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Abstract

This paper analyzes the consequences of non-classical measurement error
for distributional analysis. We show that for a popular set of distributions
negative correlation between the measurement error (u) and the true value
(y�) may reduce the bias in the estimated distribution at every value of y�. For
other distributions the impact of non-classical measurement di¤ers throughout
the support of the distribution. We illustrate the practical importance of these
results using models of unemployment duration and income.
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1 Introduction

Statistical analysis involves examining the outcomes of random experiments in order
to make inferences about the distribution function underlying the true data gener-
ating process. Measurement error may lead researchers to draw incorrect inferences.
The impact of speci�cation error on means has been studied extensively (e.g. Fuller
(1987), Carroll et al (1994) and Bound et al (2001)). However, less is known about
the consequences of speci�cation error for other aspects of the distribution function.
Horowitz and Manski (1995) discuss circumstances in which we can use mismeasured
data to bound the distribution of the true variable. They consider situations in which
the variable of interest is in general well-measured though some observations may be
subject to potentially large errors. In contrast the typical textbook model of measure-
ment error re�ects a situation of widespread mismeasurement (the error distribution
has no mass point at zero). Chesher (1991) uses a small variance approximation to
study the impact of this form of measurement error on distribution functions and ar-
gues that the sign of the bias arising from the mismeasured data can be determined by
the curvature of the true underlying distribution. In particular in regions where the
true underlying distribution is convex we overestimate the distribution and in regions
where it is concave we underestimate. However, Chesher only considered classical
measurement error, where the error term is distributed independently of the true
value. In this paper we provide a simple geometric exposition of the consequences of
non-classical measurement error on distribution functions. In particular we show that
for a popular set of distributions, allowing for correlation between the error and true
value may o¤set the bias that arises with classical measurement error throughout the
distribution. We illustrate our results by examining the impact of measurement error
on models of unemployment durations and income.

2 The Consequences of Measurement error for Dis-
tribution Functions

2.1 Theoretical Results

Let y� be a random variable, whose cumulative distribution function is given by Fy� (y)
with support

�
y; y
�
. However, for some reason y� cannot be measured accurately.

Instead we observe y which is de�ned as y = y� + u, where u is measurement
error with support [u; u]. The assumption that the error term is additive is less
restrictive than it appears. In the case of mismeasured incomes it is often assumed
that the error term enters multiplicatively (see e.g. Chesher and Schluter (2001)). To
apply the results established in our paper to these models we simply consider a log
transformation of the model. In this case we view y as the log of observed income and
y� as the log of true income, so that the observed level of income, I, may be written
as I = I�V , where V � exp(u). Furthermore, since FI(exp(y0)) = F (y0)); our results
identify the ranges of I for which which a multiplicative error process would cause
over or underestimation of the true underlying distribution.
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Measurement error can take the misspeci�ed cdf outside the support of the true
cdf. We denote the extended distribution function of a random variable with cdf
Fy (y) ; by eFy (y). We make no speci�c assumptions about the relationship between
y� and u. Observed data provide information on eFy (y). An expression for the di¤er-
ence between the mismeasured and true distributions �F (y

0) = eFy (y0) � eFy� (y0) is
given in Theorem 1:

Theorem 1
The bias (�F (y

0)) when y� is measured with error is given byZ u

u

Z y0�u

y0

efy�;u (y; u) dydu: (1)

Proof. Since y = y� + u, we have efy (y0) = R uu efy�;u (y0 � u; u) du, such thateFy (y0) = R uu R y0y efy�;u (y � u; u) dydu.
At the same time,eFy� (y0) = R uu R y0y efy�;u (y; u) dydu:
Di¤erencing the last two expressions results in equation (1) of the theorem.

Equation (1) can be given a simple graphical interpretation. This is shown in
Figure 1.

Figure 1 about here.

