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Abstract

We analyze a sequential decision model, where in every period a

new agent seeks to determine the payoff of some actions. Every agent

receives a possibly uninformative signal about the payoffs, and she

observes previous choices. Some actions have a saturation effect ; i.e.,

their payoffs become zero if used repeatedly too often albeit the orig-

inal payoff is recovered later. We show that in every equilibrium and

for almost every equilibrium play path, an action will trigger a cyclical

herd behavior. We also show that the length of the transition phase

between two consecutive herd behavior is at most the time needed to

recover from the saturation effect. We thus give an alternative expla-

nation to Kirman (1993) for the cyclicity of herd behavior, based on

the negative externality generated by the repeated use of the same

action.

Keywords: Herd behavior, Cycles,

Saturation effects.
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Introduction

Many economic situations have in common that actions previously chosen

by a large group of agents can have a direct influence on future decision-

makers. For instance, Scharfstein and Stein (1990) provides some evidence

that managerial activities tend to follow this pattern. Such situations are

often described as herd behavior, where the information implicitly carried in

previous choices about the value of some particular actions may overwhelm

any private information or preferences of subsequent agents (see Banerjee

(1992) and Bikhchandani et al. (1992) for a formalization).

Of particular interest are situations where herd behavior are cyclical;

i.e., a particular action is chosen for some time by a large group of agents

in circumstances observationally equivalent to a herd behavior, then this

action is abandoned for a new one to possibly reappear later. For instance

in financial markets, periods of bull markets are usually followed by other

periods of bear markets on basis that can be largely construed as speculative

behavior driven by observations of previous investors.

Kirman (1993) presents other examples, and also provides a sound theo-

retical explanation to this phenomena. In Kirman’s model, the alternation

of belief-based decisions is explained as a long-run phenomena generated by

direct and noisy communication between agents about the value of some

actions. In equilibrium, a stationary distribution determine the probability

that a herd behavior is triggered by a particular action. However, this ap-

proach requires an effective communication device among agents, and does

not predict the length of the transition periods since alternations can occur

in any period with positive probability.

In this paper, we develop an alternative explanation to Kirman’s, where

cycles are triggered by public information instead of direct communication.

Our approach is based on the idea that cyclicity of herd behavior is driven

by publicly observable saturation effects caused by successive adoptions of
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the same action. That is, we argue that repeated adoptions of the same ac-

tion may trigger negative externalities, potentially leading future agents to

abandon this action as long as those negative externalities persist. Cyclicity

then appears as an equilibrium phenomena, where an action triggering a herd

behavior will surely disappear at some point because of saturation effects,

to possibly reappear later if those saturation effects are no longer present.

Our approach makes decisions leading to cyclical herd behavior solely contin-

gent on public information, in contrast to Kirman’s which relies on a direct

communication technology.

We next give an example to illustrate our point. Consider an art gallery

scheduling expositions for the upcoming year, and facing a large panel of

artists to present who must be capable of attracting a large public and po-

tential buyers. Spots are scarce, and setting up an exposition is costly. Even

if every artist has some merits in her own right, the gallery must figure out

which of them has the highest market value to maximize profits. The gallery

can base her decisions on previous experiences from the artist in similar sit-

uations, and elect those who have generated the highest profits in the past.

Market tastes are nevertheless changing, and a fashionable artist some time

ago may have run out of fashion because of over-exposure or exhaustion of

buyers for her works. Thus, the gallery must take into account the satura-

tion effect of previous experiences as well as the previous successes to make

optimal choices. Once the saturation effect is likely to have disappeared, a

previously successful artist is likely to be successful again if presented. Our

notion of saturation effect can explain why, for instance, it is common to

see expositions in African art then followed by modern artists in the same

gallery. This issue is ignored in the classical literature on herd behavior

(see Bikhchandani et al., 1992), which would predict in our example that a

successful artist once should be systematically presented.
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1 The model

In this section, a formal description of the model is given. It is derived from

that in Banerjee (1992). Our model generalizes this last reference in that we

allow for a finite set of actions to have positive payoffs among a continuum,

instead of one in this last reference. From a technical standpoint, we relax

two of the three tie-breaking rules that Banerjee imposes. This framework is

minimal to generate the results described in the Introduction.

