
Long-Run Cash-Flow and Discount-Rate Risks in

the Cross-Section of US Returns�

Michail Koubourosy, Dimitrios Malliaropulosz, Ekaterini Panopouloux

This version: May 2005

Abstract

This paper decomposes the overall market (CAPM) risk into parts re�ecting
uncertainty related to the long-run dynamics of portfolio-speci�c and market cash
�ows and discount rates. We decompose market betas into four sub-betas (as-
sociated with assets�and market�s cash �ows and discount rates) and we employ
a discrete time version of the I-CAPM to derive a four-beta model. The model
performs well in pricing average returns on single- and double-sorted portfolios ac-
cording to size, book-to-market, dividend-price ratios and past risk, by producing
high estimates for the explained cross-sectional variation in average returns and
economically and statistically acceptable estimates for the coe¢ cient of relative
risk aversion.
JEL: G11, G12, G14
Keywords: CAPM, cash-�ow risk, discount-rate risk, VAR-GARCH, BEKK,

asset pricing

�We are grateful to Gikas Hardouvelis, Jack Meyer, Dimitrios Thomakos and the participants at
the University of Piraeus-Athens Derivatives Stock Exchange Seminar for their helpful comments and
suggestions. We acknowledge �nancial support from the Greek Ministry of Education and the European
Union under �Pythagoras�grant. The usual disclaimer applies.

yCorresponding author: University of Peloponnese, Department of Economics, Terma Karaiskaki, 22
100 Tripolis, Greece. Phone: (+30) 2710-230129, fax: (+30) 2710-230139, e-mail: m.koubouros@uop.gr.

zDepartment of Banking and Financial Management, University of Piraeus, and National Bank of
Greece.

xDepartment of Economics, National University of Ireland, Maynooth.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7050474?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

Since the original statement of the Sharpe-Lintner one-factor Capital Asset Pricing Model

(CAPM), there is a considerable ongoing debate on whether its single risk measure, the

market beta, can adequately describe the cross-section of average returns on individual

stocks and portfolios sorted according to risk measures and �rm-speci�c characteristics.

Numerous studies have shown that the single beta CAPM, at least in its unconditional

form, performs poorly, since the cross-sectional variation in unconditional market betas

cannot match the observed spread in average excess returns.1

In this paper, we decompose the market systematic risk (CAPM beta) of common

stocks into four long-run risk components related to the covariance of unexpected changes

in stock-speci�c cash-�ows and discount rates with unexpected changes in market-wide

cash-�ows and discount rates. Further, we empirically test whether these sources of risk

are priced using a discrete time version of the intertemporal asset pricing model of Merton

(1973), recently developed by Campbell (1993, 1996).

Our paper is related to the work of Campbell (1991), Campbell and Mei (1993),

Campbell and Vuolteenaho (2005) and Campbell, Polk and Vuolteenaho (2003). In a

novel paper, Campbell (1991) shows that unexpected stock returns can be decomposed

into the discounted sum of revisions in expectations about future cash �ows and future

discount rates. Campbell and Mei (1993) extend this analysis by studying the behavior of

asset speci�c cash-�ow and discount-rate components of portfolio betas but do not provide

any evidence on whether these parts of systematic risk carry individual risk prices.

More recently, Campbell and Vuolteenaho (2005) show that the market beta can be

decomposed into a relatively �bad� cash-�ow beta, re�ecting news about the market�s

future cash �ows, and a relatively �good�discount rate beta, re�ecting news about the

market�s future discount rates. They argue that the two components of return innovations

have di¤erent implications for the rational investor. Since shocks to market cash �ows

and market discount rates represent permanent and temporary shocks to overall wealth

respectively, rational conservative investors are particularly averse to the former and

require a premium which is a multiple of their attitude towards risk. As a result, discount

rate betas are relatively �good�betas with low risk prices, whereas cash �ow betas are

�bad�betas with high risk prices. Empirically, Campbell and Vuolteenaho �nd that small

stocks and value stocks have considerably higher cash-�ow (�bad�) betas than growth

stocks and large stocks, and this can explain their higher average returns. However,

they restrict their analysis by assuming that �good�and �bad�betas are independent

of whether the innovation in individual returns is due to unexpected changes in future

1For a recent review on the CAPM see, among others, Fama and French (2004).
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cash-�ows or discount rates of the company.

In a paper closest to ours, Campbell, Polk and Vuolteenaho (2003) decompose the

overall market beta into four betas which re�ect the covariance of unexpected changes

in stock-speci�c cash-�ows and discount rates with unexpected changes in market-wide

cash-�ows and discount rates. This decomposition of the market beta allows the authors

to answer the question whether the high �bad�beta of small and value stocks and the

high �good�beta of growth stocks and large stocks are attributable to their cash �ows or

their discount rates. Campbell, Polk and Vuolteenaho estimate sample betas for growth

and value portfolios and show that growth portfolios�cash �ows are particularly sensitive

to temporary movements in aggregate stock prices (driven by market-wide shocks to

discount rates) while value portfolios�cash-�ows are highly correlated with temporary

movements in market returns (driven by market-wide shocks to cash-�ows). However,

they do not test the asset pricing implications of this four factor model, leaving the

question unanswered as to what economic forces determine the risk prices associated

with these four sources of risk.

Our four-beta model aims in investigating whether these four components of the

overall market beta are priced according to a standard asset pricing model that identi�es

changes in expectations about future cash �ows and future discount rates as the long-run

risk factors that can explain the cross-section of mean returns. Using the discrete time

version of Merton�s (1973) Intertemporal CAPM (I-CAPM) proposed by Campbell (1993,

1996), our structural four-beta model shows considerable in-sample success in pricing

average returns on single- and double-sorted portfolios according to market capitalization,

book-to-market, dividend-price ratios and risk. The model generates low and insigni�cant

pricing errors, high estimates for the explained cross-sectional variation in average returns

and statistically and economically acceptable estimates for the degree of relative risk

aversion. We �nd that, as predicted by economic theory, permanent shocks to market

returns are the main determinant of the overall risk premium, their covariances with

both portfolio cash-�ow and discount-rate dynamics earn equilibrium risk premia that

are indistinguishable from zero, but the premia associated with asset-speci�c cash-�ow

news are greater than those linked to asset-speci�c discount-rate news. More importantly,

we provide evidence that the coe¢ cient of proportionality between the two premia is equal

to the constant coe¢ cient of relative risk aversion, as predicted by theory.

The remainder of the paper is as follows: Section 2 provides the theoretical decom-

position of total market risk into four parts: cash-�ow and discount-rate portfolio risks

associated with market�s cash-�ow and discount-rate dynamics. Also, it develops the

asset pricing framework that will be used for estimation. Section 3 describes the data set

and the econometric model used to extract the news components of unexpected returns.
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Section 4 presents the empirical results. Finally, section 5 concludes.

2 Decomposing Risk and Return

2.1 Cash-Flow and Discount-Rate Risk

The starting point of our analysis is the decomposition of the unexpected return, de-

veloped by Campbell and Shiller (1988) and further expanded by Campbell (1991). We

de�ne the one-period holding real gross return on asset i as ri;t+1 = log(Pi;t+1+Di;t+1)�
log(Pi;t), where Pi;t+1 is the real stock price measured at the end of period t + 1 (ex-

dividend) and Di;t+1 is the real dividend payment during this period. Approximating

this return with a �rst-order Taylor expansion around the, assumed constant, mean log

dividend-price ratio, �i = E[log(di;t � pi;t)], we obtain:

ri;t+1 � ki + �ipi;t+1 � pi;t + (1� �i)di;t+1; (1)

with

ki = � log(�i)� (1� �i) log[(1=�i)� 1];

and

�i = 1=[1 + exp(�i)]

being �rm-speci�c constants. Campbell (1991), using this approximation of log returns,

goes one step further and derives a decomposition of the unexpected return, ei;t+1 =

ri;t+1�Et [ri;t+1], into revisions in expectations about future dividend growth rates (that
is growth rates of future cash �ows) and revisions in expectations about future log returns

(that is future discount rates):

ei;t+1 = N
C
i;t+1 �ND

i;t+1; (2)

with NC
i;t+1 and N

D
i;t+1 de�ned as:

NC
i;t+1 = (Et+1 � Et)

1X
j=0

�ji�di;t+1+j;

and

ND
i;t+1 = (Et+1 � Et)

1X
j=1

�jiri;t+1+j;

respectively. The above sums can be viewed as representing cash-�ow and discount-rate

�news� for the investor, since any upward or downward revision in her expectations at
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time t+ 1 must be consistent with the arrival of new valuable information at time t+ 1.

