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Abstract 

In social and environmental sciences, ecological fallacy is an incorrect assumption about an 

individual based on aggregate data for a group.  In the present study, the validity of this as-

sumption was tested using both individual estimates of exposure to air pollution and aggre-

gate data for 1,492 schoolchildren living in the in vicinity of a major coal-fired power station 

in the Hadera region of Israel.  In 1996 and 1999, the children underwent subsequent pulmo-

nary function tests (PFT), and their parents completed a detailed questionnaire on their health 

status and housing conditions. The association between children’s PFT results and their expo-

sure to air pollution was investigated in two phases. During the first phase, PFT averages 

were compared with average levels of air pollution detected in small census areas in which the 

children reside. During the second phase, individual pollution estimates were compared with 

individual PFT results, and pattern detection techniques (Getis-Ord statistic) were used to in-

vestigate the spatial data structure. While different levels of areal data aggregation changed 

the results only marginally, the choice of indices measuring the children’s PFT performance 

had a significant influence on the outcome of the analysis. As argued, a difference between 

individual and group correlations (i.e., ecological fallacy) is not a necessary outcome of any 

data aggregation, and that seemingly unexpected results may often stem from a misguided 

variable selection. The implications of the results of the analysis for epidemiological studies 

are discussed, and recommendations for public health policy are formulated. 

 

Keywords: ecological fallacy; data aggregation; air pollution; health effects; pulmonary func-

tion tests 
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1. Introduction 

In his seminal paper, Robinson (1950) distinguished between two types of correlation - eco-

logical and individual. The former is obtained for a group of people, while the latter is esti-

mated for indivisible units, such as individuals. According to Robinson’s line of argument, 

ecological and individual correlations tend to be dissimilar. As a result, any assumption about 

an individual based on average data obtained for a group to which the individual belongs may 

result in an assessment error, known as “ecological fallacy” (Elliot et al., 1996; Morgenstern 

and Thomas, 1993; Rothman, 1986).  

Although Robinson’s article in American Sociological Review (ibid.) became a real 

eye-opener for many social scientists, more than a decade earlier, Gehlke and Biehl (1934) 

reported a similar variation of correlation coefficients in line with data aggregation.  Follow 

up studies (see inter alia Openshaw, 1984; Unwin, 1996) shed additional light on Gehlke-

Biehl-Robinson’s findings, showing that the size of correlation coefficients tends, in general, 

to increase with data aggregation into areal units of larger size. Openshaw (1984) termed this 

phenomenon the "modifiable areal unit problem" or MAUP.  

The awareness about ecological fallacy has not affected geographic research at any con-

siderable extent, where aggregate data are widely used both for empirical analysis and fore-

casting (see, for example, Glaeser et al., 1992; Felsenstein and Portnov, 2005). However, in 

social and epidemiological studies, the situation appears to be different.  Due to the “ecologi-

cal fallacy” concern, the use of aggregate data in these studies has either become a taboo or is 

being treated with caution (Elliot et al., 1996; Greenland, 2001; Openshaw, 1984). 

Under which circumstances does “ecological fallacy” occur and how strongly may it af-

fect empirical findings?  

Characteristically, the most striking example Robinson (1950) drew from the U.S. 1930 

Census of Population and Housing to substantiate his findings - illiteracy vs. percent of for-
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eign born, - had relatively little to do with “ecological fallacy” per se, but rather with a biased 

selection of variables.  While at the individual level, foreign immigrants in 1930 were gener-

ally less educated than “veteran” Americans, the aggregate data in Robinson’s study seemed 

to indicate otherwise: the correlation between percent illiterate (in a region’s total population) 

and percent foreign-born was found to be negative, implying that immigrants were more liter-

ate than the “natives.” However, if illiteracy rates were estimated for the foreign born (as op-

posed to the total population of regions, calculated by Robinson), the above spurious correla-

tion between immigrant shares and illiteracy rates would have been avoided.  

Despite the importance of ecological fallacy concept for empirical research, relatively 

few studies dealt with this issue in sufficient depth (see inter alia Elliot et al., 1996; 

Greenland, 2001; Lasserre et al., 2000; Morgenstern and Thomas, 1993).  Possible reasons are 

unavailability of individual data (as opposed to areal aggregates which are more readily avail-

able) and privacy considerations (Elliot and Wartenberg, 2004; Greenland, 2001; Lasserre et 

al., 2000; Morgenstern and Thomas, 1993).  In addition, even when individual-level health 

data are accessible, there is a difficulty to match them with socio-economic variables which 

are usually aggregated into census-designated statistical areas (i.e., census blocks and tracts), 

and rarely available at the individual level (Elliot et al., 1996; Elliot and Wartenberg, 2004; 

Nuckols et al., 2004).  Although geographic information systems (GIS) technology, which has 

become widely available in recent years (Brauer et al., 2003; Elliot and Wartenberg, 2004; 

Cockings et al., 2004; Nuckols et al., 2004; Scoggins et al., 2004), may simplify the estab-

lishment of such data linkages and thus help to verify the correspondence between results ob-

tained from individual data and those obtained from areal aggregates, such comparative stud-

ies are yet largely forthcoming. 

