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$EVWUDFW: In this paper we suggest an alternative estimator and an alternative graphical analysis, both developed by 

Hyndman HW�DO� (1996), to describe the law of motion of cross-sectional distributions of per-capita income and its 

components in Europe.  This estimator has better properties than the kernel density estimator generally used in the 

literature on intra-distribution dynamics (cf. Quah, 1997).  By using the new estimator, we obtain evidence of a very 

strong persistent behavior of the regions considered in the study, that is poor regions tend to remain poorer and rich 

regions tend to remain richer.  These results are also in line with the most recent literature available on the 

distribution dynamic approach to regional convergence (Pittau and Zelli, 2006).  �

 
���,QWURGXFWLRQ�

The interest in regional convergence has been growing intensively in the last decade.  The most 

widely-accepted method of testing the convergence hypothesis is the regression approach 

developed by Barro and Sala–i-Martin (1995), known as the �convergence approach.  This 

method has been discussed from different points of view (see Durlauf and Quah, 1999, for a 

review of the literature on economic convergence; and Magrini, 2004, for a survey focusing on 

regional convergence studies).  One of the critical points is that this approach tends to 

                                                 
♣ Corresponding author: r.basile@isae.it, ISAE (Institute for Studies and Economic Analyses) Piazza 
dell’Indipendenza, 4, 00185 – Rome, Tel. +39-06-44482874; Fax +39-06-44482249. 
 
The present paper has been written while Roberto Basile and Gianfranco Piras were visiting the Regional 
Economics Applications Laboratory at UIUC. A particular thank is due to Geoffrey J.D.Hewings both for 
providing hospitality during that period and for all the comments and suggestions helpul to improve the 
paper. Moreover, the authors wish to acknowledge the help of Robert Hyndman for having read previous 
version of the paper and for having contributed to the final version with very interesting comments. All the 
suggestions we obtained from the participants at the REAL seminar series were also appreciated. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7046262?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 2 

concentrate on the behavior of the representative economy.  In particular, it sheds light on the 

transition of this economy towards its own steady state, but provides no insight on the dynamics 

of the whole cross-sectional distribution of regional per-capita incomes.  Generally speaking, in 

fact, a negative association between the growth rates and the initial conditions can be associated 

with a rising, a declining and a stationary cross-section income dispersion.  Clearly, a method 

that cannot differentiate between convergence, divergence and stationarity is of limited or no 

use.  This failure is essentially a simple intuition of what is termed Galton’s fallacy (Quah, 

1993). 

To overcome this problem, the combinatioQ�RI�WKH� -convergence approach with the analysis of 

the evolution of the un-weighted cross-sectional standard deviation of the logarithm of per-capita 

income has been proposed.  A reduction over time of this measure of dispersion is referred to as 

-conveUJHQFH���+RZHYHU��FRQFHQWUDWLQJ�RQ�WKH�FRQFHSW�RI� -convergence does not represent an 

effective solution: analyzing the change of cross-sectional dispersion in per-capita income levels 

does not provide any information on the intra-distribution dynamics.  Moreover, a constant 

standard deviation is consistent with very different dynamics ranging from criss-crossing and 

leap-fogging to persistent inequality.  Distinguishing between these dynamics is, however, of 

essential importance. 

More recently, moving from this picture, an alternative approach to the analysis of convergence 

has been suggested in order to overcome such a problem.  This method, known as the LQWUD�

GLVWULEXWLRQ� G\QDPLFV approach (Quah, 1996, 1997), examines directly how the whole income 

distribution changes over time and thus appears to be more informative than the convergence 

empirics developed within the regression paradigm.  

The intra-distribution dynamics was generally analyzed through the application of Markov chain 

methodologies (Quah, 1996; López-Bazo HW�DO., 1999; Fingleton, 1997, 1999) or, more recently, 

through the estimation of conditional densities using stochastic kernel estimators (Quah, 1997; 

Magrini, 2004; Cheshire and Magrini, 2005).  All of the studies that make use of non-parametric 

stochastic kernel estimators provide contour plots of the conditional density to describe the law 

of motion of cross-sectional distributions.  In this way, they treat the conditional density function 

as a bivariate density function.  However, it has to been noticed that the conditional density 

function is a “sequence of univariate functions” (Hyndman HW�DO�, 1996). 
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The aim of this paper is to suggest an alternative technique to describe the law of motion of 

cross-regional distributions of per-capita income, labor productivity and unemployment rates in 