Moreover, as Campbell and Shiller (1988a, 1993), and Campbell (1991) argue, equation

(2) must be considered as a consistent model of expectations, since a positive (negative)

unexpected return today must be only associated with an upward (downward) revision

in expectations about future cash-�ows, a downward (upward) revision in expectations

about future returns, or a combination of the two. That is, although equation (2) does

not restrict the generating mechanism of expectations or the asset pricing model that

derives equilibrium expected returns, it restricts the way through which changing expec-

tations due to �good�or �bad�news a¤ect unexpected returns on any asset if investors�

expectations are to be consistent with the observed asset prices.

As, among others, Campbell and Vuolteenaho (2005) and Campbell, Polk and Vuolteenaho

(2003) argue, the two components of unexpected returns can be viewed as permanent

and transitory shocks to the value of the underlying asset. A positive unexpected return

caused by an upward revision in cash-�ow expectations represents a permanent positive

e¤ect on the value of the asset since it is never reversed subsequently, whereas a positive

unexpected return generated from a downward revision in expectations about future re-

turns can be viewed as a temporary shock to the asset price, since the capital gain today is

at a cost of lower future investment opportunities. In the case where the underlying asset

is the total wealth portfolio held by investors, these e¤ects can be viewed as permanent

and temporary movements in total wealth.

We now turn to link the sources of time variation in asset returns with the associated

sources in the total wealth portfolio. Following Campbell and Shiller (1993), we de�ne

the �market� or CAPM beta as the ratio of the conditional covariance of asset�s and

market�s unexpected returns divided by the conditional variance of market unexpected

returns:

�im;t =
Covt (ei;t+1; em;t+1)
Vart(em;t+1)

; (3)

where Vart(:) and Covt(:) are the conditional, at time t; variance and covariance operators,

respectively. Given that the current innovation in returns on both the asset i and the

market portfolio can be written as the sum of cash-�ow and (the negative of) discount-

rate news (equation (2)), we obtain the following decomposition of the conditional market

sensitivity �im;t which can be now written as the sum of four conditional �beta-like

measures�of systematic risk:

�im;t =
Covt(NC

i;t+1 �ND
i;t+1; N

C
m;t+1 �ND

m;t+1)

Vart(em;t+1)

= �i;CC;t + �i;CD;t + �i;DC;t + �i;DD;t; (4)
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where the individual components of total market risk, �i;CC;t; �i;CD;t; �i;DC;t; and �i;DD;t;

are de�ned as:

�i;CC;t =
Covt(NC

i;t+1; N
C
m;t+1)

Vart(em;t+1)
; �i;CD;t =

Covt(NC
i;t+1;�ND

m;t+1)

Vart(em;t+1)
;

and

�i;DC;t =
Covt(�ND

i;t+1; N
C
m;t+1)

Vart(em;t+1)
; �i;DD;t =

Covt(�ND
i;t+1;�ND

m;t+1)

Vart(em;t+1)
(5)

These �beta-like�ratios in (5) are not the traditional conditional sensitivities used in APT

models. These models identify betas to be the univariate slope coe¢ cient of a regression

of unexpected returns on the unexpected component (or return) of the risk factor (or

factor mimicking portfolio). Rather, the �beta-like�measures of systematic risk in (5)

represent the part of total market (CAPM) risk attributed to portfolio and market shocks

to time-varying economic fundamentals and shocks to time-varying returns.

2.2 Pricing cash-�ow and discount rate risk

The approach of decomposing and pricing the sources of systematic risk is not new to

the �nance literature. Campbell and Mei (1993) decompose the unexpected component

of assets� returns into cash-�ow and discount-rate news and examine their covariation

with market total unexpected return. However, they do not consider shocks to market

portfolio returns in their calculations and thus they work with (�i;CC;t + �i;CD;t) and

(�i;DC;t + �i;DD;t) as representing aggregate risk quantities. Campbell and Vuolteenaho

(2005) examine the opposite story and, while they do not split the full unexpected return

on the asset, they decompose the market return innovation into permanent and transitory

shocks. Further, using a discrete time variant of Merton�s (1973) I-CAPM (see Campbell

(1993, 1996)) they show that their two-beta model performs well in describing the cross

section of average returns on size-value and risk-loading sorted portfolios.2 In a recent

paper, Campbell, Polk and Vuolteenaho (2003) decompose the market beta in a similar

way to ours and study the properties of sub-betas of value and growth stocks but they do

not investigate the asset pricing implications of this decomposition. That is, they do not

estimate the individual risk premia associated with the asset-speci�c return shocks driven

by either changing expectations about future fundamentals and/or returns. Filling this

gap is the main purpose of the present study.

In order to derive testable restrictions on the premia associated with the cash-�ow

and discount rate risks in (4) we need a risk story. For this purpose, we employ the

2These betas correspond to �i;C;t = �i;CC;t + �i;DC;t and �i;D;t = �i;CD;t + �i;DD;t in our decompo-
sition in (5):
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recursive utility framework provided by Epstein and Zin (1989, 1991) and Weil (1989).

The lifetime utility function of the investor is given by the recursive utility function Ut;

de�ned over current real consumption and future expected utility of real consumption:

Ut [Ct; Et (Ut+1)] =
h
(1� �)C

1�
�

t + �Et
�
U1�t+1

� 1
�

i �
1�
; (6)

where Ct is current real consumption at time t, 0 < � < 1 is the subjective discount

factor,  > 0 is the constant coe¢ cient of relative risk aversion (CRRA), � is a parameter

de�ned as � = (1� )=(1���1); and � > 0 is the elasticity of intertemporal substitution
(EIS) between current and expected future consumption. Equation (6) has the advantage

of breaking the tight link between CRRA and EIS given by power utility ( = ��1),

thus, disconnecting investors�risk attitude across states of nature and across time.3 The

consumer is assumed to �nance all her consumption plan entirely from her total real

wealth Wt; given the following dynamic budget constraint:

Wt+1 = (1 +Rm;t+1)(Wt � Ct); (7)

where Rm;t+1 is the net real return on total wealth (or the market portfolio, m). Epstein

and Zin (1989) solve for the optimal portfolio and consumption policies and show that

the following set of conditional moment restrictions hold for each asset i:

Et

"
��
�
Ct+1
Ct

�� �
�

(1 +Rm;t+1)
��1(1 +Ri;t+1)

#
= 1 (8)

The above set of non-linear moment restrictions can be linearized using the assumption of

joint conditional log-normality of asset returns and consumption in the spirit of Hansen

and Singleton (1983). Campbell (1993, 1996) goes one step further and, using these strong

assumptions along with the dynamic budget constraint in (7), derives the following cross-

sectional linear restrictions on assets�risk premia:4

Et [Ri;t+1]�Rf;t+1 = Covt(ei;t+1; em;t+1) + ( � 1)Covt(ei;t+1; ND
m;t+1); (9)