The present paper attempts to revisit the ecological fallacy concept by testing the corre-

spondence of results obtained at different levels of areal aggregation. The paper is organized 
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as follows. It starts with general discussion of instances in which substantial differences be-

tween group and individual correlations may occur. The linkages between estimates of expo-

sure to air pollution and results of children’s pulmonary function tests (PFT), available for the 

Hadera region of Israel, are then used to verify to validity of the research assumptions. Al-

though various levels of data aggregations affected somewhat the strength of relationships 

between the research variables, main differences in the analytical outcomes appear to have 

resulted from alternative variable specifications.  

2. Individual vs. group correlations: expected relationships 

Suppose that residents of a region were tested for a particular health effect, attributed to the 

presence of a local environmental factor, e.g., air pollution. For the sake of simplicity, let’s 

assume that, prior to the introduction of the environmental factor in question, the individuals 

covered by the survey did not differ substantially in respect to their health status or any other 

parameter (viz., welfare, occupation, housing conditions, etc.) that can interfere with the re-

sults of the inquiry. 

During the first stage of the analysis, the results of the individual tests were mutually 

compared with individual estimates of exposure to the environmental factor in question and 

correlation coefficients were calculated. Then, the results of individual tests and individual 

exposure levels were aggregated into groups, representing regional subdivisions (e.g., town-

ships or small census areas), in which the individuals reside. The correlation analysis of the 

averages was then rerun.  

The question we shall try to answer is as follows:  Under which circumstances may the 

results of the two stages of the analysis (i.e., individual and group correlations) be distinc-

tively different? 

To answer this question, let us consider five simplified diagrams shown in Fig. 1. Each 

large square in Fig.1 represents the region under study, while small squares are internal sub-
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divisions used for cross-area comparison, and grey circles mark areas in which abnormally 

high concentrations of the environmental factor in question are detected.  

<<< Figure 1 about here >>> 

The first two cases (Fig. 1a-b) assume that the geographic distribution of the individu-

als’  homes is homogeneous, whereas in three other cases, the individuals are scattered un-

evenly across the study area (see small black dots in Fig. 1 c-e).  

Suppose that individual correlations, estimated during the first stage of the analysis, 

were found to be statistically significant.  The same (or similar) relationships are likely to 

emerge under the aggregation scheme featured in Fig. 1a. According to this scheme, the aver-

age values of the environmental factor vary by regional subdivision, with the residents of the 

central part of the region (nearly totally covered by the grey spot) being exposed most.  

The outcome of the analysis may, however, be distinctively different if the grouping of 

individuals follows the regional subdivision scheme diagrammed in Fig. 1b. According to this 

scheme, the individuals covered by the study spread evenly across the region, and all regional 

subdivisions are equally exposed to the environmental factor in question. Although individu-

als near the center are more exposed than elsewhere (Fig. 1b), the shares of the exposed are 

equal in each subdivision. As a result, neither significant difference in the observed health ef-

fects across regional subdivisions can be detected at the group (subdivision) level, nor signifi-

cant correlation of aggregated data may occur, resulting in the case of ecological fallacy par 

excellánce. 

The skewed distribution of individuals (Fig. 1c-e) does not necessarily alter the outcome 

of the analysis. Thus, in two cases shown in Fig. 1c and 1d, a cross-group comparison may 

lead to the same outcome as above. In particular, no significant difference may be found be-

tween the four regional subdivisions covered by the study, due to the fact that the individuals 
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in each sub-region are more or less equally exposed to the environmental factor in question, 

and no significant differences may thus be detected by a mutual comparison of the averages.  

The situation shown in the last diagram (Fig. 1e) is, however, dissimilar. Due to differ-

ences in the distribution patterns of the individuals across the regional subdivisions (Fig. 1e) 

and their different exposure levels to the environmental factor in question, the relationships 

observed at the individual level are likely to emerge at the aggregated level as well. 

Summing up, we may conclude that differences between individual and group correla-

tions (i.e., ecological fallacy) are not a necessary outcome of any data aggregation and that 

the situations, in which such differences are likely to occur, may be detectable from the outset 

of the analysis. In the following sections, we shall attempt to validate this assumption using a 

case study which permits various levels of data aggregation.  

 

3. Hadera region, Israel as a case study 

In 1996-1999, the research staff of the Institute for Environmental Research, Israel Ministry 

of the Environment repeatedly tested a sample of 1,810 schoolchildren of the 2nd, 5th, and 8th 

grades from elementary schools in the Hadera district (see Fig. 2).  The children covered by 

the study underwent pulmonary function (PF) tests and their parents filled out detailed ques-

tionnaires on their socio-demographic and household characteristics (see Appendix 1: Pulmo-

nary function data).  

Accurate street addresses that could be mapped were available for 1,492 out of the 

1,810 children (82.4%). This cohort (1,492 children) thus formed the basis for the present in-

vestigation, for which information on the location of the children’s homes was essential for 

estimating the concentrations of air pollutants at the places where the children reside. The 

analysis indicated that the final sample (1,492) was fairly representative of the entire cohort of 
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the relevant school grades who resided in the study area, and in respect of gender and propor-

tion of children in each grade (P<0.05). 

During the initial investigation (Barchana et al., unpublished data; Goren et al., unpub-

lished data), the results of the PF tests for 1996 and 1999 were analyzed separately, using four 

townships - Hadera-central, Givat Olga, Beit Eliezer, and Pardes-Hanna, - for data aggrega-

tion and analysis (see Fig. 2). 