Europe.  To achieve this aim we will make use of an alternative estimator and of alternative 

graphical evidences (based on the so-called VWDFNHG�GHQVLW\�SORW�DQG�KLJKHVW�GHQVLW\�SORW), both 

developed by Hyndman HW� DO. (1996).  In particular, they notice that the conditional mean 

function obtained from the kernel estimation of the conditional density is equivalent to a kernel 

smoother.  Starting from the observation that the kernel smoothers present some undesirable bias 

properties, they propose a modified conditional density estimator with a mean equivalent to some 

other nonparametric regression smoothers that have better statistical properties in terms of  

mean-bias.  Furthermore, they show that their modified estimator has a smaller integrated mean 

square error than the standard kernel estimator. 

The layout of the paper is the following.  In Section 2, we recall the intra-distribution dynamics 

approach and describe the conditional density estimator developed by Hyndman HW�DO. (1996).  In 

Section 3, we report the estimation results obtained applying this estimator to data on per-capita 

GDP, labor productivity and unemployment rates for European regions over the period 1980-

2003.  Section 4 concludes and indicates some further possible developments.. 

 

���,QWUD�GLVWULEXWLRQ�G\QDPLFV�DQG�GHQVLW\�HVWLPDWRUV�

����7KH�WUDQVLWLRQ�G\QDPLFV�DSSURDFK�

As pointed out in the introduction, many problems have been identified with respect to the 

regression approach to economic convergence and these drawbacks have pushed researchers to 

explore alternative methods.  In particular, Quah (1993, 1994, 1996, 1997) has suggested an 

interesting approach to the analysis of economic convergence based on the concept of transition 

dynamics.  In a nutshell, this method consists of studying the dynamics of the entire distribution 

of the level of per-capita income of a set of economies.  We will now review the basic ideas. 

As a first step of the methodology, Quah suggests the development of a probability model 

describing how a given economy (a region or a country) observed in a given class of the income 

distribution at time W moves to another class of the income distribution in a subsequent moment 

of time W��.  Let assume the existence of say K different income classes and 7 time periods and 
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define ) �  as the distribution of regional per-capita incomes at time W with φ �  the associated 

probability measure.  The dynamics of φ �  can be modeled as a first order autoregressive process: 

’
1
� �0φ φ+ =    (1) 

The matrix 0 is usually defined as the transition probability of a Markov process.  Each element 

of 0 describes the probability that an economy belonging to class L in time period W will move to 

class M in the next time period (Quah, 1993).  Iterations of (1) yield a predictor for future cross-

section distributions 

’� �0 τ
τφ φ+ =               (2) 

since ’0 τ  contains information about probability of moving between any two income classes in 

exactly τ periods of time.   

Implications for the convergence debate are then drawn from the study of the functions � τφ + ’s: if 

they display a tendency towards a single point mass, then we can conclude that there is 

convergence towards equality.  Conversely, if � τφ +  displays a tendency towards a two-point (or 

bimodal measure), this might be interpreted as a sign of income polarization. 

Even if intuitively appealing, the Markov Chain approach is not free of criticisms.  In fact, the 

Markov property assumes that in each moment of time the temporal process is dependent on only 

the previous period in time (a process is said to be a Markov chain if the random variable at time 

W�� depends exclusively on the information set at time W and not on any other previous period in 

time).  For this reason, Bickenbach and Bode (2003) pointed out that Markov chain theory 

imposes restrictions on the data-generating process if applied to analyze the regional 

convergence process. In particular, the assumption that per-capita income follows a stationary 

first order Markov process is often unrealistic and needs to be verified in each empirical 

application by using appropriate statistical testing procedures.  By using data on the U.S., 

Bickenbach and Bode (2003) proved that the per-capita income over a fairly long period of time 

did not follow a common stationary fist order Markov process. 
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One way to overcome this problem is to avoid any arbitrary discretization and to allow the 

number of cells of the Markov transition probability matrix to tend to infinity (Quah, 1997).  In 

this case, the relationship between the distribution at time W�τ and W can be written as 

( ) ( ) ( )
0

|� �\ I \ [ [ G[τ τφ φ
∞

+ = ∫   (3) 

where ( )|I \ [τ  is the probability density function of \ (the per-capita income levels at time W�τ) 

conditional upon [� (the per-capita income levels at time W).  In other words, the conditional 

density ( )|I \ [τ  describes the probability that a given region moves to a certain state of relative 

income (richer or poorer) given that it has a certain relative income level in the initial period.  In 

this case convergence must be studied by visualizing and interpreting the shape of the income 

distribution at time W�τ over the range of incomes observed at time W.  