Time is discrete and continues forever. In every period, a new player

appears and selects an action from the set [0, 1]. There are two types of

actions: any action a ∈ A = {a1, ..., an} (⊂ [0, 1]) has payoff da > 0, whereas

any other action in [0, 1] \ A has a payoff of zero. We reorder A so that if

i > j then di ≤ dj. An player does not know the set A nor the payoffs, but

she knows its cardinality n.

Every player receives a signal about A, which can take two forms. With

probability α > 0, the signal is informative and takes the form of an action

chosen from A. When receiving an informative signal, the action ai is received

with probability pi > 0 so that
∑

i pi = 1. We assume that signals satisfy

the following property.

Assumption 1 The sequence (pi)i=1,...,n is strictly decreasing.

That is, when receiving a signal we assume that a player is more likely to

know which action has the highest payoff. With probability 1−α, the signal

is uninformative and takes the form of a variable ξ /∈ [0, 1]. The nature of

the signal is private information.

Every player can observe all the previous choices of actions. Consider

the player living in period t > 1, for every sequence of observed actions

(a1, ..., at−1) we associate the information set {(a1, s1, ..., at−1, st−1)|
si ∈ [0, 1] ∪ {ξ} ∀i}. In other words, a player knows which actions have

been chosen, but she is uncertain about the signals previously received. The
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information set of the first player is defined to be the null set. A strategy for

the player living in period t assigns to every information set in period t and

to every received sinal a (possibly randomized) action.

Every player has a common prior belief about the signals previously re-

ceived at every information set. This prior belief is such that ξ (the uninfor-

mative signal) is received with probability 1− α, and with probability α the

informative signal is drawn from a uniform distribution on [0, 1].

We say that an action a ∈ [0, 1] has a saturation effect if there exists

Na > 1 such that when t + Na players have consecutively chosen this action

after any period t then the payoff of a is 0 with probability πt′ > 0, for

every t′ ∈ {t + Na, ..., t + S} and for some integer S > Na. We assume that

the sequence (πt′)t′ is strictly decreasing and sums up to 1. After period

t+S, the action regains its original payoff with probability φt′ > 0, for every

t′ ∈ {t + S + 1, ..., t + V } and for some integer V > S, if it is not chosen

in any such period t′ and remains 0 otherwise. We assume that the finite

sequence (φt′)t′ is strictly increasing and sums up to 1.

The motivation for the notion of saturation effect is that, when choosing

repeatedly too often the same action, subsequent agents may find it worthless

with decreasing probability over time. This assumption can be justified as

negative externalities occurring when the action is chosen too often, as in

the example given in the Introduction. We keep the possibility of a decrease

in payoff exogenous to simplify the exposition, our basic insight remaining

the same when endogenous. The second aspect of the definition, namely that

the action recovers its original payoff with probability that increases with the

number of times the action is not chosen, captures the idea that the negative

externality caused by the repeated use of the same action disappears over

time as it gets temporarily abandoned.
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We assume that every player is risk-neutral and maximize the expected

payoff of her action, where the expectation is based on observed actions and

the signal received. Risk-neutrality is not central to our analysis. Similar

qualitative results obtain with risk-aversion instead, this issue is omitted to

simplify the analysis.

We must add a tie-breaking decision rule inherited from Banerjee (1992)

to carry out our analysis.

Assumption 2 If a player does not have a signal, and if all the previous

players (if any) have chosen a = 0, then this player will choose a = 0.

The action a = 0 can be construed as an exit option, chosen by a player

who has no information whatsoever about A. This assumption is consistent

with the prior belief of the player, who is indifferent between any action in

[0, 1] by assumption. Instead of randomizing, we impose this rational choice

as the only outcome in this case.

Every player updates her belief in a Bayesian manner according to avail-

able information. The structure of the game is common knowledge to every

player. The remainder of the paper is devoted to analyzing the Bayesian

Nash Equilibria of this game. It is easy to see that there exists a contin-

uum of such equilibria in this game; for instance, when a player believes that

some actions are equally likely to yield the highest payoff then any random-

ization among those actions can be justified as an equilibrium strategy. This

multiplicity of equilibria will not affect our qualitative analysis.

2 Cyclical Herd Behavior

In this section, we present our results on herd behavior. We first describe

our notion of cyclical herd behavior triggered by a particular action. We

then show that, in every equilibrium and for almost every equilibrium play
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path, there exists action in A will trigger a cyclical herd behavior. Finally,

we analyze the length of the transition phases between two consecutive and

distinct herd behavior.

