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Abstract

Museums can serve as important magnets for attracting tourists to a city. To decide how

many and which museums to fund, it is important for city planners to understand what

different types of museums there are in attractive power and how this attractiveness may

be interdependent on the presence of other museums. To this end, we model a generic

distance decay function for all museums allowing for spatial dependence between museums

to account for local competition or synergy effects. To account for heterogeneity within our

sample of museums, we first adopt a spatial two error component model. Thereafter, we

model the variation between museums explicitly by segmenting the museums using a finite

mixture approach. We illustrate the application of this model using a unique transaction

database with the visiting behavior of 80,821 museum cardholders to 108 Dutch museums,

we are able to calculate market shares of each museum in all 484 Dutch municipalities.

Preliminary results indicate a large variation in the effect of distance on market shares and

in spatial dependence between museums.
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1 Introduction

Over the years, there has been a steady interest into the economic role of cultural amenities

in urban welfare. Under changing names such as ‘economic impact studies’ in the 1980s (e.g.,

national endowment for the arts 1981, Chartrand 1984), the rise of ‘city marketing’ in the

1990s (e.g., Kearns and Philo 1993, Ward 1998), and the concept of ‘creative cities’ as the most

recent guise (e.g., Landry 2000, Florida 2002), authors have investigated and/or propagated the

economic contribution cultural organizations can make.

Museums are a prime example of the potential role cultural organizations may have for cities.

For its inhabitants, museums serve as an important amenity for leisure pursuits (Eurobarometer

2002, national endowment for the arts 1998). Many of the larger or ‘Superstar’ museums also

serve as magnets for attracting large crowds of tourists (Frey 1998). For instance, Bilbao, Spain,

is known for its new Guggenheim Museum; The Louvre and Musée d’Orsay are important

Parisian attractions; and the major tourist highlights of Amsterdam include the Van Gogh

Museum, the Rijksmuseum with its large collection of Rembrandts and the Anne Frank House.

Although highly appreciated by the public at large, many museums are unable to survive in an

open market; admission fees and donations rarely cover operational costs. Therefore, it is up

to city governments to make planning decisions on how many and what museums are required

and should consequently receive public funding.

Particularly in the last few years, a number of studies have tried to determine the appropriate

level of funding in these cases (see Navrud and Ready 2002, for an overview). Rationale is that

public funding of any cultural organization or object is justified as long as it does not exceed

its economic value. Most of these studies rely on stated preference techniques, in particular

contingent valuation techniques. General approach is to put a (hypothetical) situation, such as

a restoration or extra grants, to respondents and to ask how much the respondents are willing

to pay in taxes or donations. Applications have covered a variety of cultural organizations, such

as the National Museum of Sculpture in Valladolid, Spain (Sanz et al. 2003), the Napoli Musei

Aperti in Italy (Santagata and Signorello 2000), or Lincoln Cathedral in England (Pollicino and

Maddison 2001). Revealed preference techniques, on the other hand, look at behavioral data,

usually the travel behavior of visitors. Commonly, travel distances of visitors are multiplied by

a wage rate and summed as an expression of willingness to pay. Travel cost applications are less

common, but examples include The Quebec Musée de la civilisation in Canada (Martin 1994),

the historic St. Mary’s City site in Maryland, United States (Poor and Smith 2004), and a
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comparison of the relative worth of multiple museums in The Netherlands (Boter et al. 2005).

In reviewing the literature, two observations can be made. First, none of these studies

distinguish between the potentially different spatial reach of museums. The summed willingness

to travel may be equal for two museums, but one based on a few tourists from far away and

another based on a large group of local residents. From a planning perspective, it would be

important to understand more precisely which museums have what function: which museums

primarily serve a local or regional community and which museums are better at attracting

visitors from elsewhere. In other words, what is the decay function in attractiveness when

moving away from a museum and are there particular types of museums in terms of different

types of decay functions? Second, in judging the appropriate level of funding none of the

studies consider the potential interdependencies between museums. With the exception of Boter

et al. (2005), all studies look into the value of single organizations. However, as museums in a

city are likely to compete or strengthen each other’s position, the attractiveness of a museum

may be dependent on other museums. Insight into such interdependencies may help avoid

suboptimalization in planning and funding decisions. The aim of this paper is to develop a

model that addresses these two issues.