�

�����7KH�NHUQHO�FRQGLWLRQDO�GHQVLW\�HVWLPDWRU�

Operationally, the WUDQVLWLRQ�G\QDPLFV�DSSURDFK consists of the estimation and visualization of 

the conditional density of <�given�;� where < is the regional per-capita income at time W�τ and ; 

the regional per-capita income at time W.  Denote the sample by ( ) ( ){ }1 1, ,..., ,���; < ; <  and the 

observations by ( ) ( ){ }1 1, ,..., ,�	�[ \ [ \ ; thus, the aim of the researcher is to estimate the density of 

< conditional on ; [.  Let ( ),J [ \τ  be the joint density of �;�<�, ( )K [τ  be the marginal density 

of ; and ( ) ( ) ( )| ,I \ [ J [ \ K [τ τ τ=  the conditional density of <_�; [�.  

The most obvious estimator of the conditional density is the kernel estimator, firstly proposed by 

Rosenblatt (1969).  Recently, Hyndman HW�DO� (1996) have further explored its properties.  They 

define: 

( ) ( )
( )

ˆ ,ˆ |
ˆ
J [ \

I \ [
K [

τ
τ

τ

=   (4) 

where 
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( )
1

1
ˆ ,


 �� �
�

\ <[ ;
J [ \ .

QDE D E
τ

=

 −  − 
=       

∑     

is the estimated multiplicative joint density of �;�<� and  

( )
1

1ˆ
� � �
�

[ ;
K [ .

QD D
τ

=

 − 
=    

∑  

the estimated marginal density.1  

Equation (4) can also be written as: 

( ) ( )
1

1ˆ |
� � ��
�

\ <
I \ [ Z [ .

E E
τ

=

 − 
=    

∑   (5) 

where 

( )
1

� �� � �
� �

[ ;[ ;
Z [ . .

D D=

 − − 
 =       

∑ . 

Equation (5) suggests that the conditional density estimate at ; [ �  can be obtained by summing 

the Q kernel functions in the <-space, weighted by ( ){ }�Z [  in the ;-space.  In other words, 

equation (5) can be interpreted as the Nadaraya-Watson kernel regression (or locally weighted 

averaging) of 
� �\ <

.
E

 − 
   

 on ; � . (see Hyndman and Yao, 2002).  The two parameters D and E 

control the smoothness between conditional densities in the [ direction (the smoothing parameter 

for the regression) and the smoothness of each conditional density in the \ direction, 

respectively.2  As usual, small bandwidths produce small bias and large variance whereas large 

bandwidths give large bias and small variance.  The optimal bandwidth might be derived by 

differentiating the integrated mean square error function (IMSE) with respect to D and E and 

setting the derivatives to 0 (Bashtannyk and Hyndman, 2001).  However, this requires additional 

                                                 
1 . �  and . �  are Euclidean distance metrics on the spaces of ; and < respectively. .��� is a symmetric density 

function, known as the kernel function. Usually, the Epanechnikof kernel is used. 
2 In the original Rosenblatt’s estimator D E. 
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assumptions on the functional forms of both the marginal and the conditional densities.  As a rule 

of thumb, it can be assumed that these densities are Gaussian or of some other parametric form.   

The bandwidth D can either be fixed or it can vary as a function of the focal [.  When the data are 

not homogenously distributed over all the sample space (i.e. when there are regions of sparse 

data), a variable (or nearest-neighbor) bandwidth is recommended.  In this case, we adjust D�[� so 

that a fixed number of observations P are included in the window.  The fraction P�Q is called the 

span of the kernel smoother. 

 

����$�QRQSDUDPHWULF�FRQGLWLRQDO�GHQVLW\�HVWLPDWRU�ZLWK�PHDQ�ELDV�FRUUHFWLRQ�

Hyndman HW� DO. (1996) observe that the estimation of the conditional mean function obtained 

from the kernel (Equation 5) is equivalent to the Nadaraya (1964) and Watson (1964) kernel 

regression function:  

( ) ( ) ( )ˆˆ |
�
  

 P [ \I \ [ G\ Z [ <τ= = ∑∫   (6) 

As is well known, the Nadaraya-Watson smoother can present a large bias both on the boundary 

of the predictor space, due to the asymmetry of the kernel neighbourhood, and in its interior, if 

the true mean function has substantial curvature or if the design points are very irregularly 

spaced (Bowman and Azzalini, 1997).  