Contrary to initial expectations, the research indicated no significant differences in the 

average values of the PF tests across the townships, despite their distinctively different air 

pollution levels and the wealth of evidence accumulated to date on the link between air pollu-

tion and PF development in children (see inter alia Gauderman et al., 2000, 2004; Peters et al., 

1999a, 1999b; Pikhart et al., 2000; Schwartz, 2004).  

A possible reason for these inconclusive results was the use of aggregated data for four 

relatively large townships, presumably leading to "ecological fallacy" in research results 

(Dubnov et al., 2006). The rationale for this conclusion is as follows: Since large geographic 

areas for which composite data are used tend to exhibit considerable intra-regional variations 

in the local levels of air pollutants, individual exposure levels cannot presumably be inferred 

from aggregated data, and the outcome is insensitive exposure estimates (Greenland, 2001; 

Elliot et al., 1996, 2004; Nuckols et al., 2004; Rothman, 1986, 1993). 

The immediate goal of the following analysis is to revisit the results of the initial inves-

tigation of the Hadera data, in an attempt to determine whether the inconclusive results re-

ported by the initial inquiry (viz., Barchana et al., unpublished data; Goren et al., unpublished 

data ) were indeed attributed to ecological fallacy or some other underlying causes. 
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4. Data processing and analysis 

4.1. Research phases  

The data were processed and analyzed in the following two phases. 

• During the first phase, the results of individual PF tests and air pollution estimates (see 

Appendix 1) were aggregated into two sets of areal units: a) four townships identical to 

those used in Barchana et al. (unpublished data), and b) 20 small census areas (SCAs), 

similar in size to Census Block Groups in the U.S.A. (see Fig. 2 and Appendix 2). 

• During the second phase, the homes of the children participating in the survey were po-

sitioned on the map (see small grey dots in Fig. 2) and the levels of air pollution to 

which each child was exposed were calculated. The task was performed in the ArcGIS 

9TM software, using its “spatial join” tool (Minami, 2000). Individual exposure levels 

were calculated separately for NOx and SO2 (see Appendix 1: Air pollution data).  

<<< Figure 2 about here >>> 

4.2. Data analysis 

The statistical analysis was performed in two steps. First, the average PF rates observed in 4 

townships and 20 small census areas (SCAs) at the end of the study period (i.e., in 1999 - see 

Appendix 1: Pulmonary function data) were juxtaposed with average levels of air pollution 

detected in these areas. Then, the results of individual PF tests, and of individual pollution 

estimates were mutually compared with demographic and health variables, potentially affect-

ing pulmonary function, viz.: child’s age and height at the start of the study period (i.e., in 

1996); gender; presence (or absence) of pulmonary diseases diagnosed by a doctor; overall 

duration of residence in the study area; exposure to environmental tobacco smoking in the 

family; housing density; education levels of both parents; and proximity to main roads to con-

trol for exposure to air pollution from motor vehicles. The confounding role of these variables 

has been outlined by most previous studies (Gauderman et al., 2004; Goren et al., 1991; Goren 
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and Hellmann, 1995; Jedrychowski et al., 2002; Peters et al., 1999a, 1999b; Peled et al., 

2001).   

In the initial phase of the analysis, the Kruskal-Wallis test and bivariate correlation 

analysis were run to determine respectively the significance of inter-group differences, and 

the correlation strength between average pollution levels and PFT data.  Next, the Multiple 

Regression Analysis (MRA) was used, to identify and measure the effects of the aforemen-

tioned explanatory variables on the individual PFT values. During the analysis, spatial auto-

collinearity of residuals (Moran’s I diagnostic), multicollinearity, normality, and homogeneity 

of variance assumptions were tested and their results were found satisfactory. 

During the analysis, both logarithmic and exponential transformations of the NOx and 

SO2 variables (see Appendix 1: Air pollution data) were tested. From the outset the relation-

ship between PFT values and air pollution levels was presumed to be non-linear. For instance, 

we expected a disproportionably greater damage to occur under higher concentrations of air 

pollutants than under moderate and low concentrations. This non-linearity of relationship ap-

peared to be captured best by exponential transformations.  In the following discussion only 

the best performing models (for the NOx exponent) are reported.   

As Fig. 2 shows, the children covered by the sample are distributed unevenly both 

across the study area and its internal subdivisions (townships). As a result, they appear to 

have different long-term exposures to air pollution, with the children living in Pardes-Hanna 

being exposed most (see small grey dots and NOx contour lines in Fig. 2). The distribution 

map thus closely resembles the situation featured in Fig. 1e, according to which no ecological 

fallacy in data interpretation should expectedly occur. 

4.3. “ Hot spot”  analysis  

Indicators of spatial association (such as, Moran's I, Geary's C, Gi(d),  and Gi*(d)) provide 

summary information about the intensity of spatial interaction between values observed in 
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adjacent locations, thus helping to determine whether a parameter’s values are arranged in 

space in a systematic manner. Such a systematic distribution of values is known as “spatial 

autocollinearity” or “spatial association” (Cliff and Ord, 1981; Anselin, 1999).  

In the present study, the analysis of local spatial autocorrelation was used to detect ‘hot 

spots’  in the spatial distribution of PFT values (see Appendix 3).  