In this Figure u is on the x-axis and y� is on the y-axis. The joint density efy�;u (y; u)
is represented by the elliptical contours. Equation (1) gives us the probability between
the line y� = y0�u and y� = y0. This involves subtracting the probability mass in S2
from the probability mass in S1. Since the correlation between y� and u a¤ects the
shape of the contours, this graph provides a geometric illustration of the potential
importance of this correlation in determining the size of the bias. To establish this
relationship formally, let u1 = E (u)+, u2 = E (u)�, y1 = E (y)+�, y2 = E (y)��
and � be the set of all distributions efy�;u (y; u). Consider the following de�nition.
De�nition 1
T
� efy�;u (y; u) ; "; ; �� : �� (R+)3! � :� efy�;u (y; u) ; "; ; ��!gy�;u (y; u)

is a mean preserving covariance increasing transformation of a density function
fy�;u (y; u) if and only if
for all u 6= u1; u2 and y 6= y1; y2 : gy�;u (y; u) = efy�;u (y; u),
gy�;u (y

1; u1) = efy�;u (y1; u1) + ",
gy�;u (y

1; u2) = efy�;u (y1; u2)� ",
gy�;u (y

2; u1) = efy�;u (y2; u1)� ",
gy�;u (y

2; u2) = efy�;u (y2; u2) + ".
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Such a transformation increases the conditional covariance between y� and u, but
does not a¤ect either the mean or variance of the marginal distributions of u or y�.
We now establish the following Theorem.

Theorem 2 If gy�;u (y; u) can be obtained out of efy�;u (y; u) after a sequence of mean
preserving covariance increasing transformations, then
(a) If E (u) � 0 and y0 � E (y) : eGy (y0) � eGy� (y0) � eFy (y0)� eFy� (y0)
(b) If E (u) � 0 and y0 � E (y) : eGy (y0) � eGy� (y0) � eFy (y0)� eFy� (y0)
Proof. We only prove the result for case (a). The proof of case (b) is similar.
De�ne
S1 =

�
(u; y) 2 [u; u]�

�
y; y
�
j u � 0; y0 � y � y0 � u

	
S2 =

�
(u; y) 2 [u; u]�

�
y; y
�
j u � 0; y0 � u � y � y0

	
.

These regions are illustrated in Figure 1.

A transformation T
� efy�;u;a� (y; u) ; "; ; �� will only a¤ect equation (1) if it changes

the probability mass in S1 or S2. Under the assumption that E (u) � 0 two such cases
exist. First, it is possible that  and � are such that the point with coordinates (u1; y1)
2 S2. The probability mass in S2 increases, such that �G (y

0) is smaller than �F (y
0).

Second,  and � are such that the point with coordinates (u2; y1) 2 S1. In this case
the probability mass in S1 decreases, again resulting in �G (y

0) being smaller than
�F (y

0). For all other values of  and �, the probability mass in S1 and S2 will not
be a¤ected, or will be a¤ected in the same way, such that �G (y

0) will equal �F (y
0)

for these values.

Since eGy� (y0) = eFy� (y0) Theorem 2 directly relates mean preserving covariance
increasing transformations to the size of the bias in the mismeasured distribution
function. If the transformation increases the covariance then the bias becomes less
positive (or more negative) provided y0 is greater than the mean of y and E(u) � 0.
If y0 is less than the mean and E(u) � 0 the opposite occurs. It is easy to see that
the results are reversed when the transformation decreases the covariance. In many
applications it may be reasonable to assume that E(u) = 0: In this case Theorem 2
allows us to establish the impact of non-classical measurement error over the entire
range of y.

2.2 Examples

Example 1. Consider a simple case where y� and u are independent and u is symmet-
ric around zero. If fy� (y0) is normal then Chesher (1991) shows that we overestimate
(underestimate) Fy� (y0) at points below (above) E (y), while the bias is zero at E (y).1

1Chesher�s results are based on approximations. O�Neill et al (2004) establish exact results for
cdfs under which the sign the bias can be established. These depend on modi�ed curvature conditions
of the true underlying distribution. For the normal distribution with symmetric measurement error
Chesher�s approximate conditions are equivalent to the exact curvature conditions.
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Theorem 2 shows that, in this case, introducing negative correlation between y� and
u (which is what we tend to see in earnings data (Bound et al. (1994)) may in fact
reduce the extent of overestimation (underestimation) throughout the distribution.
Indeed this is true for the wider class of distributions with cdfs that are convex be-
low the mean and concave above the mean. These include distributions such as the
t-distribution and the logistic distribution .
Example 2. Consider the power distribution F (y; �) = y� for 0 � y � 1; � > 0.