The remainder of the paper is as follows. First, we develop a model dealing with market

shares of museums, that is able to deal with different types of decay functions and dependence

between museums. We then illustrate our model by using Dutch transaction data on visiting

behavior of a large number of card holders. The last section concludes.

2 Modeling spatial dependence and market segments

The problem at hand focuses on the spatial reach of market shares of museums. Basically, we

are interested in the amount of visitors specific museums attract over a certain distance. We

specifically focus on two main extensions of this problem definition. First, we analyse whether

the distance between museums matters as well. In other words, do museums reinforce each other

in terms of market shares (agglomeration or synergy effects) or is there fierce local competition

between museums? Secondly, we want to identify homogeneous groups of museums, which

display more or less similar behavior in terms of the relation between distance and market shares.

The first subsection displays our basic model of market shares explained by a distance decay

function. The second subsection continues with modeling spatial dependence and shows how to

capture heterogeneity among museums. The last section deals with filling in this heterogeneity
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by identifying homogeneous groups of museums.

2.1 A distance decay function for market shares of museums

First, assume that a country contains M museums. Typically, these museums are not uni-

formly distributed over a country, but display clustered patterns, especially in particular cities.

Moreover, assume that this country can be subdivided in R regions or municipalities. Some of

these regions contain a museum, others do not. In this setting we are able to define market

shares, ymr for museum m (m ∈ {1, . . . ,M}) in region r (r ∈ {1, . . . , R}) as the percentage

of all visitors of museum m that come from region r. Besides all sorts of regions and museum

specific characteristics, a major determinant of the market share ymr is most likely the travel

time/distance between museum m and region r (denoted by dmr). Usually, this relation is not

linear but exponentionally decreasing instead. Thus, this distance decay function can in general

form be expressed as:1

y = eα−βd+ε. (1)

where α and β are parameters, and ε denotes an i.i.d. residual term. Assuming a normal

distribution for ε yields:

ln y ∼ N(α− βd, σ2). (2)

Note that in this specification, the variable y may contain many zeros (conditional on the spatial

scale of the regions). This is essentially a measurement error: because demand in region r for

museum m may be very low, the market share may be measured as a zero, although it is in fact

small, but positive. Apart from that, museums themselves are not identical, and usually vary

widely in terms of size, exposition, focus, geographical location, etcetera. Therefore, we add

initially a separate error component for each museum: εmr = µm +νmr. Thus, µm describes the

variation between museums in market shares and νmr describes our basic assumption; market

shares are lognormally distributed.2 Note that this means that σ2 = σ2
µ + σ2

ν .

1We only use travel time here as an independent variable. Obviously, this relation can be straightforwardly
extended with region and museum specific variables.

2Ideally, one would like to introduce another error term to capture the measurement error in the market
shares. For reasons of clarity we omit this extention.
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2.2 Spatial dependence between museums

If market shares of museums are spatially correlated – that is, museums are locally competitive

or complementary to each other–, then it is very likely that the error term, ε, and the vector of

market shares, ln y, are correlated. Thus, ordinary regression yields biased results. To account

for such spatial dependence between museums, we assume that market shares between museum

A and B are related relative to the inverse distance, 1/dAB, between museum A and B. Doing

this for all museums 1, . . . ,M , we end up with an inverse distance matrix WM with size M×M

and with zeros on the diagonal. Using the assumed distribution of equation (2), this yields for

the market shares of all museums 1, . . . ,M in region r the following spatial lag model:

ln yr = λWM ln yr + α− dβ + εr = (IN − λWM )−1(α− drβ + εr), (3)

where the parameter vector is thus φ = (λ, α, β, σµ, σν)′.3 For later purposes, we denote the

density function of ln y as f(ln y|d, φ).