5. Results 

As Table 1 shows, at neither level of aggregation (townships, SCAs, and individuals), the 

bivariate correlation between FVC_99p (forced vital capacity in 1999 - for more details see 

Appendix 1: Pulmonary function data) and NOx estimates appears to be statistically signifi-

cant (P>0.05). With the exemption of the second level of aggregation, at which the correlation 

between average PFT values and air pollution estimates is marginally significant (P=0.045), 

the results for FEV1_99P are similar (see Table 1).  

Although the strength of NOx-PFT relationship tends to increase initially with data de-

segregation (FVC_99p: P<0.1 for SCA vs. P>0.8 for townships; Table 1), it appears to drop 

with further desegregation (i.e., FVC_99p: P>0.3 for individuals). 

Characteristically, the mean values of FEV1_99P and FVC_99P do not differ signifi-

cantly across either townships or SCAs (Table 2), which is, generally, in line with the results 

of the initial investigation (Barchana et al., unpublished data).  

The air pollution variable (NOx estimate) does not emerge as statistically significant in 

the multiple regression analysis either, in which this factor is controlled for the effect of po-

tential confounders, such as: welfare, environmental tobacco smoking, etc. (Table 3).  

<<< Tables 1-3 about here >>> 

The absence of any clear aggregation-induced trend suggests that the lack of significant 

relationship between air pollution estimates and PFT values cannot thus be attributed to data 

aggregation and averaging, as might be expected. 
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Another possible explanation is that the PFT variables used in the analysis until now – 

FVC_99p and FEV1_99p, – may be somewhat problematic, as illustrated by way of a hypo-

thetical example featured in Table 4.  

Suppose that the study area is subdivided into four sub-areas (1-4), which exhibit differ-

ent air pollution levels (Table 4).  In year1, individuals residing in these sub-areas underwent 

PF tests and the average values of these tests indicated significant differences (PFyear1: 

P<0.05; Table 4).  In year1+n, PFT was rerun (PFTyear1+n; Table 4). Although changes in PFT 

between year1 and year1+n are negatively correlated to air pollution levels (∆PFT: r=-0.970; 

P<0.05), there are no differences whatsoever in the average values of the repeat test 

(PFyear1+n=95%; Table 4). Therefore, using the latter numbers for a cross-sectional comparison 

may result in the absence of any clear relationship.  

<<< Table 4 about here >>> 

Although the case featured in Table 4 is clearly hypothetical, it may reflect, at least in 

theory, what happened in the study area under investigation. To verify this assumption, we 

rerun our analysis using ∆PFT (∆FVC and ∆FEV1) as dependent variables. The results of the 

repeat analysis are reported in Tables 5 – 7. 

<<< Tables 5 - 7 about here >>> 

As expected, the outcome the analysis has changed. In particular, the bivariate correla-

tion between ∆PFT (∆FVC and ∆FEV1) and NOx increased to -0.887/ -0.902 for townships 

(P<0.10; Table 5), as compared to -0.124/0.035; P>0.8, obtained in the initial analysis (see 

Table 1). Similar changes are observed at other resolution levels as well: r=-0.770/-0.765 for 

SCAs; P<0.01; Table 5 (as opposed to r=-0.403/-0.452; P>0.04; Table 1), and r=-0.133/-0.124 

for individuals; P<0.001; Table 5 (as compared to -0.027/-0.034; P>0.1; Table 1).  
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Notably, at all aggregation levels (townships, SCA, and individuals), the ∆PFT-NOx re-

lationship exhibits the expected negative sign and even gains its statistical significance with 

areal disaggregation (P>0.05 for townships, vs. P<0.0001 for individuals; see Table 5).  

The differences between sub-areas (both townships and SCAs) also became highly sig-

nificant (P<0.001; Table 5), and the air pollution factor emerged as statistically significant in 

the regression models estimated for both SCAs (B=-138.541; P<0.01 for ∆FVC; B=133.515; 

P<0.01 for ∆FEV1; Table 6) and individuals (B=-121.143 for ∆FVC, and B=-119.203; 

P<0.01 for ∆FEV1; Table 7).  

Other factors evaluated for possible effects of covariates on ∆PFT are: road proximity, 

length of child's residence in the study area, housing density, level of father's education, 

child’s gender, passive smoking in the family, and presence of pulmonary diseases.  In addi-

tion to air pollution, only age and height of a child at the start of the study period appears to 

be statistically significant in the models estimated for individuals (P<0.05; see Table 7). [In 

theory, age and height are collinear variables. However, our multicollinearity test found that 

their actual correlation for the sample data was within tolerable limits (Tol.>0.3), and unlikely 

to cause a significant bias of regression estimates]. 

The road proximity is also marginally significant in the ∆FVC model (t=-1.724; P<0.1; 

Table 7). As expected, the sign of this variable is negative (B= -1.165), implying that prox-

imity to a major road tended to reduce, ceteris paribus, a child’s ∆FVC by some 1.2%. 

5.1. Local spatial autocorrelation patterns 

The results of local autocorrelation analysis for the ∆FVC variable are reported in Fig. 3. [The 

results for ∆FEV1 appear to be similar and are not reported here for the sake of brevity]. In 

this diagram, large red dots indicate clusters of children with significantly low values of 

∆FVC (compared to the global mean), while large blue dots show clusters of children whose 
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FVC change in 1996-1999 was significantly higher that the average value for the study cohort 

as a whole. 