3For a discussion of the properties of this speci�cation see Campbell (2003) and the references therein.
4Campbell (1993, 1996) discusses how to handle heteroscedasticity of returns. Equation (8) approx-

imately holds even if returns are heteroskedastic if one assumes that the elasticity of intertemporal
substitution is equal to unity. Since our aim is to test the unconditional version of our the model, we
employ this assumption (see also Guo (2003)).
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which using equation (2) for any individual asset as well as the market portfolio, m; gives:

Et [Ri;t+1]�Rf;t+1 = Covt(NC
i;t+1; N

C
m;t+1) + Covt(N

C
i;t+1;�ND

m;t+1)

+Covt(�ND
m;t+1; N

C
m;t+1) + Covt(�ND

i;t+1;�ND
m;t+1) (10)

The left part of equations (9) and (10) represent the risk premium in simple returns

which are equal to Et [ri;t+1]� rf;t+1 + 1
2
Vart (ei;t+1); an expression resulting from the log

linearization of the �st-order condition in (8). The covariance-risk representation of the

equity premium in (10) can have a �beta-like-premium�representation (see, for example,

Cochrane (2001)). Multiplying and dividing each conditional covariance term in (10)

by the conditional variance of market�s unexpected returns, Vart(em;t+1), we obtain the

following representation for the risk premium on any risky asset i:

Et [Ri;t+1]�Rf;t+1 = �0;t + �CC;t�i;CC;t + �CD;t�i;CD;t + �DC;t�i;DC;t + �DD;t�i;DD;t; (11)

where �0;t represents the conditional Jensen�s alpha, the rest of the �s represent time-

varying prices of beta risks, de�ned as �CC;t = �DC;t = Vart(em;t+1) and �CD;t =

�DD;t =Vart(em;t+1); respectively, and the betas are de�ned similarly to (5). Equation (11)

states that the required risk premium on asset i is jointly determined by the covariances

of asset�s shocks to cash �ows and discount rates with the corresponding components of

the total market innovation. Similarly to Campbell and Vuolteenaho (2005), a conserva-

tive risk-averse investor with  > 1 demands a higher risk price for risks associated with

market cash �ow uncertainty (�i;CC;t and �i;DC;t) rather than for risks linked to shocks

to market returns (�i;CD;t and �i;DD;t), since any positive (negative) shock to market

discount rates is at a bene�t (cost) of worse future investment opportunities, whereas

the investor is never compensated later for every positive (negative) shock to dividends.

Hence, the beta prices of market cash-�ow risk, �CC and �DC , are a  multiple of the

beta risk prices of market discount-rate risk, �CD and �DD, respectively.

We are interested in studying average returns for a long sample of U.S. stock mar-

ket and macroeconomic data in order to get comparable results to the literature of the

unconditional CAPM and, more importantly, to the empirical �ndings of the two-beta

model of Campbell and Vuolteenaho (2005). Using the methodology described in the

next section, we proceed with an unconditional version of (11):

E [Ri;t+1]�Rf;t+1 = �0 + �CC�i;CC + �CD�i;CD + �DC�i;DC + �DD�i;DD (12)
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3 Data and Empirical Methodology

We study monthly US asset and macroeconomic data from December 1928 to December

2001 (877 monthly observations). Our data consist of di¤erent sets of common stock

portfolios sorted on various �rm-speci�c characteristics and risk measures, and a set of

economy-wide variables that serve as instruments. Following common practice, these

variables have been selected under the assumption that they forecast future returns.

The test assets include monthly excess returns on (a) 25 size-BE/ME sorted portfolios

from CRSP, corresponding to the Davis, Fama and French (2001) data �le, (b) 20 risk-

sorted portfolios provided by Campbell and Vuolteenaho (2005),5 and (c) a set of 10 book-

to-market, 10 dividend-price ratio and 10 size sorted portfolios (30 in total). The value-

weighted CRSP portfolio serves as the market portfolio of all traded wealth.6 Although

our model in (12) is written in real log returns, we assume that for the monthly test

interval we employ, in�ation rates are almost fully forecastable, and thus we proxy real

log returns with nominal log returns.

Variables that have been successful in predicting the future state of the economy and

asset returns are used to generate cash-�ows and discount rate news through the VAR

speci�cation in (13). Following common practice, we use the following variables: (a)

the log excess market return rm � rf , de�ned as the di¤erence between the log return
on the value-weighted CRSP stock index portfolio and the log return on the risk-free

rate, constructed by CRSP from T-bills with approximately 3 month maturity, (b) the

log price-earnings ratio, p � e; taken from Shiller (2000) and de�ned as the log of the

S&P 500 index, scaled by the 10-year moving average of aggregate earnings of companies

in the S&P 500 index, (c) the term yield spread, TY; constructed by Global Financial

Data and de�ned as the yield di¤erential between ten-year taxable bonds and short-term

taxable notes, and (d) the small-stock value spread, V S; de�ned as the di¤erence between

the log (BE/ME) of the small high-BE/ME portfolio and the log (BE/ME) of the small

low-BE/ME portfolio.7

Measuring cash �ow news and discount rate news, as the main sources of risk, is

central in our methodology. We follow Campbell (1991) and estimate the cash-�ow-news

and discount-rate-news series using a �rst-order vector autoregressive (VAR) model. We

5Campbell and Vuolteenaho (2005) sort common stocks into 20 portfolios according to their past
loadings on the market return and innovations on the VAR variables. The purpose of their strategy is
to generate portfolios with large spread in these loadings and thus overcome Daniel and Titman�s(1997)
observation that sorting only on �rm characteristics could generate a spurious link between premia and
risk measures.

6The returns on book-to-market, size, and dividend-price sorted portfolios are available at Kenneth�s
French web site http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

7The returns on the 20 risk sorted portfolios and the state variabes rm � rf ; TY and V S are kindly
provided by Tuomo Vuolteenaho and correspond to those used in Cambell and Vuolteenaho (2005).

9



�rst estimate expected returns and the revisions in expectations about future returns

(Et [rt+1] and (Et+1� Et)
P1

j=1 �
j
irt+1+j, respectively) and then we use rt+1 and equation

(2) to back out the cash-�ow news. This practice has an important advantage as it relies

only on the dynamics of expected returns and there is no need for modelling the dynamics

of dividends. The latter are derived by the VAR estimates and the realizations of returns

and state variables.

We assume that the data are generated by the following VAR model:

Yt+1 = C + AYt + Ut+1; (13)

where Yt+1 = (ri;t+1; Y1;t+1; :::; Ym;t+1) is a m � 1 vector of variables containing returns
as its �rst element and (m � 1) variables which have predictive power for returns, C is

a m � 1 vector of constants and A is a m � m matrix of constants. In order to allow

for heteroscedasticity of the VAR residuals, we assume that the m� 1 error vector Ut is
given by:

Ut = H
1=2
t zt; zt � i.i.d.(0; Im); (14)

where Ht is the conditional covariance matrix and the innovations sequence fztg follows
an m-variate standard Gaussian distribution. The conditional covariance matrix, Ht, is

speci�ed as a �rst-order diagonal BEKK model as suggested by Engle and Kroner (1995):

Ht = D
0D +MUt�1U

0
t�1M

0 +GHt�1G
0; (15)

where D is a lower triangular m �m matrix of constant parameters and M and G are

diagonal m �m matrices of constant parameters. The diagonality of M and G ensures

that hjt = kj + �
2
ju
2
jt�1 + g

2
jhjt�1; for each j = 1; :::;m; i.e. the innovations ujt follow

univariate GARCH(1,1) processes. Provided that the data are generated by the process

as speci�ed in equations (13)-(15), the standardized residuals vector:

zt =
Ut

H
1=2
t

� i.i.d.(0; Im)

has the property of a multivariate i.i.d. process. We estimate (13)-(15) for the market

return and for each individual portfolio return. We then compute cash-�ow and discount

rate news as linear functions of the t+ 1 vector of standardized innovations, zt+1:

ND
t+1 = e1

0�zt+1 and NC
t+1 = (e1

0 + e10�)zt+1; (16)

where e1 is a m � 1 vector with the �rst element equal to unity and the remaining
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elements equal to zero. The mapping of the shock vector to the news vectors is given by

� � �A(Im � �A)�1. The term e10� in (16) captures the long-run signi�cance of each

individual VAR shock to discount-rate expectations. The greater the absolute value of a

variable�s coe¢ cient in the return prediction equation (the top row of A), the greater the

weight the variable receives in the discount-rate-news formula. More persistent variables

should also receive more weight, which is captured by the term (Im � �A)�1. Since we
use standardized residuals to compute news, the forecasting ability of each economic

variable is �ltered through the conditional variability derived from the GARCH(1,1)

model. As a result, shocks to state variables that are expected to be volatile in the future

have high conditional volatility and, hence, are of less importance in the construction of

"news" series since the investor judges that these variables are more �risky�as predictive

instruments.