Note that specification (3) resembles an error component model. To capture all market

shares in all regions, we use specification (3) R times and come to the following expression:

ln y = (IR ⊗A)−1(α− dβ + ε), (4)

where ln y is now of dimension RM×1, α is RM×1, d is RM×1, β is 1×1 and ε is RM×1. IR

denotes the identity matrix with size R×R, ⊗ is the kronecker product, and A = IN − λWM .

Conform Baltagi et al. (2003), we order our observations with r being the slow running index

and m the fast running index, i.e., y′ = (y11, . . . , y1M , . . . , yR1, . . . , yRM ). The error term, ε, can

now be rewritten as in Anselin (1988):

ε = ν + ιR ⊗ µ, (5)

with ιR a vector of ones with its index indicating its order. Note that the additional error

component is observed along the slow running index, r, which – in combination with a spatial lag

model – creates a full variance covariance matrix with size RM×RM . Under these assumptions

this variance covariance matrix takes the following form:
3This implies that the original model now reads as: ymr =

QM
i6=m yir

λwmieα−βdmr+εmr , where wmi denotes
the inverse distance between museum m and museum i and λ a spatial interaction parameter. This specification
resembles that of hedonic pricing, and indicates that when λ > 0 museums may benefit from the near presence
of others and when λ < 0 museums face stiff competition from other museums near by.
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Ω = σ2
νΨ (6)

Ψ = ιRι′R ⊗
σ2

µ

σ2
ν

IM + IR ⊗ IM , (7)

So, that we may come to the following loglikelihood function, apart from a constant:4

lnL = −RM

2
ln(σ2

ν) + R ln |A| − 1
2

ln |Ψ| − 1
2σ2

ν

e′Ψ−1e, (8)

with

e = (IR ⊗A) ln y − (α− dβ) (9)

Although Ψ has a rather simple structure, its sheer size (RM × RM) makes it oftentimes

uncomputational. Therefore, we adopt a classical trick from Wansbeek and Kapteyn (1982).

First, let J be a square of ones, its index indicating its order and let ω be σ2
µ/σ2

ν . Subsequently,

define JR ≡ JR/R and JM ≡ JM/M . Note that these matrices are idempotent. Finally, define

the following centering operator C ≡ I − J, where the corresponding index indicates it order.

Now, we are able to rewrite the covariance matrix as:

Ψ = IR ⊗ IM + JR ⊗ ωIM

=
(
CR + JR

)
⊗

(
CM + JM

)
+ Rω

(
JR ⊗

(
CM + JM

))
= CR ⊗CM + CR ⊗ JM + (1 + Rω)

(
JR ⊗CM

)
+ (1 + Rω)

(
JR ⊗ JM

)
=

4∑
i=1

ξiMi, (10)

where ξi and Mi are implicitly defined. Basically, equation (10) is a spectral decomposition,

with ξi as the eigenvectors, as Mi are mutually orthogonal, symmetric idempotent and sum up

to the unit matrix. This leads us to the very useful result that Ψa =
∑4

i=1 ξa
i Mi, or:

Ψ−1 =
4∑

i=1

ξ−1
i Mi, (11)

and for the determinant finally yields:5

4We used here a well-known determinant property (see, e.g, Magnus and Neudecker 1988). Namely, it is easy
to see that the Jacobian is equal to |Ψ−1/2(IR ⊗A))|, which can be decomposed in |Ψ|−1/2|A|R.

5This property immediately follows from the properties of the Mi matrices. So, the determinant can be
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|Ψ| = (1 + Rω)M , (12)

which leaves us with the complete (and computationable) likelihood.

2.3 Creating market segments by finite mixture modeling

Estimation of specification (3) and interpretation of the parameters is only meaningful when the

sample of museums is homogeneous. Usually, however, this is not the case given the wide range

in types of museums around, such as art, handicraft, or (natural) history museums. Therefore,

we divide our population of museums in a, a priori unknown, number of different subpopulations

of museums. Thus, assume that observations on ln y arise from a population that is a mixture

of S segments in proportions π1, . . . , πS , where we do not know in advance from which segment

observations on ln y arise. Then, the unconditional density function as expressed above can now

be decomposed in its various segments as follows:

f(ln y|d, θ) =
S∑

s=1

πsfs(ln y|d, φs), (13)

where the vector of parameters is now denoted for each segment s as θs = (λs, αs, βs, πs, σφ)′.