This distribution is convex for all y between zero and 1 provided � > 1. Chesher�s
(1991) results imply that classical measurement error will lead us to overestimate the
distribution at each of the points in the original support. Theorem 2 shows that the
consequences of correlated measurement error di¤ers depending on the value of y.
For values of y below the mean, negatively correlated measurement error may result
in the bias becoming smaller, while for values of y above the mean the bias must
increase.
Example 3a. Consider the exponential distribution F (y; �) = 1 � e��y; y > 0;

� > 0. The exponential distribution arises naturally in many statistical problems
associated with waiting times. For instance, if the occurrence of an event is governed
by a Poisson process then it can be shown that the sequence of inter-arrival times are
independent identically distributed exponential random variables. In applied research
the exponential distribution is widely used as a starting point for the analysis of un-
employment duration and strike duration data (Kiefer (1988)). It is easy to show that
the exponential distribution function is concave for all y. In this case classical mea-
surement error will lead us to underestimate the distribution throughout the original
support.2 However, there is some evidence that longer spells of unemployment are
more likely to be subject to underreporting, implying a negative correlation between
the true level of unemployment duration and measurement error (Torelli and Triv-
ellato (1989)). As in Example 2 the consequences of correlated measurement error
di¤ers depending on the value of y, though in this case the e¤ect goes in the opposite
direction. For values of y below the mean, negatively correlated measurement error
will accentuate the bias (the bias becomes more negative); however for values of y
above the mean the bias may fall in absolute value (become less negative), though if
the correlation is su¢ ciently negative the mismeasured distribution could move above
the true distribution, thus inducing a positive bias. Thus measurement error in unem-
ployment durations, that is negatively correlated with the truth, may be preferable to
independent measurement error if our focus is on long unemployment spells but will
compound the problem of independent measurement error when considering shorter
spells.3

Example 3b. The exponential distribution is restrictive in that the implied
hazard rate is constant. However the conclusions from Example 3a generalise to
less restrictive cases with non-constant hazards. The Weibull distribution, given by

2For a detailed discussion of classical measurement error in duration reponse data see Chesher et
al (2002).

3Since we are basing the sign of the bias with independent measurement error on small-variance
approximations this preference ranking over types of measurement error need not apply to very short
or very long durations.
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F (y; �; ) = 1 � e�y� ; y > 0; � > 0;  > 0; is a two parameter generalisation of the
exponential distribution, which allows for a non-constant hazard. It is easy to show
that the conclusions reached in Example 3a regarding non-classical measurement error
remain valid provided � < 1. However, � < 1 is equivalent to specifying negative
duration dependence, which is typical in many studies of unemployment.4

Example 4. When modelling the consequences of measurement error in non-
negative variables, such as unemployment duration, one may prefer to adopt a mul-
tiplicative form for the error process. As noted earlier this is easily incorporated
within our speci�cation. To see this reconsider the exponential distribution. Assume
that F (t; �) = 1 � e��t , t > 0; � > 0 and denote the measurement error by V .
In this case we may wish to model observed duration as S = TV . To apply our
framework to this model we simply take a log transformation of the multiplicative
model, so that ln(S) = ln(T ) + ln(V ).5 This model is now in the format speci-
�ed in our earlier theorems. To establish the impact of measurement error in this
model we need to be able to describe the distribution of ln(T ). However, if T is
exponentially distributed then ln(T ) has a Type 1 extreme value distribution with
density given by g(y) = � exp(y) exp(�� exp(y)). The mean of this random vari-
able is given by E(ln(T )) = � ln(�)� , where  is Euler�s constant (approximately
.5772). Furthermore it is easy to show that this distribution is convex provided
ln(T ) < ln(1=�) = � ln(�) and concave otherwise. Using Chesher�s results we con-
clude that with classical measurement error we overestimate provided ln(T ) < ln(1=�)
and underestimate otherwise. In terms of the actual unemployment durations, T ,
this implies that the distribution of S overestimates the distribution of T provided
T < 1=� � E(T ) and underestimates provided T > E(T ).
From Theorem 2 we can deduce that allowing ln(T ) and ln(V ) to be negatively

correlated will cause the bias to become less positive provided ln(T ) < E(ln(T )) =
� ln(�) � ; and causes the bias to become less negative when ln(T ) > � ln(�) �
. Combining this with our earlier analysis we see that for short unemployment
durations, speci�cally those such that ln(T ) < � ln(�)� , negative correlation may
help o¤set the original positive bias resulting from classical measurement error. For
long unemployment durations, such that ln(T ) > � ln(�); non-classical measurement
error may help o¤set the negative bias introduced by uncorrelated measurement error.
However, since E(ln(T )) < ln(E(T )), there is now also an intermediate range of log
durations, from [� ln(�)�;� ln(�)], for which the original tendency to overestimate
with classical measurement error is compounded by correlated measurement error. In
terms of the raw durations T; the range for which non-classical error compounds the
original biases is given by [E(T )=1:78; E(T )].
This shows how the framework we have introduced can be easily extended so as

to yield practical insights into the consequences of non-classical measurement error
with alternative error structures.6 A similar analysis can also be conducted in cases

4For a recent overview of the literature on duration dependence in unemployment see Serneels
(2002).