Given the undesirable bias properties of the kernel smoother, Hyndman HW�DO. (1996) proposed an 

alternative conditional density estimator with a mean function equivalent to that of other 

nonparametric regression smoothers having better properties than the Nadaraya-Watson 

approach.  

The new class of conditional density estimators can be defined as 

( ) ( )
( )*

*

1

1ˆ |
! " #
"

"
\ < [

I \ [ Z [ .
E E

τ
=

 −
 =
 
 

∑   (7) 

where ( ) ( ) ( )* ˆˆ$ $< [ H U [ O [= + − , ( )Û [  is an estimator of the conditional mean function 

( ) [ ]|U [ ( < ; [= = ,  ( )ˆ% % %H \ U [= −  , and  ( )Ô [   is the mean of the estimated conditional 

density of ( )|H ; [= . 
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Hyndman HW�DO� (1996) observe that the error term ( &H ) has the same distribution of '\  except for 

a shift in the conditional mean.  Thus, one may start by applying the standard kernel density 

estimator to the points { },()([ H , and then add the values of ( )Û [  to the estimated conditional 

densities ( )*ˆ |I H [τ  in order to obtain an estimate of the conditional density of <_�; [�. Since 

( )Ô [  (the mean function of ( )*ˆ |I H [τ ) is constant under certain conditions, the mean-bias of  

( )*ˆ |I \ [τ  is simply the bias of ( )Û [  and the integrated mean square error is reduced.  

Obviously, setting  ( ) ( ) ( )
1

ˆ ˆ
*
+ +

+U [ P [ Z [ <
=

= = ∑  (i.e. the Nadaraya-Watson smoother) implies that 

( ) ( )*̂
ˆ| |I \ [ I \ [= .  However, ( )U [  can also be estimated by using many other smoothers 

having better properties than the kernel regression estimator, ( )P̂ [ .  In other words, using the 

method developed by Hyndman HW�DO. (1996), the mean function of ( )*ˆ |I \ [τ  is allowed to be 

equal to a smoother with better bias properties than the kernel regression.  In this way, we obtain 

an estimate of the conditional density with a mean-bias lower than that of the kernel estimator.  

Moreover, Hyndman HW� DO. (1996) show that the modified estimator has a smaller integrated 

mean square error than the standard kernel estimator.   

�

���6RPH�HYLGHQFHV�RQ�UHJLRQDO�FRQYHUJHQFH�LQ�(XURSH�

����'DWD�

In this paper, we use the intra-distribution dynamics approach described in the previous section 

to explain the law of motion of cross-regional distributions of per-capita income and its 

components (i.e., labor productivity and unemployment rate) in Europe.  Following de la Fuente 

(2002), the per-capita income can be expressed as the product of two main components, income 

per-worker and workers per population unit.  The employment component of income per-capita, 

in particular, depends crucially on labor force participation and unemployment rates.  Thus, 

income per-capita can be written in the form 

( )1
< < / <

X
3 / 3 /

= × × −� � � ����



 

 9 

where 
<

3
� is regional gross value added measured at constant prices, 

<

/
� is income per worker, 

also expressed at constant prices, and X is the unemployment rate (defined as the ratio between 

unemployment and total labour force).  All variables are normalized with respect to the EU 

average.  Figure 1 presents all the variables considered in the analysis, where the value at time W�

is plotted against the value at W�τ.  The scatter of points is very close both for the per-capita GDP 

and for the labor productivity (except for the higher part of the distribution and for a middle 

region in the case of labor productivity), while the distribution in the case of the unemployment 

rate is much more dispersed.  Working with relative values helps to remove co-movements due 

to the European wide business cycle and trends in the average values.  The period considered 

extends from 1980 to 2003.  The number of NUTS2 regions included in the sample is 184 (see 

Appendix 1 for full details of the regional coverage).  All series are drawn from the Cambridge 

Econometrics Dataset.3  In the first step, we set τ ��� and we estimate ( )15 |I \ [  by using a 

kernel estimator with a constant bandwidth parameter D (Equation 5).  Then, we estimate a 

conditional density using the modified estimator with mean bias correction (Equation 7).  In 

particular, in the second step the conditional densities were estimated using a ORZHVV (locally 

quadratic)4 mean with a span c=0.2 (see Cleveland, 1979; Cleveland and Devlin, 1988).  