Thus, the distance-decay and spatial dependence parameters are assumed to be segment specific,

where the variance term is common to all segments.6

To estimate the loglikelihood of (13), we apply the EM-algorithm, made popular by the

seminal contribution of Dempster et al. (1977). The EM-algorithm was oginally constructed

to deal with missing observations and proceeds as follows (see Wedel and Kamakura 2000,

for a more detailed description). First, introduce unobserved data, zms, indicating whether

observation vector ym = (yms) on museum m belongs to segment s. That is, zms = 1 if m

comes from segment s and zms = 0 otherwise. The zms are assumed to be i.i.d. multinomial:

f(zm|π) =
M∏

m=1

πzms
m , (14)

where the vector zm = (zm1, . . . , zmS)′. Now denote the matrix (z1, . . . , zM ) by Z and the vector

fm as the conditional distribution of ln ym given zm. With zs considered as missing data, the

complete loglikelihood function can be formed as follows:

calculated as: |Ψ| =
Q4

i=1 ξ
rank(Mi)
i .

6Because we want to explain the variation between museums we drop from now on the specific museum error
term, σµ.
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lnL(θ| ln y, d, Z) =
M∑

m=1

S∑
s=1

zmsfm|s(ln y|d, θs) +
M∑

m=1

S∑
s=1

zms lnπs. (15)

In the E-step, we first estimate the class probabilities for each museum (cf. Leisch 2004). Thus

the probability that museum m belongs to segment s is:

ẑms =
πs

∏R
r=1 f(ln ymr|dmr, θs)∑S

k=1 πk
∏R

r=1 f(ln ymr|dmr, θk)
. (16)

The probabilities for each segment are now derived as:

π̂s =
1
M

M∑
m=1

ẑms. (17)

Inserting ẑms and π̂s now enables us to estimate the complete loglikelihood of (15) in the M-step.

The E- and M-steps are repeated until the loglikelihood of (15) stops improving.

The actual number of segments is a priori unknown and must be inferred from the data. To

this end we use information criteria, which balance the increase in fit against the larger number

of segments – and thus more parameters – used. Basically, these criteria impose a penalty on

the likelihood, which is related to the number of parameters estimated: C = −2 ln L+Pρ. Here,

P is the number of parameters estimated and ρ is some constant, reflecting the penalty imposed

on the likelihood. We use two widely used information criteria. The first one is the classical

Akaike information criterion (AIC), where ρ = 2. The second one is the bayesian information

criterion (BIC), where ρ = ln(N) (N = number of observations). Note that the last criterion

usually penalize the likelihood more heavily.

The next section first decribes the data and then gives the results for both the (unsegmented)

spatial error component model and the fully segmented spatial model.

3 Application

3.1 Data

The basis of our dataset is the transaction data of Dutch National Museum Card holders used by

Boter et al. (2005). This Museum Card is an important tool in promoting museum attendance

in The Netherlands. In return for an annual fee of ¤25 for adults or ¤12.50 for anyone younger

than 26 years, card holders get free access to 442 museums in this country; the only remaining

cost per visit being the cost of traveling. At the 150 largest participating museums, card holder
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visits are logged electronically. These data are collected and stored on a central server to

aid reimbursement to the museums. The dataset provided by the organization was limited to

customer number, type of card (youth or adult), the museum, the date and time of the visit,

and the zip codes of both museum and visitor. Using a commercial GIS database that contains

travel distance and travel time by road for every zip code combination in The Netherlands,

travel distance and travel time were added to the dataset for each recorded visit. Similar to

Boter et al. (2005), we only use the visits of one full year (2002) to exclude seasonal effects on

demand. Also, museums with missing data or that faced incidental closure were excluded. The

remaining 108 museums are a representative variety in size, type of collection and location.

To capture market areas, we calculate the market shares of the museums in each of the

484 municipalities in the Netherlands. Thus, our full dataset comprises 52,272 observations of

market shares. However, as Table 1 shows, most of these market shares are zero (about 60%).