4 Empirical Evidence

4.1 Estimation of News Components for Market Portfolio

Table 1 reports parameter estimates for the market VAR model. Our estimates suggest

that the state variables have some predictive power for stock market excess returns.

Speci�cally, monthly market returns display some degree of reversal towards their mean

with a statistically signi�cant coe¢ cient of 0.093. The e¤ect of the term yield spread on

market returns is positive and signi�cant, a �nding consistent with Keim and Stanbaugh

(1986), Campbell (1987), Fama and French (1989) and Campbell and Vuolteenaho (2005).

The remaining state variables, namely the log price-to-earnings ratio and the small-stock

value spread, negatively predict the market return, con�rming previous results by e.g.

Campbell and Shiller (1988a, 1988b, 1998), Roze¤ (1984), Fama and French (1988, 1989),

Eleswarapu and Reinganum (2002) and Brennan, Wang and Xia (2001)). The remaining

columns of Table 1 summarize the dynamics of the state variables. We do not comment

on the remaining equations separately as our estimates coincide with those in Campbell

and Vuolteenaho (2005). The last two rows of Table 1 report the ARCH-LM tests for

heteroskedasticity in the VAR residuals. The statistics provide evidence for the existence

of strong second-order dependence in the error terms.

We model the second moments of the error vector Ut generated by the VAR model as

GARCH (1,1) processes, i.e.,

hjt = kj + �
2
ju
2
jt�1 + g

2
jhjt�1 (17)

where hjt, j = 1; :::; 4, is the conditional variance of the jth variable�s innovations, ujt,
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and k; �; g are constant parameters. The coe¢ cient g2j measures the extent to which a

volatility shock today feeds into next period�s volatility, while �2j+g
2
j measures the rate at

which this e¤ect dies out over time. By accounting for time-varying volatility, we ensure

that the distribution of the error vector Ut; conditional on its past history, is normal,

or, equivalently, the standardized residuals of the GARCH (1,1) models, zjt = ujt=
p
hjt,

are normal. These normal shocks are then fed into the mapping functions e10� and

e10 + e10�; to retrieve cash-�ow and discount rate news. It should be noted that the

mapping functions are invariant to the GARCH speci�cation of our model due to the fact

that the OLS estimates of the parameters of the VAR model are consistent even in the

presence of heteroskedastic errors.

Table 2 reports estimation results of the univariate GARCH(1,1) models for the error

vector Ut. The GARCH parameter estimates (�2j ; g
2
j ) are highly signi�cant, with �

2
j+g

2
j >

0:95; suggesting strong volatility clustering and in some cases nearly integrated GARCH

processes. The adequacy of the GARCH (1,1) model is supported by the LM test in

the standardized residuals, reported in the last two rows of the table, which rejects any

remaining second-order dependence.

Table 3 summarizes the behavior of implied cash-�ow news and discount-rate news

components of market excess returns. The top panel shows that the standard deviation

of discount rate news is twice the standard deviation of cash-�ow news. This �nding

is consistent with Campbell (1991) and Campbell and Vuolteenaho (2005). However,

in contrast to Campbell and Vuolteenaho (2005), but in line with Campbell (1991 and

1996), the two components of return exhibit some degree of correlation (0:621). The

bottom panel of Table 3 reports correlations of cash-�ow and discount-rate news with

innovations in market excess returns and state variables. Discount-rate and cash-�ow

news are negatively correlated with innovations in the market excess return, the price-

earnings and value spread. In contrast, innovations to the term spread are uncorrelated

with discount rate and cash-�ow news.

4.2 Estimation of Stock-Speci�c News Components and Betas

The VAR-GARCH methodology presented in Section 2 has been applied to every single

portfolio under consideration, using the same economy-wide state variables, in order to

extract portfolio-speci�c cash-�ow and discount rate news. Since data on dividend yields

of individual portfolios are not available to us, we follow Campbell and Mei (1993), and

proxy individual discount factors, �i in equation (2), with the full-sample estimate of the

discount factor of the market portfolio, ��m = 0:9957.
8

8We do not resport VAR estimates for individual portfolios. These results are available upon request.
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The standardized innovations of the state variables are used to study the system-

atic risks and their relationship with average returns on portfolios of common stocks

sorted on �rm characteristics and risk. Empirical measures of the cash �ow and discount

rate betas in (4) are derived using a methodology similar to this employed in Campbell

and Vuolteenaho (2005) to ensure that our sample estimates are not a¤ected by non-

synchronous trading (especially in the early years of our sample) and under-reaction of

stock prices to changes in the market index (especially for large stocks).9 Our four sample

betas, that will be used in the cross-sectional regressions, are de�ned as the �sum�of

contemporaneous, one lag and two lags of the full-sample covariances of portfolio news

at t+1 with market news, divided by the time t+1 full-sample variance of standardized

market return innovations,dVar(zm;t+1). For example, the betas associated with shocks to
assets�cash-�ows and revisions in market fundamentals in (5) are estimated as follows:

�̂i;CC =
dCov(NC

i;t+1; N
C
m;t+1)dVar(zm;t+1) +

dCov(NC
i;t+1; N

C
m;t)dVar(zm;t+1) +

dCov(NC
i;t+1; N

C
m;t�1)dVar(zm;t+1) ; (18)

and all the remaining betas in (5) are estimated accordingly.

4.3 The Cross-Section of Cash-Flow and Discount-Rate Risks

Tables 4 and 5 report the estimated betas given our de�nition in (18) for the 25 double

sorted portfolios according to size (market value) and book-to-market, and the set of the

30 size, BE/ME and dividend-price ratio sorted portfolios. The main characteristic of our

results is that our methodology generates almost no spread in the overall market risk �i;m
(the sum of individual cash-�ow and discount-rate betas de�ned in (4)) as the literature on

the failure of the static CAPM argues. However, in all sub-betas there is a considerable

spread (both in single- and double-sorted portfolios), indicating the con�icting role of

cash-�ow and discount-rate risk in explaining the cross-sectional predictability in average

returns.

The observed spread in the two aggregate �bad" (cash-�ow) and �good" (discount-

rate) betas con�rm the story argued by Campbell and Vuolteenaho (2005) that value

stocks have relatively high cash-�ow betas while growth stocks have relatively high

discount-rates betas � see Panels E and F of Table 4. The di¤erence between value

and growth cash-�ow betas (�i;C) ranges from 0.025 to 0.09 (from the smallest to the

largest decile) while at the same time the di¤erence in discount-rate betas (�i;D) ranges

from -0.09 to -0.151. Most importantly, most cross-sectional variation in market bad

9See Scholes and Williams (1977) and Dimson (1979) for the e¤ects of non-synchronous trading and
McQueen, Pinegar and Thorly (1996) and Peterson and Sanger (1995) for the under-reaction pattern of
stock prices.
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risk comes from the cross-sectional variation in portfolio economic fundamentals rather

than in revisions in expectations about future discount factors. However, there in no

clear spread in the two components of relatively good risk. While for the fundamental

component of market total discount-rate risk of growth stocks (with the exception of the

small deciles) there is a positive di¤erence with that of value stocks (di¤erences across

value range from -0.409 to -1.277), for the discount-rate component (�i;DD) the results

are mixed.