<<< Figure 3 about here >>> 

As Fig. 3 shows, there is a clear clustering of significantly low ∆FVC values in the 

Pardes-Hanna township (see red dots in the upper right corner of the map). This township is 

primarily affected by air pollution from the power station, as indicated by extremely high lev-

els of the NOx contours (NOx estimates > 30 ppm). Concurrently, there are also a few clus-

ters of negative ∆FVC values elsewhere, specifically in the Hadera- central township (center 

of the map). This township is generally characterized by moderate levels of station-generated 

NOx pollution (NOx estimate < 30 ppm). A more detailed investigation of the location of 

these clusters points out at their close proximity to a major road (old road “Tel Aviv-Haifa”), 

thus making the clustering of negative ∆FVC values in this part of the study area quite expli-

cable. 

6. Discussion 

In the present study, the strength of the linkages between children’s PFT values and air pollu-

tion estimates was tested for three levels of areal aggregation – 4 townships, 20 small census 

areas (SCAs), and 1492 individuals covered by the survey. During the analysis, two separate 

sets of measures were used: two cross-sectional estimates of children’s PFT performance at 

the end of the study period (FVC_99p and FEV1_99p) and two longitudinal estimates of PFT 

change between 1996 and 1999 (∆FVC and ∆FEV1). The analysis was performed using four 

different statistical techniques: bivariate correlation analysis; a non-parametric test of inter-

group differences (the Kruskal-Wallis test); the analysis of local spatial autocorrelation (the 

Getis-Ord “hot spot” index), and multivariate regression analysis. In the latter models, chil-

dren’s exposure to air pollution was adjusted for children's demographic and health character-

istics, such as education of parents, housing conditions, presence of pulmonary diseases, etc.  
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The association between children’s pulmonary function (PF) development and their ex-

posure to air pollution was investigated in two phases. During the first phase, PFT averages 

were mutually compared with average levels of air pollution estimated for the statistical areas 

in which the children reside. During the second phase of the analysis, individual pollution es-

timates were compared with individual PFT results.  

Since the same group of children, tested in 1996 and again in 1999, was used in the 

analysis, and their health or household characteristics did not change dramatically over the 

study period, no selection bias was present in the data. We also compared mapped and un-

mapped participants for distribution of mean age and gender. No significant differences in 

these distributions were found, so we could conclude that no bias in mapping might possibly 

account for our findings.   

While different levels of areal data aggregation (townships-SCAs-individuals) changed 

the outcome of analysis only marginally, the selection of indices measuring the children’s PF 

performance had a significant influence on the outcome of the analysis. In particular, while 

the use of cross-sectional data (PFT values at the end of the study period) failed to detect any 

significant link between air-pollution estimates and children’s PF performance, the use of 

PFT change indices (∆FVC and ∆FEV1) indicated substantial differences between groups 

(sub-areas) and strong negative correlations of ∆PFT with air pollution estimates, at any level 

of areal aggregation we tested.  

Characteristically, the statistical significance of correlation between ∆PFT and pollution 

estimates appeared to increase with data disaggregation, from P>0.05 for townships to P<0.01 

for individuals, thus implying that the relationship detected at the aggregated data level are 

likely to emerge at the individual level as well, or even become stronger. 
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7. Conclusions  

Ecological fallacy is hardly an imaginary phenomenon. As we argue, under certain circum-

stances, the areal aggregation of data may indeed lead to erroneous estimates. For instance, 

when the residents of each geographic sub-region under study are equally affected by an envi-

ronmental factor in question (see Fig. 1b-d), then, indeed, the aggregation of data may lead to 

erroneous estimates. However, in other cases (e.g., substantially different levels of exposure 

across geographic sub-areas, e.g., see Fig.1a,e), no ecological fallacy in data interpretation 

should arguably occur, and the linkages identified for areal aggregates are likely to emerge at 

the individual level as well. 

In general, the possibility of ecological fallacy may be detected by scrutinizing the dis-

tribution map, as the present study demonstrates. Thus, the juxtaposition of the location of the 

children’s homes in our survey with the boundaries of geographic subdivisions, and the pat-

terns of air-pollution in the area (Fig. 2) indicated that ecological fallacy was unlikely. Indeed, 

as our analysis demonstrated, the inconclusive results about the links between air pollution 

levels and health effects, obtained by the initial investigation, were attributed to a misguided 

variable selection (i.e., using cross-sectional values of PFT instead of more sensitive ∆PFT), 

rather to ecological fallacy per se, as could be expected. 

There is thus no a priory reason for avoiding the use of aggregate data in epidemiologi-

cal studies. Aggregated data are often more readily available for researchers than individual 

estimates; they are easy to process, analyze and link to other information sources (such popu-

lation enumerations), and may give nevertheless an accurate indication about the relationships 

which may expectedly be found in follow-up investigations, or necessitate such in-depth in-

vestigations, if necessary (Elliot and Wartenberg, 2004). The essential condition is, however, 

the ability of the researcher to identify from the outset of the analysis the situations in which 

ecological fallacy is likely to occur and thereby interfere with the results of the investigation. 
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In our view, this task may be performed by the map analysis tools provided by geographic 

information systems, which gain popularity in recent years. 