This is a direct consequences of the small size of some of the Dutch municipalities, so that most

of the (smaller) museums are never visited by any inhabitant of these small-sized municipalities.

On the other hand, the size of this dataset has the distinct advantage that it captures a wide

range of different museums, regions, competitive situations and travel distances. As Table 1

shows, on average, 717 citizens from each municipality are recorded to visit a museum. A

preliminary analysis of the dataset reveals that within the common willingness to travel of

44.19 minutes, the average card holder has 29.5 out of the 108 museums to choose from. The

museums visited are therefore likely to reflect a real utility to the card holder.

Table 1: Descriptive statistics

Number of museums participating (M) 108

Number of regions (municipalities) (R) 484

Number of cardholders in the dataset 80,821

Number of visits recorded in the dataset 346,978

Average number of visits per region 716.9

Percenage of non-zero observations 39.89

Average travel time from a region to a museum (in minutes) 97.12

Average observed travel time from cardholders to a museum (in minutes) 44.19

9



However, when applying the travel cost method to these data, some complications have to

be taken into account. The model assumes that observed museum visits are the result of trips

that have this visit as their single (or at least most important) purpose so that travel costs can

indeed be regarded completely as (part of) the price of this visit. Moreover, it assumes that

preferences for a particular museum are independent of the household’s location.

Table 2 displays the top 10 museums in our database with the highest amount of visitors

and with the highest average travel time, respectively.

Table 2: Top 10 museums by total number of cardholders and by average travel time of visiting card-

holders

Museum Visitors Museum Average travel

time in min.

1) Rijksmuseum Amsterdam 34,236 A) Natuurcentrum Ameland 233.1

2) Stedelijk Museum Amsterdam 23,067 B) Industrion 130.3

3) Haags Gemeentemuseum 22,250 C) Bonnefantenmuseum 119.6

4) Groninger Museum 18,527 D) Zeeuws Biologisch Museum 117.8

5) Van Gogh Museum 17,301 E) Groninger Museum 101.7

6) Cobra Museum Amstelveen 12,540 F) Natura Docet Natuurmuseum 95.9

7) Singer Museum 11,343 G) Marine Museum 86.1

8) Mauritshuis 10,173 H) Fries Museum 80.4

9) Amsterdams Historisch Museum 9,580 I) Limburgs Museum 78.6

10) Joods Historisch Museum 8,695 J) Hannema-De Stuers Fundatie 78.0

As Figure 1 clearly shows, 9 of the 10 museums ranking highest in the number of visits are all

located in or near the ‘Randstad’, the western, most densely populated area of the Netherlands,

formed by the four largest cities of the Netherlands. In fact, 6 of the top 10 museums are all

located in or very near the capital city of Amsterdam. As can also be observed from Figure

1, many of the cardholders live in the ‘Randstad’ area as well, so that many museums find it

convenient to be based close to their largest market areas. However, the museums with highest

travel time are all located in the periphery of the country. This might reflect the large willingness

to travel of a particular group of cardholders to these museums. E.g., many cardholders find it

worthwhile to travel to the city of Groningen to visit the ‘Groninger’ Museum (in both lists).
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It might also reflect a different function of these museums. E.g., cardholders might only find

it interesting to visit the ‘Natuurcentrum Ameland’, when they are already on the island for

their holidays. Thus, accounting for heterogeneity, in the willingness to travel to a museum, or

in the functionality of a museums is rather important when estimating market areas.
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Figure 1: Number of Museum Cardholders by four-digit zip code area and locations of the
museums in top 10 of both visitors and average travel time

3.2 Results

To analyse the spatial reach of Dutch museums, we first estimate the ‘ordinary’ distance-decay

function (1). To capture spatial dependence we yhen estimate the loglikelihood of (8), with

specific focus on the specific museum error term (σµ) as well. In the last part of this subsection,

we then repeatedly estimate the loglikelihood of (15) to explain (part of) the specific variation

in market shares between museums until the information criteria show that convergence has

been reached.