Smoothing parameters for the conditional density estimation are a = 0.15 and b=0.10 in the case 

of per capita GDP, a = 0.13 and b=0.08 in the case of labour productivity and a = 0.22 and 

b=0.19 in the case of unemployment rates.5 

�

����1HZ�JUDSKLFDO�PHWKRGV�IRU�YLVXDOL]LQJ�LQWUD�GLVWULEXWLRQ�G\QDPLFV�

All the studies on intra-distribution dynamics which make use of non-parametric stochastic 

kernel estimators provide three-dimensional perspective plots (or the corresponding contour 

plots) of the conditional density to describe the law of motion of cross-sectional distributions.  In 

such a way, they treat the conditional density function as a bivariate density function, while this 
                                                 
3 Groningen and Luxemburg were excluded from the sample since they appeared to be outliers. 
4 The ORZHVV can be interpreted as a tri-cube kernel scatterplot smoother, able to capture local fluctuations in the 
density function of the independent variable.  The combination of three features - nearest neighbours, smoothed 
weight function (the tri-cube kernel), and local expected value formed via locally weighted regressions - helps local 
regression outperform many other scatter-plot smoothers (such as moving averages and overlapping regressions).  
5 All the estimations were performed using the R software. In particular, we used the code KGUFGH developed by 
Robert Hyndman and the code ORFDILW. 
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function must be interpreted as “a sequence of univariate densities” (Hyndman HW�DO. 1996) of 

per-capita income levels (or of its components) conditional on certain initial levels.  

In the present paper, new graphical methods for visualizing conditional density estimators 

developed by Hyndman HW�DO. (1996) and Hyndman (1996) are used.  The first graphical method, 

called the “VWDFNHG�FRQGLWLRQDO�GHQVLW\�SORW” (see figures 2-7, left hand side panel), displays a 

number of conditional densities plotted side by side in a perspective plot.  It facilitates viewing 

the changes in the shape of the distributions of the variables observed at time W+τ  over the range 

of the same variable observed at time W.  In other terms, each univariate density plot describes 

transitions over 15 years from a given income value in period W.  Such a representation is 

equivalent to a transition probability matrix with a continuum of rows and columns.  Hyndman HW�

DO� (1996) note that this plot is “PXFK�PRUH� LQIRUPDWLYH� WKDQ� WKH� WUDGLWLRQDO� GLVSOD\V� RI� WKUHH�

GLPHQVLRQDO�IXQFWLRQV�VLQFH�LW�KLJKOLJKWV�WKH�FRQGLWLRQLQJ” (p.13).  

The second type of plot proposed by Hyndman HW�DO. (1996) is the “KLJKHVW�FRQGLWLRQDO�GHQVLW\�

UHJLRQ” (HDR) plot.  A high density region is the smallest region of the sample space containing 

a given probability.  These regions allow a visual summary of the characteristics of a probability 

distribution function.  In the case of uni-modal distributions, the +'5V are exactly the usual 

probabilities around the mean value; however, in the case of multi-modal distributions, the +'5 

displays different disjointed sub-regions.  For each variable, Figures 2-7 (right hand side panel) 

show a plot of the 25% (the darker shaded region), 50%, 75% and 90% (the lighter shaded 

region)  +'5s computed from the density estimates shown in panel (a).  If the 25% or the 50% 

+'5V cross the 45-degree diagonal, it means that most of the elements in the distribution remain 

where they began.  Thus, it is quite clear that this method is particularly informative for the 

analysis of regional growth behavior, since it highlights the dynamics of the entire cross-section 

distribution.  Clearly, it remains important to analyze any other moments of the distribution (such 

as mean and variance) and any other central points.  In particular, one may wish to analyze the 

modes, the values of \ where the density function takes on its maximum values.  Indeed, 

especially when the distribution function is bimodal, the mean and the median are not very 

useful, since they will provide only a “compromise” value between the two peaks.  Thus, the 

modes may be considered as a form of robust nonparametric regression (Scott, 1992).  In each 
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figure, the highest modes for each conditional density estimate are superimposed on the +'5 

plots and they are shown as a bullet.   