5See Kiefer (1988), Section IV, for a more detailed discussion of the potential use of log-linear
models for duration analyses.

6In this example we have assumed that E(ln(V )) = 0. This need not imply that E(V ) =1 which
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where the original distribution of durations is Weibull, since the natural logarithm
of a random variable with a Weibull distribution also has a Type 1 extreme value
distribution.

2.3 Consequences for Estimated Poverty Rates

To explore the magnitude of non-classical measurement error in practice we consider a
calibrated model of the distribution of income for white couples in the U.S in the early
1990�s. For simplicity we assume that income is distributed as log normal7. Letting
y� denote the log of income we assume that y� � N(10:72, :24).8 We assume that
u � N(0; �2u) where �2u is chosen so that

�2u
�2
y�
=.33. This corresponds to a reliability

ratio of .75 when measurement error is classical. This is within the range of estimates
presented in recent studies (Zimmerman (1992), Angrist and Krueger (1999)). We
consider two cases. First we assume that y� and u are independent. We then compare
this to the case where y� and u have a correlation equal to -.3.9 ;10

Figure 2 presents the true distribution and both the misspeci�ed distributions
(with and without correlation)11. The �ndings with independent measurement error
are consistent with Chesher (1991); we overestimate in the region where the true
distribution is convex, underestimate where it is concave and the bias is zero at the
mean. Given the calibration of our model the size of the bias arising from indepen-
dent measurement error is relatively small. As predicted by Theorem 2, introducing
negative correlation between the error and the true value causes the bias to become
less positive for values of y below the mean and less negative for values above the
mean. Indeed, for our calibrated model the distribution with correlated measurement
is virtually identical to the true model. To summarise the impact of correlated error
terms we consider measures of the poverty rate based on mismeasured data, both
with and without correlation between the error and the true income. We choose 1/2
median income as the measure of poverty. Under our assumptions the poverty line
is constant across all 3 distributions. The estimated poverty rate is 8% for both the
true and correlated models and 11% for the independent speci�cation. It is worth
emphasising that if the correlation becomes more negative (i.e less than -.3) the corre-
lated income distribution falls below the true distribution for y0s below the mean and
rises above it for y0s above the mean. The corresponding poverty rate with correlated
errors would then underestimate the true poverty levels. For instance if we pick a
correlation of -.69 (Coder (1992) as referenced by Bound et al (2001) Table 1) the

may be desirable in multiplicative error models. However, this will be approximately true given the
small variance approximations adopted in this paper.

7For a discussion of the suitability of this speci�cation see Cowell (1995).
8See Altonji and Doraszelski (2005).
9This is within the range of estimates reported by Bound et al (Section 6).
10For simplicitly in this latter case we also assume that u and y� are bivariate normal. This allows

us to obtain analytical expressions for the distributions of concern. Theorem 2 does not require any
such parametric assumptions. More general distributions could be incorporated into our example
using Monte-Carlo methods.
11There are actually 3 curves in Figure 2. However, given the values used in calibrating our model

the true distribution and the distribution with correlated measurement error are indistinguishable.

7



estimated poverty rates are 8% for the true model, 11% for the independent case and
3% for the correlated case.

3 Conclusion

In this paper we present a simple geometric exposition of the impact of non-classical
measurement error for the derivation of distribution functions. For a popular set of
distributions we show that positively correlated errors will unambiguously worsen the
bias throughout the distribution, while negatively correlated error may help o¤set
the bias that arises with independent errors. For other distributions the consequence
of correlated errors di¤ers throughout the distribution in a way that depends on the
curvature of the true underlying distribution.
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Figure 1: Graphical Derivation of the Bias when the Dependent Variable is Measured
with Error.
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Figure 2: Calibrated Distributions of Income with and without Measurement Error
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