We say that the action a triggers a herd behavior at the information

set h if, given available information at this information set, the action a is

chosen after receiving every possible signal. We also say that a triggers a

cyclical herd behavior along the infinite play path s if there exist a sequence

of information sets (ht)t∈N along s such that none of those information sets

are consecutive, and a triggers a herd behavior at every ht.

We next state our main result on cyclical herd behavior. The aim is to

know how often cyclical herd behavior occur, and which set of actions can

potentially trigger this phenomena. Central to the next result is that every

action with a positive payoff has a saturation effect.

Theorem 3 Assume that every action in A has a saturation effect. For

every equilibrium and for almost every equilibrium play path, there exists an

action in A that triggers a cyclical herd behavior.

The above result states that, in every equilibrium and for all but a set

of measure zero of equilibrium play paths, an action with positive payoff

will trigger a cyclical herd behavior. Implicit in the above result is that two

distinct actions can trigger cyclical herd behavior along the same equilibrium

play path, this can occur during the periods where the first action triggering

the cyclical herd behavior exhibits a saturation effect. However, the action

with the highest payoff will not necessarily triggers a cyclical herd behavior.

Indeed, one can easily see from the proof of Theorem 3 that the first action

in A to trigger a herd behavior will also trigger a cyclical herd behavior. This

action is chosen by the early players as a function of their received informative

signals, which can correspond to any action in A. Thus, saturation effects

cannot eliminate the social inefficiency that is often seen in herd behavior.
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3 Conclusion

We have thus introduced an alternative explanation to Kirman (1993) for

the occurrence of cyclical herd behavior. Our view is that saturation effects

resulting from the repeated use of the same action by a large population

leads to the end of any herd behavior that this action may have generated

in the past. However, when the saturation effects triggered by this action

disappear, or equivalently is perceived as disappearing, then the previously

abandoned action triggers a new herd behavior as it did originally.

From a game-theoretical standpoint, the basic insight of our approach is

that, when saturation effects are realized by agents, the informational gain to

subsequent agents from the adoption of an action by previous agents disap-

pear, and subsequent agents can no longer find it optimal to adopt it because

public information is no longer a reliable source of inference. However, when

the saturation effects are perceived to disappear, the informational structure

of subsequent agents is identical to that of previous agents who has chosen

the original action on informational grounds only. Consequently a new herd

behavior starts because subsequent agents find it optimal to adopt it for the

same informational reasons as previous agents did.

The origins of saturation effects are not addressed here, but rather are

taken as given. One could conjecture that psychological aspects play an

important role, as seems intuitive in industries such as fashion or art market.

Empirical studies are needed to test the validity of this conjecture.

A Technical proofs

We now prove the results stated earlier. We first present the well-known

Glivenko-Cantelli’ Theorem, which will used throughout. The proof of this

result is given in Fristedt and Gray (1997) p. 192 and extensions. It most
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states that, when dealing with identical i.i.d. drawings, the empirical distri-

bution function converges almost surely to the original distribution function.

Theorem 4 (Glivenko-Cantelli)

Let (Yn)n∈N be an i.i.d. sequence of R-valued random variables with common

distribution function F . For every y ∈ R, let 1y be the indicator function of

the interval (−∞, y], and define the random variables

Fn(y) =
1

n

n∑
k=1

1y(Yk).

Then for every y, Fn(y) → F (y) almost everywhere.

When applied to our setting, the above result roughly states that, for almost

every play path, the frequency of signals received by the players will converge

in distribution to the original way nature draws. This result will help us

in proving that some pathological infinite play paths have measure 0 with

respect to the choices of the nature.

A.1 Proof of Theorem 3

We start our proof by presenting two simple technical lemmas, central to

determining optimal choices given available information.

Our first lemma states that receiving a signal is a better information than

observing a sequence of 0.

Lemma 5 Assume that, along a path, every player before period t has chosen

0. If Player t receives an informative signal, then she will follow it.

Proof. From an ex-ante standpoint, Player t believes that the event 0 ∈ A

has probability 0. Since all the previous players have chosen 0, by Assumption

2 Player t assigns probability 1 to the event that all previous players had no
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informative signal. Thus, Player t believes with probability 1 that she is the

only one to have an informative signal, and it is thus optimal to follow it.