An obvious limitation of the present study is unaccountability for particulate matter of 

less than 2.5 µ m or less than 10 µ m in aerodynamic diameter (i.e., PM2.5 and PM10), espe-

cially in light of recent publications demonstrating the adverse effects of this air pollutant on 

different aspects of human health (Pope et al., 2002, 2004; Samet et al., 2000; Schwartz, 

2004; Ward and Ayres, 2004). However, as we believe, this limitation does not influence sig-

nificantly the results of our study, which primary goal was to identify changes in analytical 

outcomes attributed to different levels of data aggregation, rather then demonstrating the in-

fluence of a particular air pollutant on public health. A more detailed investigation of such 

effects may represent a legitimate topic for future studies. 

Finally, we should note that the empirical results of the present study are definitely loca-

tion specific. Follow up studies carried out elsewhere may thus be needed for the verification 

of generality of our empirical results.  
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Figure 1 

Typical situations leading (b-d) and not leading (a, e) to “ecological fallacy” upon data aggre-
gation 

 
Note: See text for explanations 
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Figure 2 
Study Area 
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Figure 3 

“Hot Spot” Analysis of ∆FVC values (Gettis-Ord Statistic) 
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Table 1 
Bivariate coefficients of correlation and results of Kruskal-Wallis Test for different levels of 

data aggregation 
 

Bivariate correlation between PFT values 
and NOx estimates at different levels of 

data aggregation 

Kruskal-Wallis test for 
significance of inter-area 

differences (χ 2 values) 

Variable 

Townships Small Census 
Areas (SCA) 

Individuals Townships Small Census 
Areas (SCA) 

FVC_99p -0.124 -0.403 -0.027 5.212 28.939 
  (0.876) (0.078) (0.302) (0.157) (0.067) 
FEV1_99p 0.035 -0.452 -0.034 2.285 31.993 
  (0.965) (0.045) (0.185) (0.515) (0.031) 
N (df) 4 20 1492 3 19 

 
Note: Actual significance levels are in parentheses 
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Table 2 
Factors affecting PFT values (units of analysis – small census areas; method - multiple 

regression; dependent variables – FVC_99p and FEV1_99p) 

FVC99_p FEV1_99p Variable 
Ba Tb Sig.c Ba Tb Sig.c 

(Constant) 106.912 2.263 0.038 134.658 2.671 0.017 
VIFd 

NOx level e -34.669 -1.057 0.306 -50.764 -1.450 0.166 1.388 
Income 0.569 0.455 0.655 0.397 0.297 0.770 1.018 
Age 2.244 1.011 0.327 1.444 0.609 0.551 1.401 

R2 0.232   0.232    
R2 Adjusted 0.088   0.088    
F 1.611  0.226 1.612  0.226  
No of cases 20   20    
Z Normal If -0.395   -1.134    

 
a Unstandardized regression coefficient; b t-statistic; c actual significance of t-statistic; d variance 
inflation factor (multicollinearity diagnostic); e transformed to exponent as follows: NOx = exp (NOx 
[ppm] *10-3); f spatial auto-collinearity of residuals diagnostic (median neighbor distance = 1000 m). 
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Table 3 
Factors affecting PFT values (units of analysis – individuals; method - multiple regression; 

dependent variables – FVC_99p and FEV1_99p) 

Dependent variable 
FVC99_p FEV1_99p 

Explanatory variable 

Ba Tb Sig.c Ba Tb Sig.c 
VIFd 

(Constant) 120.300 3.855 0.000 115.466 3.542 0.000  
Age -0.006 -0.014 0.989 -0.226 -0.527 0.598 3.088 
Asthma -0.767 -0.570 0.569 -3.685 -2.621 0.009 1.126 
Bronchitis 0.070 0.072 0.943 0.300 0.295 0.768 1.143 
Estimated NOx levele -41.388 -1.374 0.170 -41.532 -1.319 0.187 1.021 
Father's education 0.158 1.168 0.243 0.115 0.812 0.417 1.061 
Gender 0.652 0.900 0.369 1.236 1.633 0.103 1.012 
Height 0.126 2.196 0.028 0.202 3.366 0.001 2.882 
Housing density -0.798 -1.237 0.216 -0.390 -0.579 0.563 1.039 
Passive smoking -0.028 -0.038 0.970 -0.271 -0.354 0.723 1.036 
Proximity to main roadg -0.818 -1.079 0.281 -0.749 -0.946 0.344 1.021 
Years in study area -0.332 -2.095 0.036 -0.356 -2.151 0.032 1.318 

R2 0.022     0.039      
R2-adjusted 0.010     0.028      
Number of cases 1492   1492    
F statistic 1.883 0.038   3.443 0.000    
Z-Moran’s I5 -0.684     0.494      

 

a Unstandardized regression coefficient; b t-statistic; c actual significance of t-statistic; d variance infla-
tion factor (multicollinearity diagnostic); e transformed to exponent as follows: NOx = exp (NOx 
[ppm] *10-3); f spatial auto-collinearity of residuals diagnostic (median neighbor distance = 40 m); g 
recorded to dichotomous variable, as follows: An area closer than 50 m (the first row of buildings) to 
a main road’s longitudinal axis was conditionally defined as a high exposure area (1); otherwise it 
was defined as a low exposure area (0).  
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Table 4 
Hypothetical case illustrating differences between PFT and ∆PFT values 