Table 5 illustrates the estimates of the beta decomposition for three sets of 10 port-

folios sorted on size, BE/ME and D/P respectively. In all cases, and although there is a

considerable spread in all risks, we observe that the estimated sensitivities of portfolios�

cash �ows with both market cash �ows and discount rates exhibit greater spreads as

compared to the sensitivities of portfolios�discount rates with both market cash �ows

and discount rates. Thus, the observation for value stocks, originally made by Campbell

and Vuolteenaho (2005) and Campbell, Polk and Vuolteenaho (2003), is also quite clear

in our calculations and, furthermore, we provide evidence on the importance of the beta

decomposition using value, size and dividend-price ratio single-sorted portfolios.

4.4 Are Asset-Speci�c Cash-Flow and Discount-Rate Risks Priced?

Having estimated the full-sample cash-�ow and discount rate betas given our speci�cation

of the return and variance generating processes in (13) and (17), respectively, we proceed

with cross-sectional asset pricing tests to evaluate the ability of our four-beta model to

capture cross-sectional variation in average portfolio returns. We study the unconditional

asset pricing model in (12) and we assume that the market portfolio is a good proxy for

the total wealth portfolio in the economy.

The model is tested against the traditional CAPM (where only the full market beta,

�i;m, matters) and the two-beta (both �i;C and �i;D matter) I-CAPM model recently

developed by Campbell and Vuolteenaho (2005). We consider the following cross-sectional

regression for our four-beta model:

ET [R
e
i ] = �0 + �CC �̂i;CC + �CD�̂i;CD + �DC �̂i;DC + �DD�̂i;DD; for i = 1; :::; N; (19)

and we test our speci�cation against the popular static, single-beta, CAPM:

ET [R
e
i ] = �0 + �m�̂i;m, for i = 1; :::; N; (20)
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and the two-beta I-CAPM:

ET [R
e
i ] = �0 + �C �̂i;C + �D�̂i;D, for i = 1; :::; N; (21)

In all models (19) to (21), ET [Rei ] denotes the full-sample estimate of the mean risk

premium de�ned as the sample mean return on each portfolio in excess of the risk-free

interest rate. We estimate the unconditional unrestricted prices of beta risks for all models

(�factor models�) as well as the following restricted version of the four-beta model in (19):

ET [R
e
i ] = �0 + ��̂i;CC + ��̂i;CD + ��̂i;DC + ��̂i;DD, for i = 1; :::; N (22)

This last version enables us to estimate the coe¢ cient of relative risk aversion  and

test for the theoretically implied equality across risk prices associated with cash-�ow and

discount-rate betas (�CC = �DC and �CD = �DD).

Panels A to D of Table 6 present the empirical �ndings. For each test, the table reports

the mean, standard error and t-statistic for each estimate, as well as the adjusted R2 of

the regression. Also, we conduct an F -test that all the coe¢ cients except the constant,

�0, are jointly equal to zero and we report the value and the p-value of the test. For the

two-factor and four-factor models we run the regressions in two steps. First, we regress

average excess returns on a constant and the two and four betas respectively. The results

are illustrated in the second and fourth column in each table. Given that the asset pricing

restriction implies that the average pricing error in all models (19) to (21) must be equal

to zero (under the null hypothesis that the model is correctly speci�ed and the sources

of risk (i.e. betas) provide a full description of the cross-sectional variation in average

returns), we conduct a Wald test that �0 and the less statistically signi�cant premium

are jointly zero. If the test rejects the null hypothesis, we re-estimate the regression

ignoring the constant given that the price of beta risk under consideration gets a lower p-

value. The results of these experiments appear in the third and �fth column in all tables.

Finally, for the four-beta model in (22), we report a �2 statistic that tests for equality

across premia as well as the estimated value (along with the p-value) of the coe¢ cient of

relative risk aversion, , and �.

Panel A reports the empirical �ndings for the 25 size-BE/ME double sorted com-

mon stock portfolios. Similarly to Fama and French (1992), the traditional static CAPM

performs poorly and explains almost none of the cross-sectional variation in average

returns resulting a low adj.-R2 equal to 3:4% and a highly signi�cant average pricing

error equal to 0:029 per month (bt = 1:901). We then ask whether the two-beta and

four beta decompositions in (19) and (21) with unrestricted prices of beta risk can im-

prove the empirical validity of the standard static CAPM and it is clear that they both
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do. The two-factor model performs quite well and generates insigni�cant pricing error

(b�0 = �0:003;bt = �0:229) and statistically signi�cant premia with the premium associ-

ated with market cash �ow risk being considerably higher than the premium associated

with market�s discount rate risk (b�C = 0:077 and b�D = 0:013 with bt = 5:296 and 14:233
respectively). A high adj.-R2 of 42:4% shows that much of the cross-sectional variation

in average returns is explained. These results are in line with Campbell and Vuolteenaho

(2005). The four-factor I-CAPM model performs even better. When the highly insignif-

icant constant �0 (bt = �0:121) is removed, the model in its restricted version yields a
highly statistically signi�cant and economically reasonable estimate for the RRA coe¢ -

cient (̂ = 5:755 with bt = 7:878) and a higher adj.-R2 of almost 55%. Also, the model
yields the predicted di¤erence between the level of risk prices for the components of mar-

ket cash-�ow and discount-rate risk: the premia associated with market cash-�ows (�CC
and �DC) are 5 to 6 times higher than those associated with market discount rates (

�CD and �DD). However, we can not establish a clear statistical relationship of equality

between the two pairs since the equality hypothesis �CC = �DC cannot be rejected at the

low 2% level of signi�cance and the equality hypothesis �CD = �DD is rejected even for

lower levels of signi�cance.

Panel B of Table 6 reports our model estimates for three sets of 10 portfolios sorted

according to BE/ME, D/P and market value. This experiment with single-sorted portfo-

lios may provide us with better empirical evidence on the observed pattern of mean excess

returns on value and size portfolios and the cross-sectional variation in fundamental and

discount-rate risks. Our model again improves the ability of the disappointing static

CAPM and the well performing two-beta I-CAPM to capture the spread in mean asset

premia. The proportion of cross-sectional variability explained increases from 46:4% (two-

beta model) to an impressive 83:1%; while the pricing error is still highly insigni�cant

(bt = �0:566). Most importantly, and even when the insigni�cant constant is included in
the regression, all the slope coe¢ cients (except �CD (bt = 1:69)) are signi�cant, indicating
that the approach of decomposing cash �ow and discount rate market risks yields inter-

esting insights for the determination of average risk premia. Once �0 is removed, all four

risk prices are highly signi�cant and the high estimated values for �CC and �DC (0:019

and 0:023; respectively) provide further support on the results presented by Campbell and

Vuolteenaho (2005) and Campbell, Polk and Vuolteenaho (2003). They argued that value

and small stocks have considerably higher cash-�ow betas than large and growth stocks

and this can explain their high average returns. We extend their results by showing that

the sign and magnitude of our estimated beta-risk prices of the decomposed cash-�ow

market risk are in line with a rational asset pricing model for a long-lived conservative

investor. This investor requires a higher premium per unit of market cash-�ow risk than
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for market discount-rate risk. Further, the factor of proportionality that is restricted to

be equal to the coe¢ cient of relative risk aversion is both economically and statistically

signi�cant (b = 5:304, bt = 9:713). For this group of portfolios, although we again can-
not reject the equality hypothesis for the market discount rate premia �CD and �DD, we

can safely accept it for the cash �ow premia (�2 = 0:846; p = 0:357). Overall, for our

four-beta speci�cation in (22) the spread in size and value portfolios seems to be not

puzzling.