11



3.2.1 Distance decay and spatial dependence

Table 3 present the results for the non-segmented case, both for the non-spatial (the ‘ordinary’

distance decay function) and the spatial case (with and without the museum-specific error term,

σµ).

Table 3: Distance decay function of museum shares (N = 52,272)

OLS Spatial SUR Spatial ECM

Variable Coeff. St. err Coeff. St. err Coeff. St. err

α -8.353 0.050 -2.880 0.076 -2.594 0.265

β -0.032 0.000 -0.019 0.000 -0.018 0.000

λ 0.608 0.007 0.644 0.006

σφ 5.464 0.017 5.060 0.016 4.277 0.013

σµ 2.687 0.180

Mean Logl. -0.407 -0.343 -0.182

Clearly, introducing spatial dependence has a significant impact on the distance decay function.

Figure 2 shows the distance decay function (eβd) for each of the three models shown in Table 3.
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Figure 2: Distance decay functions

Regarding the highly positive value of λ (≈ 0.6), it seems that there is a large correlation

between spatial clustering and large market shares. The large amount of much visited museums

in Amsterdam is an example of this phenomenon.7 After the correction for spatial dependence,
7This does not directly mean that clustering of museums causes high market shares. But when one does not

account for spatial dependence when analyzing these market shares, regression coefficients may be severely biased
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the distance decay function remarkably flattens out, indicating that museums have a far larger

spatial reach then assumed previously (Boter et al. 2005). The interpretation is clear. Taking

into account spatial dependence reduces travel costs as perceived by the visiting cardholder.

Thus, positive spatial dependence can also be seen as a positive spatial externality. More

museums in a limited spatial area increases options for the visiting cardholder and the possibility

to visit more museums per city visit.

The third model (Spatial ECM) introduces an additional error component. Because in-

troducing the additional museum error component only affects efficiency, the coefficient values

from the Spatial ECM model do not differ much from the spatial SUR model. However, the

mean loglikelihood improves significantly, indicating a large amount of heterogeneity present,

which can be fully allocated to the incorporation of the various museums in our dataset (Table

2 and Figure 1 already indicated a large amount of heterogeneity between museums). Thus, to

obtain further insight in the spatial reach of more or less homogeneous groups of museums, we

estimate the market shares for specific subgroups of museums by segmenting our data.

3.2.2 Finite mixture modeling with spatial dependence

The approach we adopt here is to expand the number of segment until the likelihood and

the information criteria stop improving. Because we want to explain the variation between

museums, we leave the specific museum error component (µ) out of the analysis.8

Table 4: Distance decay function of segmented museum shares (N = 52,272 and standard errors between

parentheses)

Number of segments

Variable 2 3 4 5 6

Segment 1

α1 -4.873 (0.086) -5.407 (0.091) -2.741 (0.000) -3.581 (0.083) -2.775 (0.117)

β1 -0.016 (0.000) -0.014 (0.000) -0.019 (0.000) -0.018 (0.001) -0.018 (0.001)

λ1 0.594 (0.008 0.585 (0.008) 0.699 (0.005) 0.666 (0.008) 0.705 (0.010)

π1 0.685 0.587 0.369 0.396 0.319

Segment 2

continued on next page

as Table 3 clearly shows.
8Moreover, estimating a spatial error component model with large variance-covariance matrices using decom-

position methods as in equation (10) is extremely cumbersome. Estimation time for the unsegmented case is
about nine hours and increases exponentionally when the number of segments increases.
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continued from previous page

Number of segments

Variable 2 3 4 5 6

α2 1.418 (0.115) 0.771 (0.122) -7.646 (0.109) -8.414 (0.112) -6.733 (0.134)

β2 -0.018 (0.001) -0.024 (0.001) -0.010 (0.001) -0.008 (0.001) -0.012 (0.001)

λ2 0.701 (0.011) 0.768 (0.011) 0.488 (0.010) 0.453 (0.011) 0.527 (0.012)

π2 0.315 0.271 0.298 0.215 0.263

Segment 3

α3 1.430 (0.168) 1.247 (0.067) 0.629 (0.065) 0.815 (0.143)

