shown on the scatter
diagram of observed (on the x axis) and calculated values (on the y axis) for each land
use (figures 6 a, b and c).

The spatial representation of “errors” allows to evaluate the spatial logic of the SANNs
output.

Figure 7 shows the errors concerning the residential land use. Errors are measured in

ratio over the whole cell surface. One large underestimation is evident, just in the centre

100 . 100 -

80 4

observed values observed values

(@) ®) ©

Figure 6 - The scatter diagrams of observed and calculated values of land use in each cell

of an agricultural area totally not urbanised and not infrastructured. This is due to an
entirely new settlement for affluent people, “Milano 3”, which is the result of a
negotiation between big investors and the local municipality. Evidently it was
impossible for the SANN to predict an event which is totally extraneous to his logic.

Other errors are mainly due to planning constraints, often forbidding a “natural” growth
and forcing the development elsewhere. As mentioned earlier in this experiment road
infrastructures have been ignored, whereas their topical role emerges in the already

mentioned SOM classification.
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Figure 7 — the differences between observed and calculated values, in blue the underestimations, in
red the overestimations

8. The prediction capabilities of the SANN

Once the learning and testing phase has been concluded, the averaged weight matrix of
the SANNSs is processed with the Data set of cells “potentially” in urbanisation in the
next time lag (1994-2008). The prediction concerns ‘“green” cells with urbanized
neighbourhood at 1994.

Figure 8 shows the estimated surfaces for each land use. As expected the trend is linear,
given the availability of only two temporal thresholds.

The resulted pattern shows a probable scenario (fig. 9 - Residence prediction) where

prevailing urbanisation process takes place at the boundaries of the cities and villages
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Figure 8 — The surface growth for each land use

and, surprisingly, along the roads; this result is unexpected because, as said earlier, the
record does not include information about road accessibility.

Moreover, the new residence seems to be attracted by the proximity to other activities
(industry and commerce). Indeed, this spatial feature characterizes the urban quality of
the Italian historical cities and villages and holds particularly in this territory.

New productive settlements will be based mainly around the existing large industrial
areas, showing a location criterion mainly driven by agglomeration economies. Such
behaviour characterizes also the larger new settlements predicted from the NN for
commerce, which, in the considered area, are clustering around new development poles
near the highway and far from the urbanised areas.

On the contrary, small and diffused expansions in industry and commerce will take
place in and around the existing urban areas, improving the urban mix and urban
agglomeration economies.

What is worthwhile to note is that the SANN findings, in terms of spatial patterns, are

Figure 9 — the predicted residential growth at 2008 (grey tones)
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consistent with the SOM behavioural rules, shown in the codebooks.
To conclude the SANNs process seems able to capture and predict a sound spatial logic
for future trends in urbanisation and to drive suitable territorial policies towards the

facilitation or the inhibition of the “organic” processes of the considered urban system.

9. Concluding remarks

The experiments presented allow to accept NN as powerful tool for investigation in
urban dynamics. The original aim of the paper was to compare NN performances with
the well known CA forecasting capabilities; therefore information provided is that of a
prototypical CA, which is limited to the local and neighbouring land use conditions.

But the big advantage offered by NN consists in investigating the connections in
whatever other data: density, urban morphology, spatial relationships with central
functions, planning constraints, political view of the local authority and so on. Further
research with enlarged Data Base would produce an important improvement on location
theory and on territorial morphology dynamics studies.

The SOM run was able to show significantly different dynamic behaviours and to
clearly distinguish the spatial location pattern of the urban functions considered:
compact and urban the commercial activities, compact and peripheral the industry, more
scattered and invasive of natural resources the residence, particularly in the last few
years.

In each of the models produced, the codebook points out the degree of relevance of each
variable in explaining the considered behaviour.

The SANN has produced a suitable scenario of the future urbanisation, even if with the
assumption of stability of the transition rules and with only two temporal thresholds
supplied for training. Again, NN should be able to learn more complex dynamics if
provided with larger temporal series of data, unavailable at the moment.

The overview depicted gives an idea of the level of “urbanisation risk” for each
agricultural cell and the level of infilling in urbanised areas, in centres and along the
roads. It seems quite a probable scenario which could steer the territorial policies

towards a sustainable development approach.
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1. net architecture

Annexe 1 -Parameters in the SOM processing

Input Unit Number of units in the input vector (12)

K Units Number of units in the output matrix (from 9 to 49, depending on the simulation)
K Rows Number of rows in the output matrix (from 3 to 7, depending on the simulation)

K Cols Number of columns in the output matrix (from 3 to 7, depending on the simulation)
K Dimension Output matrix dimensions (2)

K Topology Output matrix space topology (Euclidean)

N Topology Winner unit neighbourhood space topology (square)

2. parameters

N function Parameter defining the function to update the units connections in the WU neighbourhood
(Gaussian)

Alpha Max Maximum width for the N function (1)

Alpha Min Minimum width for the N function (0)

Alpha Inc Factor reducing 4/pha Max in each epoch (0.01)

Set Weight Maximum weight value during the initialisation

Alpha W Func Input/output weights correction function (constant)

Alpha W Max Initial value of weight correction factor (0.1)

Alpha W Min Minimum value of weight correction factor (0)

Alpha W Inc Decreasing amount of the weight correction factor (0.001)

Epochs The epochs number for an experiment is automatically calculated by this formula:

AlphaMax — AlphaMin
Alphalnc

Epochs =

3. Input record

| Patterns

| Number of records in the input sample (2703)
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Annexe 2 — Statistical functions for validation of the SANNSs

x(p) is the generic output component for the p-th input pattern, and the correspondent

target is #(p). M is the number of patterns considered for the statistical measure.

Root Mean Squared Error (RMSE), evaluating the squared root of the semi-mean of the squared prediction errors:

M
RMSE = Jﬁ S (x(p)-1(p)? -

p=l

Normalized Root Mean Squared Error (NMSE), evaluating the squared root of the mean of the squared prediction

errors, where target and output values was before normalized between 0 and 1:
2
NMSE - |13 [( _x(p) -~ min ; {x(b)} ] _( _t(p)— min ; i)} D
M 2\ min (o)} - max g {x(6)} ) min  {e(0) f = max , {e(h)}

Real Error (ERR) evaluating the mean of the prediction error:

1 M
ERR =~ > (x(p) - t(p)) -

p=1

Relative Error (ABSERR) evaluating the mean of the absolute prediction errors:

M
ABSERR = - D x(p)—t(p)| -
M

Squared R (R2), evaluating the squared of the linear correlation coefficient between target and prediction values:

.

f(x(p) —@éx(k)}]z ~ Afj(z(p) —[L%r(k)}}z

p=1 p=l k=1

2

R? =
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