We also test the empirical validity of our four-factor model using the 25 BE/ME

portfolios as well as 20 risk portfolios sorted on market betas and betas associated with

innovations to the state variables.10 The approach of sorting stocks according to past

risk rather than �rm-speci�c characteristics can gauge the impact of data snooping on

empirical �ndings that reveal relationships between characteristic-sorted portfolio trading

strategies and average returns. Panel C of Table 6 shows that the static CAPM still

performs badly and generates a very low adj.-R2 of �0:9%, statistically signi�cant pricing
errors (b�0 = 0:014 with bt = 1:665) and an insigni�cant and economically rejected point
estimate for the market premium (b�m = �0:007;bt = �0:769). Thus, market beta, as
a single aggregate risk measure, fails to capture the cross-sectional spread in returns.

The four-beta model captures a large part of the cross-sectional average return variation

and, compared to the two-beta speci�cation, impressively increases the percentage of

explained cross-sectional return variability from 44% to almost 61%. It produces even

more insigni�cant pricing errors and results in a signi�cant CRRA value (̂ = 5:788;bt =
11:130). It is interesting that the observed pattern in cash-�ow and discount-rate prices of

risk is in line with our previous tests: still, risk prices associated with the two components

of market cash-�ow risk (b�CC = 0:062; b�DC = 0:072) are much higher than the risk prices
associated with market discount-rate risk (b�CD = 0:008; b�DD = 0:013).
For experimental reasons we include the 5 sets of portfolios (25 size-BE/ME, 20 risk,

10 BE/ME, 10 D/P and 10 size sorted) in one cross-sectional regression. Panel D in Table

6 illustrates the results. Similarly to the previous empirical �ndings, the market overall

beta, �im; explains none of the cross-sectional variation in average returns. The two-beta

model again results insigni�cant pricing errors and signi�cant risk prices for the aggregate

market cash-�ow and discount-rate risk with the latter being much higher (0:068 and 0:012

respectively) as predicted by economic theory. However, our four-beta speci�cation in (22)

increases the ability of the two-beta model by more than 20% in terms of explanatory

power. The point estimate of the CRRA is signi�cant, economically acceptable and

similar to the one generated from the previous samples (b = 5:594;bt = 14:640). However,
10For recent studies that relates loadings of unexpected returns on innovations of state variables and

the global size and book-to-market premia of the Fama-French (1996) three factor model see Petkova
(2002) and the references therein.
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as in all previous tests, we cannot accept the hypothesis that the risk prices concerning

markets cash-�ows and market discount-rate risks are equal.

5 Conclusions

This paper builds on the decomposition of the overall market, or CAPM, risk into parts

re�ecting time variation related to the dynamics of portfolio-speci�c and aggregate market

cash �ows and discount rates. Extending the methodology of Campbell (1991), Campbell

and Mei (1993), Campbell and Vuolteenaho (2005) and Campbell, Polk and Vuolteenaho

(2003) we decompose market betas into four sub-betas, two associated with market cash-

�ows and two with market discount-rates. The approach used attempts to �ll the gap

between the time-series predictability of returns and the cross-sectional variation in aver-

age returns due to di¤erences in risk. Using a VAR-GARCH(1,1) approach and a discrete

time version of Merton�s I-CAPM, we ask whether these parts of overall risk related to

innovations to state variables that are related to changes in expectations about future

dividends and future returns are rationally priced.

Our four-beta model performs well in pricing average returns on single- and double-

sorted portfolios according to market capitalization, book-to-market, dividend-price ra-

tios and past risk, by producing insigni�cant pricing errors, high estimates for the ex-

plained cross-sectional variation (which in many cases exceeds 80%) in average monthly

returns and both economically and statistically acceptable estimates for the coe¢ cient of

relative risk aversion (values range between 5 and 6). We �nd that the risks associated

with permanent shocks to market returns, as these are described by the two market cash-

�ow betas, earn higher unconditional risk prices compared to the risk prices associated

with market discount-rate risks, but all four components are required in order to improve

the ability of the static CAPM to capture the cross-sectional variation of mean premia.
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Table 1. VAR estimates for market portfolio

Each column of the table corresponds to a di¤erent equation of the VAR model. The
�rst �ve rows report coe¢ cients on the three state variables plus a constant and lagged
values of the excess market return. OLS standard errors are reported in parentheses
below coe¢ cients. The table also reports the R2 and F statistics for each equation and
a Lagrange Multiplier test for heteroscedasticity of the VAR residuals up to four lags.

rm;t+1 TYt+1 pt+1 � et+1 V St+1
constant 0:062

(0:020)
0:046
(0:097)

0:019
(0:013)

0:014
(0:017)

rm;t 0:093
(0:034)

0:033
(0:165)

0:519
(0:022)

�0:008
(0:029)

TYt 0:006
(0:003)

0:880
(0:016)

0:002
(0:002)

0:002
(0:003)

pt � et �0:015
(0:005)

�0:036
(0:026)

0:994
(0:004)

0:000
(0:005)

V St �0:012
(0:006)

0:082
(0:028)

�0:003
(0:004)

0:991
(0:005)

R2 2:6% 82:4% 99:1% 98:4%
F -stat. 5:713 1020:446 22898:7 13400:13
LM Test for Heteroscedasticity (ARCH Test: lag = 4)

ûrm ûTY ûp�e ûV S
F -stat. 25:071 24:652 13:264 22:841
p-value [0:000] [0:000] [0:000] [0:000]
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Table 2: Estimates of univariate GARCH(1,1) models of market portfolio
VAR innovations

The table reports estimates of GARCH(1,1) models for the conditional variance of
VAR innovations for the market portfolio, equation (17). Column 2 refers to innovations
of market excess returns and columns 3-5 to innovations of the yield-spread (TY ), the log
price-earnings ratio (p� e) and the value spread (V S), respectively. The last rows report
the results of a Lagrange Multiplier test for heteroscedasticity of the standardized resid-
uals, zjt = ujt=

p
hjt, up to four lags. Robust standard errors are reported in parentheses

below coe¢ cients. Probability values are given in brackets.

Parameter hrm;t hTY;t hp�e;t hV S;t

kj
5:75e� 05
(1:98e� 05)

9:39e� 05
(4:11e� 05)

3:08e� 05
(9:76e� 06)

0:000
(1:76e� 05)

�2j
0:107
(0:017)

0:135
(0:019)

0:082
(0:017)

0:048
(0:007)

�2j
0:877
(0:017)

0:805
(0:014)

0:892
(0:022)

0:905
(0:014)

LM Test for Heteroscedasticity (ARCH Test: lag = 4)
ẑrm ẑTY ẑp�e ẑV S

F -stat. 0:331 0:890 0:586 0:223
p-value [0:857] [0:469] [0:673] [0:926]
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Table 3: Market portfolio cash-�ow and discount-rate news

The table reports the estimated covariance matrix (upper-left) and the correlation
matrix with st. dev. (upper-right) of estimated market portfolio cash-�ow and discount
rate news using equations (13) to (16), the correlations of innovations of state variables
with market news (lower-left) and the mapping functions de�ned in (16).