β3 -0.014 (0.001) -0.022 (0.000) -0.002 (0.000) -0.021 (0.001)

λ3 0.578 (0.016) 0.777 (0.006) 0.789 (0.005) 0.793 (0.012)

π3 0.141 0.202 0.200 0.180

Segment 4

α4 1.365 (0.138) 2.271 (0.080) 2.230 (0.160)

β4 -0.013 (0.000) -0.022 (0.000) -0.021 (0.001)

λ4 0.569 (0.012) 0.684 (0.008) 0.680 (0.015)

π4 0.132 0.161 0.154

Segment 5

α5 0.139 (0.080 -10.648 (0.298)

β5 -0.012 (0.000) -0.007 (0.002)

λ5 0.262 (0.008) 0.328 (0.028)

π5 0.028 0.056

Segment 6

α6 0.137 (0.358)

β6 -0.013 (0.002)

λ6 0.258 (0.038)

π6 0.028

σφ 4.498 (0.014) 4.381 (0.014) 4.327 (0.013) 4.295 (0.013) 4.285 (0.013)

AIC 23,863 21,250 20,094 19,370 19,194

BIC 23,907 21,312 20,173 19,476 19,309

Mean Logl. -0.228 -0.203 -0.192 -0.185 -0.183
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Obviously, there is large variation present between the segments in the distance decay para-

meters and the spatial dependence parameters. Note that the mean loglikelihood converges to

that of the spatial error component model, indicating that almost all variation that was fully

allocated to the various museums is taken into account by creating six separate segments of

museums. The distance decay functions for each segment are depicted in Figure 3.
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Figure 3: Distance decay functions for the various segments

Table A in appendix A offers the top 10 museums by estimated probability parameters, ẑms,

for each segment. On the basis of this classification, and the results in Table 4 and Figure 3 we

can finally give the following interpretation to the six segments:

Segment 1 This is a large homogeneous group of smaller specialized museums, mostly centrally

located in the ‘Randstad’ area and benefitting most of large museums close by (hence the

large spatial interaction parameter of ≈ 0.7).

Segment 2 This segment closely remembles Segment 1, but the museums generally attract less

visitors, mainly because they are located more in the periphery of the Netherlands. How-

ever, the distance-decay parameter is smaller, indicating that these small and specialized

museums attract visitors from a larger distance.

Segment 3 This segment contains somewhat larger museums, which are mainly based in the

‘Randstad’, and which benefit highly from the larger museums in their vicinity (the spatial

interaction parameter here is about ≈ 0.8).

Segment 4 This group closely resembles the museums in Segment 3. However these museum

are usually large to very large, and include very influential museums as the Bonnefanten-

museum, Boijmans van Beuningen, Cobra museum, Stedelijk musuem and the van Gogh
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museum (which is ranked 11 with probability 0.99). Note that these museums still benefit

significantly from each others presence.

Segment 5 This segment contains the smallest and very specialized museums. Usually, these

museums can be found outside the ‘Randstad’. Note the very small distance-decay para-

meter (≈ −0.007), indicating that these museums attracts visitors from large distances,

which raises the suspicion that these museums are usually visited as part of a multi-

purpose visit. The other purposes might include holidays, visiting friends and relatives,

etcetera.

Segment 6 This segment only contains a few museums, which are ranked amongst the largest

and most important museums in the Netherlands. Its distance-decay parameter is rather

low, just as the spatial dependence parameter. The last coefficient indicates that these

museums do not benefit anymore from other (smaller) museums closeby and that these

museums are growing into what Frey (1998) describes as ‘Superstar’ museums.

4 Conclusion & further research

The aim of this study was twofold. First, we wanted to investigate the different spatial reach of

museums. Thus, which museums primarily serve a local community and which museums have a

much wider (national) reach to attract visitors? Secondly, we wanted to take spatial interdepen-

cies between museums into account to analyse interdepencies between museums, which might

result in clustering phenomena, such as can be witnessed in Amsterdam, Paris and London.