 

����(PSLULFDO�HYLGHQFH�

For the case of per-capita incomes, figure 2 shows the stacked density plot and the +'5 plot of 

conditional density for transitions of 15 years based on the kernel estimator with a fixed 

bandwidth parameter D.  The results obtained are consistent with those discussed in previous 

work (Magrini and Cheshire, 2005; Brasili and Gutierez, 2004).  In particular, the two plots 

provide some evidence of convergence even if with a rate that appears to be very slow.  In 

particular, regions that at the beginning of the period had a per-capita income level much lower 

than the EU average appear more likely to improve their relative position over the next 15 years; 

the first three modes of the  lower tail of the distribution are above the main diagonal.  

Conversely, regions that at the beginning of the period had a per-capita income level higher than 

the EU average appear more likely to worsen their relative position over the next 15 years; the 

modes of the upper tail of the distribution are always below the main diagonal. This means that 

the poorer economies are catching up with the richer ones but this process appears to be very 

slow because the most of the mass of the probability distribution is still close to the 45-degree 

diagonal.  Finally, it is quite revealing to note that there are no signs of bimodality in the 

distribution at any level of per capita income at time W. 

Figure 3 reports the results based on the modified conditional density estimator with mean 

function specified by a ORHVV�smoother.  The two plots provide strong evidence of persistence; in 

most of the cases, regions remain where they started.  In other words, almost all the modes 

appear to lie on the 45-degree diagonal, and also the mass of the probability is very concentrated 

around the diagonal.  However, there is still evidence of some changes in the relative positions 

for the very high and very low part of the distribution.  In particular, regions that at the beginning 

of the period had a very low per-capita income level with respect to the EU average appear more 

likely to improve their relative position over the next 15 years (the lower mode in figure 3).  

Conversely, regions that at the beginning of the period had a per-capita income level particularly 

high with respect to the EU average appear more likely to worsen their relative position over the 

next 15 years (the two upper modes in figure 3).  In other words, there are some regions (those 
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between 0 and 0.5 in the distribution of the per-capita GDP at time W) that were so poor at the 

beginning that their relative position could only have improved at the end of the time period.  On 

the other hand, regions belonging to the part of the distribution greater than 2.5 were so rich in 

relative terms at the beginning of the period that it would have been difficult to believe that the 

growth rate all over the time span would have not slowed down in relative terms.  In fact, they 

tend to worsen their relative position in the considered time interval and most of the distribution 

for those regions stands below the main diagonal.   These results are perfectly in line with those 

presented in Pittau and Zelli (2006). 

In the case of labor productivity estimated with a kernel estimator with fixed bandwidth D (figure 

4), there are also signs of convergence, even if the picture is much more complicated.  The 

modes of the distributions estimated in correspondence with relatively low levels of labor 

productivity at time W lie below the 45-degree diagonal, while the modes of the distributions 

estimated in relation to the relatively high levels of labor productivity at time W lie above the 

same line.  Some exceptions are found in the middle part of the distribution.  Figure 5�shows the 

evidence obtained using the modified conditional density estimator.  The evidence of persistence 

in this case is even stronger than in the case of the per-capita GDP since, in addition, the modes 

of the very high values of the distribution at time W appear to lie on the 45-degree diagonal, the 

only exception remaining in the left tail of the distribution.  

The evidence shown in figure 6 (referring to data on the rate of unemployment using the kernel 

estimation with fixed bandwidth) appears consistent with the findings reported in Overman and 

Puga (1999).  Regions that at the beginning of the period were characterized by a very low 

relative unemployment rate with respect to the European average have a propensity to worsen 

their relative position over the next 15 years (in other words, the unemployment rate is rising).  

Generally, regions with unemployment rate in line with the mean of the distribution at time W 

exhibit a lower growth rate.  Furthermore, some evidence of bimodality occurs for regions with 

relatively high initial unemployment rates (higher than 2.5), while regions belonging to the very 

upper tail of the distribution (higher than 2.8) are likely to show either a divergent path (i.e. the 

unemployment rate increases) or a converging path (i.e. decreasing unemployment rate).  Thus, 

this evidence is strongly influenced by the fact that the distribution of the unemployment rate is 

highly positively skewed as it can be seen from the scatterplot in figure 1.  Finally, the results 

obtained using the modified conditional density estimator (figure 7) again generate evidence of a 
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strong persistent pattern.  Even if there is still support for the finding that lower regions are 

increasing the unemployment rate (and the increase seems higher in this case), it is no longer true 

that the very upper regions are experiencing a dual outcome.  The number of modes lying on the 

45-degree diagonal appear to be very high, again giving the impression that nothing has been 

changing in the distribution of the unemployment rate over the 15-years period considered.   