Our second lemma states that observing two identical actions is more

informative about the best action than one signal alone.

Lemma 6 Fix any equilibrium, and assume that the same action (different

from 0) has been chosen by the first and second player. Then this action

triggers a herd behavior next period.

Proof. Consider any equilibrium, and let H be the event that the first two

players have chosen the same action a and player 3 has received the signal

a3. Clearly, if a3 = a then Player 3 will choose a. Otherwise, we compute

the probability of the event [a = ai] for every i, conditional on H, to derive

our result. We have that

P ([a = ai]|H) = α3p2
i (1− pi) + α2(1− α)pi(1− pi). (1)

Moreover, we have that

P ([a3 = ai]|H) = α2pi(1− pi)(1− α). (2)

It is easy to see that, from (1) and (2) together with Assumption 1, the

expected payoff of choosing a is greater than that of a3, and thus Player 3

will choose to ignore her signal. The proof is complete.

The previous lemma states that observing two identical actions will offset

any private information. The intuition of the result is central to our analysis.

The first player to choose this action must have received the corresponding

signal, which as good as any signal received by Player 3 ex-ante. Moreover,

with strictly positive probability the second player has chosen this action

because he also received the corresponding signal. Thus, receiving twice the

same signal with strictly positive probability makes the corresponding action

more likely to have a higher payoff than any private signal Player 3 can

receive.
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With all the previous results, we can prove Theorem 3. We start our

proof by showing that, for almost every equilibrium play path, some action

in A will trigger a herd behavior. The remainder of the proof is based on the

method used to derive this property. From now on, we will refer to Player i

as i (for every i) to simplify the exposition.

Consider 1, if she has the uninformative signal she chooses 0 by Assump-

tion 2, and otherwise she chooses her own signal. Consider now 2, if she has

the uninformative signal she follows the same choice as 1, and otherwise one

must distinguish two cases. If 2’s signal matches 1’s action, then 2 follows her

signal. If 2’s signal is different from 1’s action then she randomizes between

1’s action and her own signal (2 does not randomize if 1’s action is 0, she

chooses her own signal instead by Lemma 5).

We now analyze the decision problem of 3. This player can observe four

different class of past actions: case a) both previous players have chosen 0;

case b) 1 has chosen 0 and 2 has chosen a2 > 0; case c) 1 and 2 have chosen

the same action; case d) two distinct actions have been chosen that are not

0. We next examine those four cases.

In case a), if 3 has the uninformative signal she chooses 0 by Assumption

2, and otherwise she chooses her own signal by Lemma 5. In case b), if

3 has the uninformative signal then she will choose a2, and otherwise she

randomizes between her own signal and a2. In case c), 3 always chooses

the action chosen twice by Lemma 6. In case d), if 3 has the uninformative

signal then she randomizes between the two previously chosen actions, and

otherwise one must distinguish two subcases. If 3’s signal is identical to one

of the previously chosen actions then she follows her own signal (the idea is

the same as in Lemma 6), and otherwise she randomizes between the two

actions and her own signal.

From the above analysis, it is easy to derive that the first action (different

from 0) to be chosen twice triggers a herd behavior at the information set
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immediately following the second choice, unless the signal received in this

period matches an already chosen and different action. By Theorem 4, for

almost every equilibrium play path every element in A will be drawn by

nature at least twice. Moreover, by Assumption 1 the set of play paths where

two different signals are always sent one after the other also has probability

0. Thus, by an argument similar to that in Lemma 6, for almost every path

an action in A will be chosen often enough to rule out the above case. Thus,

for almost every equilibrium play path, there exists an action in A that will

trigger a herd behavior.

By an argument similar to that in Lemma 6, once an action in A has

trigger a herd behavior at a particular information set, it will also trigger a

herd behavior at the following information set. Since every action in A has

a saturation effect, it follows that once a ∈ A has triggered a herd behavior

for the first time, it will also trigger Na−1 consecutive herd behavior until it

becomes common knowledge that its payoff may become 0 for the next S +V

consecutive periods with positive probability.

However, after those S+V periods the information structure of every sub-

sequent player about which action has the highest payoff is identical to that

of the players who followed the previous herd behavior. Thus, any optimal

action for those players must also be optimal for the subsequent players, and

a new cycle of herd behavior start. This situation will be repeated infinitely

often, proving the result. The proof is now complete.
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