Covariance matrix of news News corr/st.d.
NC
m ND

m NC
m ND

m

NC
m 0:385 0:486 NC

m 0:621 0:621
ND
m 0:486 1:590 ND

m 0:621 1:262
Correlations of innovations with news Functions

Innovations/News NC
m ND

m NC
m ND

m

rm � rf �0:162 �0:874 rm � rf shock 0:599 �0:401
TY 0:039 0:011 TY shock 0:010 0:010
p� e �0:692 �0:953 p� e shock �0:889 �0:889
V S �0:377 �0:221 V S shock �0:263 �0:263
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Table 4. Cash-�ow and discount-rate betas for 25 book-to-market portfolios

The table reports sample estimates of cash-�ow and discount rate betas for the 25
size-BE/ME portfolios de�ned in (4) and calculated according to (18). Estimates for the
�bad" and �good" betas are de�ned as �̂i;C = �̂i;CC + �̂i;DC and �̂i;D = �̂i;CD + �̂i;DD
and the estimates for the full market beta are de�ned as the sum �̂i;m = �̂i;CC + �̂i;DC +

�̂i;CD + �̂i;DD: �Di¤." refers to the di¤erence between the extreme cell.

Panel A. Cash-�ow cash-�ow betas (�̂i;CC)
Growth 2 3 4 Value Di¤.

Small 0.753 0.732 0.476 0.409 0.641 -0.112
2 0.408 0.335 0.398 0.497 0.690 0.282
3 0.370 0.348 0.335 0.453 0.582 0.212
4 0.235 0.316 0.422 0.395 0.694 0.460

Large 0.139 0.242 0.368 0.418 0.471 0.332
Di¤. 0.614 0.490 0.108 -0.009 0.169

Panel B. Cash-�ow discount-rate betas (�̂i;CD)
Growth 2 3 4 Value Di¤.

small -1.711 -1.397 -1.273 -1.107 -1.640 0.071
2 -1.141 -0.936 -1.003 -1.258 -1.549 -0.409
3 -1.205 -0.787 -0.673 -0.931 -1.218 -0.013
4 -0.475 -0.694 -0.817 -0.774 -1.435 -0.960

Large -0.069 -0.200 -0.401 -0.683 -1.347 -1.277
Di¤. -1.642 -1.197 -0.873 -0.424 -0.293

Panel C. Discount-rate cash-�ow betas (�̂i;DC)
Growth 2 3 4 Value Di¤.

Small -0.818 -0.802 -0.527 -0.461 -0.681 0.137
2 -0.505 -0.413 -0.459 -0.541 -0.727 -0.222
3 -0.473 -0.421 -0.379 -0.489 -0.607 -0.134
4 -0.335 -0.382 -0.461 -0.423 -0.719 -0.384

Large -0.252 -0.325 -0.412 -0.438 -0.493 -0.242
Di¤. -0.566 -0.477 -0.115 -0.023 -0.187

Panel D. Discount-rate discount-rate betas (�̂i;DD)
Growth 2 3 4 Value Di¤.

Small 2.696 2.409 2.271 2.075 2.592 -0.104
2 2.192 1.959 1.972 2.194 2.492 0.300
3 2.215 1.809 1.632 1.876 2.113 -0.102
4 1.503 1.679 1.789 1.717 2.373 0.871

Large 1.106 1.231 1.315 1.562 2.232 1.126
Di¤. 1.589 1.178 0.957 0.513 0.360
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Panel E. Cash-�ow betas (�̂i;C)
Growth 2 3 4 Value Di¤.

Small -0.065 -0.071 -0.051 -0.052 -0.040 0.025
2 -0.097 -0.078 -0.061 -0.044 -0.037 0.059
3 -0.103 -0.073 -0.044 -0.036 -0.025 0.078
4 -0.100 -0.067 -0.039 -0.028 -0.024 0.076

Large -0.112 -0.083 -0.044 -0.020 -0.022 0.090
Di¤. 0.047 0.012 -0.007 -0.031 -0.018

Panel F. Discount-rate betas (�̂i;D)
Growth 2 3 4 Value Di¤.

Small 0.985 1.012 0.998 0.968 0.952 -0.032
2 1.052 1.023 0.969 0.935 0.943 -0.109
3 1.010 1.023 0.959 0.945 0.895 -0.115
4 1.028 0.985 0.971 0.943 0.938 -0.090

Large 1.037 1.031 0.914 0.879 0.886 -0.151
Di¤. -0.052 -0.019 0.084 0.088 0.067

Panel G. Market betas (�̂i;m)
Growth 2 3 4 Value Di¤.

Small 0.919 0.941 0.947 0.916 0.912 -0.007
2 0.955 0.945 0.908 0.891 0.906 -0.049
3 0.907 0.950 0.915 0.909 0.870 -0.037
4 0.928 0.918 0.932 0.914 0.914 -0.014

Large 0.924 0.948 0.870 0.859 0.864 -0.061
Di¤. -0.005 -0.006 0.076 0.057 0.049
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Table 5. Cash-�ow and discount-rate betas for 30 size, BE/ME and D/P
sorted portfolios

The table reports sample estimates of cash-�ow and discount rate betas for the 30 size,
BE/ME and D/P portfolios de�ned in (4) and calculated according to (18). Estimates for
the �bad" and �good" betas are de�ned as �̂i;C = �̂i;CC + �̂i;DC and �̂i;D = �̂i;CD + �̂i;DD
and the estimates for the full market beta de�ned as the sum �̂i;m = �̂i;CC + �̂i;DC +

�̂i;CD + �̂i;DD: �Di¤." refers to the di¤erence between the extreme cell and �St. dev."
refers to the sample estimate of the standard deviation of the estimated betas.

Panel A. 10 book-to-market portfolios

�̂i;m �̂i;C �̂i;D �̂i;CC �̂i;CD �̂i;DC �̂i;DD
Growth 0.906 -0.113 1.019 0.145 -0.076 -0.258 1.095
2 0.953 -0.104 1.056 0.178 -0.222 -0.282 1.278
3 0.984 -0.089 1.074 0.254 -0.293 -0.343 1.366
4 0.887 -0.069 0.956 0.329 -0.565 -0.397 1.521
5 0.920 -0.058 0.978 0.349 -0.453 -0.406 1.431
6 0.886 -0.036 0.923 0.397 -0.508 -0.434 1.430
7 0.894 -0.030 0.924 0.384 -0.704 -0.414 1.628
8 0.893 -0.029 0.922 0.428 -0.777 -0.457 1.699
9 0.896 -0.025 0.920 0.542 -1.243 -0.567 2.163

Value 0.901 -0.024 0.925 0.768 -1.703 -0.792 2.628
Di¤. -0.006 0.088 -0.094 0.623 -1.626 -0.534 1.532
St.dev. 0.032 0.034 0.060 0.181 0.493 0.153 0.454

Panel B. 10 dividend-price portfolios

�̂i;m �̂i;C �̂i;D �̂i;CC �̂i;CD �̂i;DC �̂i;DD
Low 0.954 -0.104 1.059 0.223 -0.096 -0.328 1.155
2 0.949 -0.109 1.058 0.118 -0.084 -0.228 1.143
3 0.939 -0.084 1.023 0.182 0.095 -0.266 0.928
4 0.905 -0.063 0.968 0.223 -0.200 -0.286 1.168
5 0.881 -0.053 0.934 0.259 -0.252 -0.312 1.186
6 0.881 -0.047 0.928 0.386 -0.767 -0.433 1.695
7 0.924 -0.043 0.967 0.388 -0.777 -0.431 1.745
8 0.896 -0.043 0.939 0.438 -1.015 -0.481 1.954
9 0.823 -0.028 0.851 0.387 -0.873 -0.415 1.724

High 0.740 -0.024 0.764 0.411 -1.027 -0.435 1.791
Di¤. -0.214 0.080 -0.295 0.187 -0.931 -0.107 0.636
St.dev. 0.065 0.030 0.091 0.113 0.431 0.088 0.364
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Panel C. 10 size portfolios