�

�

���&RQFOXVLRQV�

Different approaches have been used in the literature to analyze the process of regional income 

convergence.  However, the intra-distribution dynamics approach, proposed by Quah (1997), is 

without any doubt one of the most reliable methods, since it examines directly how the whole 

income distribution changes over time.  In particular, this methodology is much more 

informative than the regression approach that concentrates on the behavior of the representative 

economy (Magrini, 2004). All of the most recent studies on intra-distribution dynamics use the 

kernel density estimator to describe the law of motion of cross-sectional distributions of per-

capita income.  In particular, the empirical applications of the kernel stochastic approach to the 

case of European regions report evidence of some degree of convergence (see, in particular, 

Brasili and Gutierez, 2004); some mobility in the regional distribution of relative per-capita 

income occurs, in the sense that poor regions become richer and rich regions grow less rapidly.  

Other research has proposed the emergence of two distinct clubs of convergence ( for example, 

the “twin peaks” distribution has been identified for example by Magrini and Cheshire, 2005); 

some rich regions are converging to an higher mean level of income, and some poor regions are 

also converging but to a lower level of income.  

However, the kernel stochastic approach widely used in the literature can be criticized from two 

different point of view.  First, the kernel density estimator is usually implemented applying the 

same constant bandwidth parameter in the [ and \ directions.  These estimators have some 

undesirable bias properties that can affect the analysis of intra-distribution dynamics and, thus, 

may provide misleading evidence on the real convergence process.  Secondly, the traditional 

method of visualizing the output of conditional density estimation is not adequate, since it 

actually displays the joint distribution. 
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In this paper, we use an alternative kernel density estimator with two bandwidth parameters D 

and E  (which control the smoothness between conditional densities in the [ direction and the 

smoothness of each conditional density in the \ direction, respectively) and alternative graphical 

visualization of the conditional density estimations, both developed by Hyndman HW�DO� (1996), to 

describe the law of motion of cross-sectional distributions of per-capita income and of its 

components (labor productivity and unemployment rates) in Europe.  This estimator has better 

properties than the kernel density estimator with one common (constant) bandwidth parameter 

generally used in the literature on intra-distribution dynamics.   

Applying the Hyndman HW�DO. (1996) method to European data, we obtain interesting evidence 

that enriches the debate on the distribution dynamics.  In particular, for all the variables under 

analysis, even if with small differences, we observe that the most of the modes are lying on the 

45-degrees diagonal.  From an economic point of view, this means that there is a strong 

persistent behavior of the European regions considered in the present study.  Alternatively, it 

may be stated that the picture of the disparities is not changing over the 15-years interval 

considered, and almost all the regions appear to remain where they were at the beginning.  

In this paper, we have suggested some technical improvements to the study of the intra-

distribution dynamics approach, but many questions still remain open.  In future work, we will 

investigate the determinants of the patterns of cross-sectional growth, by combining the new 

methodology proposed here with the conditioning schemes for cross-sectional distributions 

proposed in the literature (see, e.g., Quah, 1997).  This analysis will be helpful in producing 

suggestions for a set of regional policies intended to reduce disparities.  Also the study of the 

ergodic distribution and the further development of models incorporating spatial dependence can 

be supportive for this aim.  
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APPENDIX 1: THE SAMPLE 

BE1 Bruxelles-Brussels GR11 Anatoliki Makedonia FR1 Île de France NL12 Friesland UKC1 Tees Valley and Durham 

BE21 Antwerpen GR12 Kentriki Makedonia FR21 Champagne-Ardenne NL13 Drenthe UKC2 Northumberland et al. 

BE22 Limburg GR13 Dytiki Makedonia FR22 Picardie NL21 Overijssel UKD1 Cumbria 

BE23 Oost-Vlaanderen GR14 Thessalia FR23 Haute-Normandie NL22 Gelderland UKD2 Cheshire 

BE24 Vlaams Brabant GR21 Ipeiros FR24 Centre NL31 Utrecht UKD3 Greater Manchester 

BE25 West-Vlaanderen GR22 Ionia Nisia FR25 Basse-Normandie NL32 Noord-Holland UKD4 Lancashire 

BE31 Brabant Wallon GR23 Dytiki Ellada FR26 Bourgogne NL33 Zuid-Holland UKD5 Merseyside 

BE32 Hainaut GR24 Sterea Ellada FR3 Nord - Pas-de-Calais NL34 Zeeland UKE1 East Riding et al. 