 
Sub-
area 

Air 
Pollution 

Level 

PFTyear1 ∆PFT PFTyear1+n 

1 20 89 6.0 95 
2 30 90 5.0 95 
3 50 100 -5.0 95 
4 60 102 -7.0 95 
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Table 5 
Bivariate coefficients of correlation and results of Kruskal-Wallis Test for different levels of 

data aggregation (∆PFT values) 
 

Bivariate correlation between PFT values 
and NOx estimates at different levels of 

data aggregation 

Kruskal-Wallis test for signifi-
cance of inter-area differences 

(χ2 values) 

Variable 

Townships Small Census 
Areas (SCA) 

Individuals Townships Small Census 
Areas (SCA) 

∆FVC -0.887 -0.770 -0.133 50.981 87.479 
 (0.113) (<0.001) (<0.0001) (<0.001) (<0.001) 
∆FEV1 -0.902 -0.765 -0.124 41.529 76.524 
  (0.098) (<0.001) (<0.0001) (<0.001) (<0.0001) 
N (df) 4 20 1492 3 19 

 
Note: Actual significance levels are in parentheses 
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Table 6 
Factors affecting ∆PFT values (units of analysis – small census areas; method - multiple 

regression; dependent variables – ∆FVC and ∆FEV1) 

∆FVC ∆FEV1 Variable 
Ba Tb Sig.c Ba Tb Sig.c VIFd 

(Constant) -53.090 -2.255 0.039 -74.638 -3.239 0.005   
Estimated NOx levele -138.541 -3.566 0.003 -133.515 -3.512 0.003 1.420 
Income 0.334 0.336 0.741 0.232 0.240 0.814 1.035 
Age 5.832 2.305 0.035 7.899 3.190 0.006 1.387 

R2 0.699     0.749       
R2 Adjusted 0.642     0.702       
F 12.379   0.000 15.928   0.000   
No of cases 20     20.000       
Z Normal If 0.717     0.647       

 
* See footnote to Table 2 
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Table 7 
Factors affecting ∆PFT values (units of analysis – individuals; method - multiple regression; 

dependent variables – ∆FVC and ∆FEV1) 

Dependent variable 
∆FVC ∆FEV1 

Explanatory variable 

Ba Tb Sig.c Ba Tb Sig.c 
(Constant) 53.673 1.936 0.053 36.125 1.260 0.208 
Age 0.735 2.017 0.044 2.653 7.040 <0.001 
Asthma 0.139 0.117 0.907 0.117 0.095 0.924 
Bronchitis 0.742 0.856 0.392 0.973 1.085 0.278 
Estimated NOx level e -121.143 -4.522 <0.001 -119.203 -4.302 <0.001 
Father's education 0.129 1.062 0.288 0.169 1.347 0.178 
Gender 0.472 0.732 0.464 0.132 0.199 0.842 
Height 0.442 8.704 <0.001 0.401 7.634 <0.001 
Housing density -0.221 -0.369 0.712 0.024 0.039 0.969 
Passive smoking 0.885 1.362 0.174 1.085 1.614 0.107 
Proximity to main roadg -1.165 -1.724 0.085 -0.812 -1.162 0.245 
Years in study area -0.038 -0.265 0.791 -0.006 -0.039 0.969 

R2 0.274   0.401   
R2-adjusted 0.265   0.393   
No of cases 1492   1492   
F statistic 31.277 0.000  55.428 0.000  
Z-Moran’s If 1.441   1.684   

 
* See footnote to Table 3 
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APPENDIX 1  

Description of Data Sources 

Pulmonary function data 

Spirometry was performed by means of a Minato ®  AS 500 spirometer and in compliance 

with the American Thoracic Society (ATS) criteria. Each child performed 3 consecutive pul-

monary function tests (PFT), and the maneuver with the largest sum of Forced Vital Capacity 

(FVC) and Forced Expiratory Volume during the first second (FEV1) was recorded as a rep-

resentative test (American Thoracic Society, 1995; Enright et al., 2000). Predicted PFT values 

were calculated using a polynomial model, separately for each gender (Hankinson et al., 

1999).  

The calculations were performed separately for differences in forced vital capacity 

(FVC) and forced expiratory volume during the first second (FEV1).  

Then, the relative changes in pulmonary function tests (∆PFT) from 1996 to 1999 

were calculated as follows:  

∆FVCi =FVC_99pi - FVC_96pi = FVC_99io*100/FVC_99ie, - FVC_96io*100/FVC_96ie,  

∆FEV1i =FEV1_99pi - FEV1_96pi = FEV1_99io*100/FEV1_99ie, - FEV1_96io*100/FEV1_96ie,  

where:  

• FVC_99io, FEV1_99io, FVC_96io, and FEV1_96io and PFT96io are observed 

forced expiratory flow volumes (FVC or FEV1) of child i in 1999 and 1996, respec-

tively;  

• FVC_99ie, FEV1_99ie, FVC_96ie, and FEV1_96ie and PFT96ie are the calculated 

(expected) volumes for child i in the same years;  

• FVC_99pi, FVC_96pi, FEV1_99pi and FEV1_96pi are respectively FVC and FEV1 

performances of child i (observed vs. expected) in 1999 and 1996, expressed as per-

centages. 

To ensure the suitability of ∆PFT estimates for multivariate modeling, normality of 

distribution was tested by the Kolmogorov-Smirnov (KS) test, in which the distribution of 

∆PFT values appeared fairly normal (KS Z<0.9; P>0.4). 