The results of the analysis can be straightforwardly interpreted: namely, (i) not taking spatial

dependence into account creates a downward bias in the distance decay function (because posi-

tive spatial dependence lowers perceived travel costs), and (ii) not correcting for heterogeneity

in the characteristics of museums ignores specific behavior of groups of museums (such as the

museums that display ‘Superstar’ museum characteristics).

However, as pointed out earlier, the dataset has – although large in size – some disadvantages;

the most important one being the lack of information on the nature of the trip. Especially the

assumption of single-purpose is a strong one. It might well be that cardholders combine museum

visits in Amsterdam with a shopping-trip or use the opportunity to visit friends or relatives.

Visits to museums in the periphery of the Netherlands might very well be related with (short)

holidays in that region. So, the observed travel cost to museums does not necessarily reflect the

real travel cost. Although the finite mixture approach partly corrects for these disadvantages,
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some bias in the travel cost measurement remain. Possible extensions to solve this problem is to

take the date on which the cardholder visits a museum into account and to correct for possible

multiple museum visits per day.

It might seem a bit of a conundrum why we immediately tackled heterogeneity by seg-

menting our data and not by first adding additional region – and especially – museum specific

characteristics. Of course, a first extension of the paper involves adding additional data (with

the usual suspects, such as size of the region/municipality, total amount of visitors per year for

each museum, or dummies indicating the nature of the museum). However, this paper shows

as well that without additional control variables, much of the variation can be tackled by the

original data itself. A feature which is rather attractive when additional control variables are

hard to find.

A Appendix

Table A: Top 10 museums by estimated parameter for each segment

Museum ẑms Museum ẑms

Segment 1 Segment 2

Verweyhal/De Hallen 0.994 Museum Gevangenpoort 0.969

Aboriginal Art Museum 0.993 Natuurmuseum Groningen 0.930

Nationaal Glasmuseum 0.992 Theater Instituut Nederland 0.922

Kasteel Groeneveld 0.990 Museum van het Nederlandse Uurwerk 0.921

Museum van het Boek 0.986 Nationaal Bevrijdingsmuseum ’44–’45 0.919

Stedelijk Museum Zwolle 0.984 Fries Natuurmuseum 0.910

Allard Pierson Museum 0.981 Museum Kempenland 0.904

Muiderslot 0.978 Verzetsmuseum Amsterdam 0.901

Museum Mesdag 0.973 Natuurmuseum Rotterdam 0.900

Goud-, Zilver- en Klokkenmuseum 0.967 Het Nederlands Vestingmuseum 0.897

Segment 3 Segment 4

Tropenmuseum 1.000 Bonnefantenmuseum 1.000

Stedelijk Museum De Lakenhal 1.000 Singer Museum 1.000

Nederlands Textielmuseum 0.999 Museum Catharijneconvent 1.000

Teylers Museum 0.999 Museum Boijmans Van Beuningen 1.000

Museon 0.999 Cobra Museum Amstelveen 1.000

continued on next page
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continued from previous page

Museum ẑms Museum ẑms

Museum Het Rembrandthuis 0.998 Paleis Het Loo Nationaal Museum 1.000

Nederlands Spoorwegmuseum 0.998 Joods Historisch Museum 1.000

Frisia Museum, Magisch Realisme 0.997 Amsterdams Historisch Museum 1.000

Bijbels Museum 0.997 Zuiderzeemuseum 0.999

Nederlands Architectuur Instituut 0.995 Stedelijk Museum Amsterdam 0.999

Segment 5 Segment 6

Molenmuseum 0.991 Groninger Museum 1.000

Streekmuseum Crimpenerhof 0.959 Haags Gemeentemuseum 1.000

Stedelijk Molenmuseum De Valk 0.843 Rijksmuseum Amsterdam 0.934

Museum Beeckestijn 0.777 Mauritshuis 0.034

Mariniersmuseum der Koninklijke Marine 0.478 Van Gogh Museum 0.009

Zeemuseum 0.365

Natura Docet Natuurmuseum 0.323

Nationaal Schoolmuseum 0.304

Historisch Museum Apeldoorn 0.198

Techniek Museum Delft 0.122
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