�̂i;m �̂i;C �̂i;D �̂i;CC �̂i;CD �̂i;DC �̂i;DD
1 0.918 -0.045 0.963 0.528 -1.611 -0.573 2.574
2 0.945 -0.055 1.000 0.509 -1.330 -0.564 2.331
3 0.923 -0.066 0.989 0.497 -1.249 -0.563 2.238
4 0.937 -0.069 1.006 0.446 -1.099 -0.515 2.104
5 0.948 -0.069 1.017 0.435 -1.020 -0.504 2.036
6 0.940 -0.067 1.007 0.397 -0.907 -0.464 1.913
7 0.969 -0.064 1.033 0.380 -0.746 -0.444 1.779
8 0.961 -0.073 1.034 0.359 -0.700 -0.432 1.734
9 0.962 -0.071 1.033 0.328 -0.554 -0.399 1.586
10 0.973 -0.091 1.064 0.205 -0.118 -0.296 1.181
Di¤. -0.055 0.046 -0.101 0.323 -1.493 -0.277 1.392
St.dev. 0.019 0.012 0.028 0.098 0.428 0.087 0.401
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Table 6. Cross-sectional regressions of average premia on cash-�ow and
discount-rate betas

The table reports results from cross-sectional regressions of average portfolio excess
returns on estimated cash-�ow and discount-rate betas. �CAPM" refers to equation (20),
�Two-factor I-CAPM" refers to equation (21), �Two-factor I-CAPM�" refers to the pre-
vious model when the constant is removed, �Four-factor I-CAPM" refers to equation
(19) and �Four-factor I-CAPM�" refers to the previous model when the constant is re-
moved. Also, the last column reports estimates for the CRRA () and the risk premium
� estimated from the restricted model in (22). Robust standard errors are reported
in parentheses and the corresponding t-statistics are reported in square brackets below
coe¢ cient estimates. �(��; ���) denotes signi�cance at the 10% (5%, 1%) level.

Panel A. 25 BE/ME sorted portfolios
Two-factor Two-factor Four-factor Four-factor

CAPM I-CAPM I-CAPM� I-CAPM I-CAPM�

�0 0:029�
(0:016)

[1:901]

�0:003
(0:015)

[�0:229]

�0:002
(0:013)

[�0:121]
�m �0:023

(0:017)

[�1:355]
�C 0:083���

(0:031)

[2:717]

0:077���
(0:014)

[5:296]

�D 0:017
(0:017)

[1:009]

0:013���
(0:001)

[14:233]

�CC 0:076��
(0:029)

[2:627]

0:073���
(0:015)

[4:942]

�CD 0:011
(0:016)

[0:729]

0:009���
(0:002)

[4:399]

�DC 0:087���
(0:029)

[2:909]

0:084���
(0:016)

[5:118]

�DD 0:016
(0:015)

[1:030]

0:014���
(0:002)

[7:476]

adj.-R2 3:4% 39:9% 42:4% 52:7% 54:9%
F -test (all zero)

(p-value)
8:983
(0:001)

7:688
(0:001)

�2- test
(p-value)

�0 = �D = 0
194:294
(0:000)

�0 = �CD = 0
18:465
(0:000)

�CC = �DC
5:447
(0:019)

�2- test
(p-value)

�CD = �DD
8:277
(0:004)

CRRA ()
(t-stat)

5:775���
(7:878)

� 0:013���
(0:001)

[14:233]
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Panel B. 30 portfolios: 10 BE/ME, 10 D/P and 10 size sorted portfolios
Two-factor Two-factor Four-factor Four-factor

CAPM I-CAPM I-CAPM� I-CAPM I-CAPM�

�0 0:010�
(0:006)

[1:799]

�0:004
(0:005)

[�0:766]

�0:002
(0:003)

[�0:566]
�m �0:003

(0:006)

[�0:470]
�C 0:071���

(0:015)

[4:668]

0:0061���
(0:009)

[6:519]

�D 0:016��
(0:006)

[2:747]

0:012���
(0:001)

[18:042]

�CC 0:024�
(0:029)

[2:627]

0:019���
(0:009)

[2:305]

�CD 0:006
(0:004)

[1:690]

0:004���
(0:001)

[3:806]

�DC 0:028�
(0:014)

[2:030]

0:023���
(0:011)

[2:179]

�DD 0:009��
(0:004)

[2:549]

0:008���
(0:001)

[5:606]

adj.�R2 �2:7% 45:6% 46:4% 82:7% 83:1%
F -test (all zero)

(p-value)
13:178
(0:000)

35:733
(0:000)

�2-test
(p-value)

�0 = �D = 0
321:302
(0:000)

�0 = �CD = 0
14:429
(0:001)

�CC = �DC
0:846
(0:357)

�2-test
(p-value)

�CD = �DD
17:017
(0:000)

CRRA ()
(t-stat)

5:304���
(9:713)

� 0:012���
(0:001)

[18:042]
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Panel C. 45 portfolios: 25 BE/ME and 20 risk sorted portfolios
Two-factor Two-factor Four-factor Four-factor

CAPM I-CAPM I-CAPM� I-CAPM I-CAPM�

�0 0:014
(0:009)

[1:665]

0:001
(0:007)

[0:152]

0:004
(0:006)

[0:647]

�m �0:007
(0:009)

[�0:769]
�C 0:071���

(0:015)

[4:663]

0:073���
(0:010)

[7:111]

�D 0:011
(0:008)

[1:459]

0:012���
(0:001)

[17:959]

�CC 0:056���
(0:014)

[3:962]

0:062���
(0:010)

[6:149]

�CD 0:004
(0:007)

[0:595]

0:008���
(0:001)

[6:230]

�DC 0:065��
(0:015)

[4:378]

0:072���
(0:011)

[6:283]

�DD 0:008
(0:007)

[1:277]

0:013���
(0:001)

[9:540]

adj.�R2 �0:9% 42:7% 44:0% 60:4% 61:0%
F -test (all zero)

(p-value)
17:411
(0:000)

17:790
(0:000)

�2-test
(p-value)

�0 = �D = 0
315:247
(0:000)

�0 = �CD = 0
38:683
(0:000)

�CC = �DC
7:699
(0:005)

�2-test
(p-value)

�CD = �DD
16:904
(0:000)

CRRA ()
(t-stat)

5:788���
[11:130]

� 0:012���
(0:001)

[17:959]
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Panel D. 75 portfolios: 25 Size-BE/ME, 20 risk, 10 BE/ME, 10 D/P and 10 size sorted portfolios
Two-factor Two-factor Four-factor Four-factor

CAPM I-CAPM I-CAPM� I-CAPM I-CAPM�

�0 0:012��
(0:005)

[2:339]

�0:002
(0:004)

[�0:553]

�0:001
(0:003)

[�0:413]
�m �0:004

(0:005)

[�0:809]
�C 0:073���

(0:011)

[6:750]

0:068���
(0:007)

[9:544]

�D 0:015���
(0:005)

[3:103]

0:012���
(0:000)

[24:981]

�CC 0:052���
(0:009)

[5:262]

0:049���
(0:007)

[6:824]

�CD 0:009��
(0:004)

[2:272]

0:007���
(0:001)

[7:812]

�DC 0:060���
(0:010)

[5:601]

0:058���
(0:008)

[6:943]

�DD 0:013���
(0:004)

[3:294]

0:011���
(0:001)

[11:383]

adj.�R2 �0:4% 44:4% 44:9% 64:8% 65:3%
F -test (all zero)

(p-value)
30:543
(0:000)

35:193
(0:000)

�2-test
(p-value)

�0 = �D = 0
618:399
(0:000)

�0 = �CD = 0
60:483
(0:000)

�CC = �DC
9:889
(0:002)

�2-test
(p-value)

�CD = �DD
29:874
(0:000)

CRRA ()
(t-stat)

5:594���
[14:640]

� 0:012���
(0:000)

[24:981]
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