 

Demographic and health data 

The questionnaire used in the study was a validated translation of the questionnaire developed 

and used by the American Thoracic Society (ATS) and National Heart and Lung Institute 

(Feris, 1978). It includes questions about the presence or absence of pulmonary diseases diag-
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nosed by a physician (e.g., asthma), household-related characteristics, such as gas or oil house 

heating, housing density, exposure to passive tobacco smoking, parents’  education, and dura-

tion of living in the study area. The children’s parents completed the questionnaires, with an 

overall rate of return of 72.4%. 

Air pollution data 

There are 12 monitoring stations in the study area, which provide continuous (24-hours a day) 

measurements of air pollution levels. For our analysis we used only the measurements simul-

taneously exceeding half-an-hour reference levels for NOx and SO2 (0.125 ppm and 0.070 

ppm, respectively). These excess concentrations (or so-called “air pollution events”) help to 

distinguish air pollution “splashes” generated by the power station (contributing ~ 50% of 

emissions in study area) from air pollution constantly present in the area and attributed to 

other sources such as motor vehicles (Association of Towns for Environmental Protection, 

2005; Goren et al., 1995). 

For each “air pollution event” we calculated integrated concentration value (ICV) of 

NOx and SO2 by multiplying their average concentrations during the “event” [ppm] by the 

unit of event’s duration (half-an-hour is one unit) and then summarized the results over the 

entire study period (i.e., 1996 through 1999).  

These summary values for the 12 air-monitoring stations were then interpolated by 

krigging, which furnished contours of equal pollution levels for the entire study area. Using 

these air pollution contours we estimated the individual exposure levels in the vicinity of the 

children’s residences.  

The air pollution estimates used in the analysis did not include particulate matter of 

less than 2.5 µ m or less than 10 µ m in aerodynamic diameter (i.e., PM2.5 and PM10) because 

PM measurements were available for only three out of the 12 monitoring stations distributed 

sparsely across the study area. Due to this limitation we used NOx and SO2 air pollutants as 

proxies for air pollution patterns in the study area. This limitation and its implications are ad-

dressed in the discussion section.  
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APPENDIX 2 
Descriptive characteristics of selected research variables 

 
Variable /measure Level of data aggregation 
 Townships  Small Census Areas  Individuals 
FVC_96p [%] 

Mean (min-max) 
SD 

 
95.1 (92.9 – 99.3) 

(3.0) 

 
94.6 (89.3 – 100.5) 

(3.3) 

 
94.2 (53.9 – 140.2) 

(12.5) 
FEV1_96p [%] 

Mean (min-max) 
SD 

 
101.2 (98.8 – 105.9) 

(3.2) 

 
100.9 (94.9 – 106.8) 

(3.7) 

 
100.4 (52.0 – 153.1) 

(13.8) 
FVC_99p [%] 

Mean (min-max) 
SD 

 
93.9 (93.1 – 95.6) 

(1.1) 

 
93.3 (88.2 – 96.1) 

(2.1) 

 
93.8 (61.1 – 145.6) 

(11.4) 
FEV1_99p [%] 

Mean (min-max) 
SD 

 
97.5  (96.8 – 98.7) 

(0.8) 

 
97.0  (91.8 – 101.2) 

(2.3) 

 
97.5  (64.3 – 144.1) 

(11.8) 
∆FVC [%] 

Mean (min-max) 
SD 

 
- 1.2 (-6.3 – 0.6)  

(3.4) 

 
- 1.2 (-11.1 – 3.9)  

(3.9) 

 
- 0.4 (-42.3 – 36.5) 

(11.3) 
∆FEV1 [%] 

Mean (min-max) 
SD 

 
- 3.8 (-8.9 – -1.9) 

(3.5) 

 
- 3.8 (-14.0 – 1.7) 

(4.2) 

 
- 2.9 (-45.9 – 38.9) 

(12.7) 
NOx level [ppm] 

Mean (min-max) 
SD 

 
17.6  (1.7 – 37.8) 

(15.1) 

 
17.6  (0 – 48.3) 

(15.1) 

 
15.6  (0 – 53.0) 

(11.8) 
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APPENDIX 3 
Getis-Ord measure of local spatial autocorrelation 

 
The Getis-Ord (Gi*(d)) statistic, used in the present analysis for detecting the spatial cluster-

ing of abnormally high and low values of PFT variables, is reported as standard normal z-

values and is calculated as follows: 

∑ −
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n
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where n is the number of observations; d is the distance band within which locations j 

are considered as neighbours of the target location i; xi is the value observed in location i;  

∑−
=

n

j
ji x

n
x

1
1 ; wij is a symmetric binary weight matrix, whose elements take value 1 if loca-

tions i and j are neighbours and 0 otherwise, and ∑ −
−

= 22 )(
1

1
iji xx

n
S .  

Gi*(d) statistic evaluates each point within a network of sites, and helps to determine the 

relationship between the values observed around the target point and the global mean (Getis 

and Ord, 1992).  This statistic is easy to interpret: a significant and positive Gi*(d) indicates 

that location i is surrounded by relatively large values (with respect to the global mean) – 

‘peak-value clusters’ , whereas a significant and negative Gi*(d) indicates that location i is 

surrounded by relatively small values – ‘dip-value clusters’  (ibid.).  
 