BE33 Liège GR25 Peloponnisos FR41 Lorraine NL41 Noord-Brabant UKE2 North Yorkshire 

BE34 Luxembourg GR3 Attiki FR42 Alsace NL42 Limburg UKE3 South Yorkshire 

BE35 Namur GR41 Voreio Aigaio FR43 Franche-Comté AT11 Burgenland UKE4 West Yorkshire 

DK Denmark GR42 Notio Aigaio FR51 Pays de la Loire AT12 Niederösterreich UKF1 Derbyshire et al. 

DE11 Stuttgart GR43 Kriti FR52 Bretagne AT13 Wien UKF2 Leicestershire et al. 

DE12 Karlsruhe ES11 Galicia FR53 Poitou-Charentes AT21 Kärnten UKF3 Lincolnshire 

DE13 Freiburg ES12 Principado de Asturias FR61 Aquitaine AT22 Steiermark UKG1 Herefordshire et al. 

DE14 Tübingen ES13 Cantabria FR62 Midi-Pyrénées AT31 Oberösterreich UKG2 Shropshire et al. 

DE21 Oberbayern ES21 Pais Vasco FR63 Limousin AT32 Salzburg UKG3 West Midlands 

DE22 Niederbayern ES22 Navarra FR71 Rhône-Alpes AT33 Tirol UKH1 East Anglia 

DE23 Oberpfalz ES23 La Rioja FR72 Auvergne AT34 Vorarlberg UKH2 Bedfordshire, Hertfordshire 

DE24 Oberfranken ES24 Aragón FR81 Languedoc-Roussillon PT11 Norte UKH3 Essex 

DE25 Mittelfranken ES3 Comunidad de Madrid FR82 Prov.-Alpes-Côte d'Azur PT15 Algarve UKI1 Inner London 

DE26 Unterfranken ES41 Castilla y León FR83 Corse PT16 Centro UKI2 Outer London 

DE27 Schwaben ES42 Castilla-la Mancha IE01 Border, Midl. and Western PT17 Lisboa UKJ1 Berkshire, Bucks and Oxon 

DE5 Bremen ES43 Extremadura IE02 Southern and Eastern PT18 Alentejo UKJ2 Surrey et al. 

DE6 Hamburg ES51 Cataluña ITC1 Piemonte SE01 Stockholm UKJ3 Hampshire et al. 

DE71 Darmstadt ES52 Comunidad Valenciana ITC2 Valle d'Aosta SE02 Östra Mellansverige UKJ4 Kent 

DE72 Gießen ES53 Illes Balears ITC3 Liguria SE04 Sydsverige UKK1 Gloucestershire et al. 

DE73 Kassel ES61 Andalucia ITC4 Lombardia SE06 Norra Mellansverige UKK2 Dorset and Somerset 

DE91 Braunschweig ES62 Región de Murcia ITD1+2 Trentino-Alto Adige SE07 Mellersta Norrland UKK3 Cornwall et al. 

DE92 Hannover   ITD3 Veneto SE08 Övre Norrland UKK4 Devon 

DE93 Lüneburg   ITD4 Friuli-Venezia Giulia SE09 Småland med öarna UKL1 West Wales et al. 

DE94 Weser-Ems   ITD5 Emilia-Romagna SE0A Västsverige UKL2 East Wales 

DEA1 Düsseldorf   ITE1 Toscana   UKM1 North Eastern Scotland 

DEA2 Köln   ITE2 Umbria   UKM2 Eastern Scotland 

DEA3 Münster   ITE3 Marche   UKM3 South Western Scotland 

DEA4 Detmold   ITE4 Lazio   UKM4 Highlands and Islands 

DEA5 Arnsberg   ITF1 Abruzzo   UKN Northern Ireland 

DEB1 Koblenz   ITF2 Molise     

DEB2 Trier   ITF3 Campania     

DEB3 Rheinhessen-Pfalz   ITF4 Puglia     

DEC Saarland   ITF5 Basilicata     

DEF Schleswig-Holstein   ITF6 Calabria     

    ITG1 Sicilia     

    ITG2 Sardegna     
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