MULTI-LEVEL INTERACTION AND GROWTH POTENTIAL OF LARGE CENTERS : A CASE STUDY IN TURKEY

Vedia F. Dökmeci

Bil ge Büdeyri

ABSTRACT

The impact of growth on urban centers within a multi-growth centers environment has become an important subject for investigation in both developed and developing countries. This study presents a variation of a multi growth technique developed by Fotheringham. A model is developed to test growth impacts under the assumption that an urban center may be influenced not only from the center's upper levels, but also from the center's lower levels in a multi-level coordinated system of centers. The model is based on a multiple-regression analysis. The growth rate of urban centers is defined as the dependent variable, while their locational potential with respect to other centers on each level of the hierarchy and their population size are defined as independent variables. Because large centers have the most important function in Turkey in diffusing growth from both upper to lower levels of the hierarchy and lower to upper, their growth impacts in different time periods are investigated. According to the application of the model for Turkey, the large centers on the periphery showed more potential for growth than those in close vicinity to growth centers during periods when their growth was supported through extraordinary national subsidies. Another result of this application was that there was an important interaction between the growth of large centers and changes in rural areas.

MULTI-LEVEL INTERACTION AND GROWTH POTENTIAL OF LARGE CENTERS: A CASE STUDY IN TURKEY

Vedia F. Dökmeci¹

Bil ge Büdeyri

INTRODUCTION

In many developing countries , unbalanced urbanization is a serious problem that retards overall development. When urban growth is limited to only a few large centers , diffusion to peripheral rural areas tends not to occur. In particular , the lack of intermediate urban centers hinders upper and lower levels of the urban hierarchy from being adequately interconnect. A restructuring of the urban hierarchy can bridge the gap between developed and less developed areas and ensures a more efficient allocation of resources to generate growth effectively. Urban growth diffusion can be best controlled by the use of development programs that expand chosen centers in key locations – known as planed or induced growth poles – in the urban hierarchy (Friedmann , 1966 ; Konstantinov, 1977 ; Richardson and Richardson, 1973 ; Moseley, 1974 ; Walsh , 1980). Since the economic efficiency of the urban system is critical to the efficient use of national resources , more research needs to be done on such programs at both regional and national levels.

Several studies have been done on growth pole strategies , on central places and hierarchical interactions between them , as well as their spatial competitive structures (Boisier , 1980 ; Bylund , 1972 ; Derwent , 1969 ; Gilbert , 1974 ; Higgins , 1972 ; Morrill , 1973 ; Parr, 1973,1978,1981,1987; Mulligan,1984). A great deal of them have investigated ways to divert urban growth from overcrowded metropolitan areas toward smaller cities.

¹ Adress : Istanbul Teknik Üniversitesi Mimarl ýk Fakül tesi Taksim , Istanbul TURKEY

Their mayor concern was to determine the most efficient allocation of resources in order to generate growth effectively. Some of them claimed that the most efficient way to generate development in lagging regions is to concantrate investments in a relatively few places with genuine growth potential , i.e., in growth centers (Hansen, 1972, 1978). Another approach to the growth process is described by **Berry** (1973) as a general model of hierarchical diffusion. According to Berry, a city system consists of hierarchically interrelated centers and their urban influence areas within their surroindings. Growth effects radiating from a given urban center are proportional to the center's size and are transmitted from higher to lower centers in the hierarchy.

A more general model of testing multi-center diffusion of urban growth is given by Fotheringham (1979). In addition to using a more comprehensive measure of distance, this study developed a method to test for polarized growth within a multi-growth center environment in the United States. It showed that there are centers around which growth is polarized, and the type of polarization can vary with time and with the size of centers to which growth is diffused. Further research, deal tling with different types of spatial interaction processes has concantrated not only on the usual mass and distance effects , but also on the elements of accessibility and competitiveness in flows (Esparza and Krmenec, 1994; Fotheringham, 1981, 1982, 1983; Fotheringham and Weber, 1980; Krmenec and Esparza, 1993). Other research has focused additionally on the feedback amongst the different interactional effects (Fotheringham ,1983, 1984 ; Haynes and Fotheringham , 1984) , as well as on reducing the statistical problems both of spatial-autocorreleted error and of internal dependence amongst regressors(Fik, 1988; Fik and Mulligan 1990).

In general, previous studies investigated the spatial impact of growth centers by taking into consideration the degree to which growth impulses are transmitted from city to city through an urban hierarchy. In the present paper, however, the impact of two-level growth diffusion is investigated, such as from the growth centers to smaller centers and in reverse from the smaller centers to the large centers. Proximity to growth centers influences the growth rates of urban centers within local subsystems of interrelated centers, each comprising an urban center and surrounding satellites. Also, the growth potential of a center is a function of its accessibility to its satellites. In other words, improvement of mutual accessibility between growth centers and peripheries could be expected to be advantageous for the peripheral areas because of the improved access to large markets. In addition, such functional integration is benefical for large centers through their superior capacity to util ize agglomeration and scale economies. The abovementioned assumption is also supported by other studies that show that urban growth occurs principally through the interaction between cities

3

rather within an individual city (see, e.g. **Robson**, 1973 ; **Böventer**, 1973 ; **Logan** 1973).

Thus, the propose of this study is first to investigate relationships between the growth rate of an urban center and its accessibility to centers in upper and I ower I evels in the hierarchy and its population size in various time periods, then to identify strategically advantageous nodes which have growth potential because of their size and high degree of conductivity in the urban system. The concentration of effort and investment in a few strategic I ocations would create a new pattern of spatial change and influence, i.e., hopefully become new growth centers. Al though urban growth is a multidimensional phenomenon, this study is I imited mostly to growth tendencies related to the relative location of the urban center in the urban hierarchy by omitting the growth case based on natural resources or large industrial investments.

The paper is organized in the following way. The definition of the urban system and explanation about the hierarchical levels of centers is given in the next section. A multiple-regression analysis is carried out for four five-year periods between 1975-1997 for Turkey in Section 3. The growth rate of cities is determined as a function of the change in their locational potential with respect to (i) growth centers , (ii) small centers, and (iii) rural centers and (iv) their population. The analysis is primarily concentrated on large centers since the growth of small centers can be easily stimulated through even small investments, which would make it difficult to measure their locational potential. The results areeval uated in Section 4. The final section is devoted to a conclusion , and the implications of the results for public policy are discussed.

2. DEFINITION OF THE SYSTEM

According to spatial theory , a regional system consists of hierarchically coordinated multi-level cities. The development of this hierarchical network is dynamic and is continually influenced by multilevel interactions. Well-developed hierarchical linkages provide the system with effective flows and functional relationships between the various levels of the system and thus influence the growth of these centers. However , most of the models do not take into consideration hierarchical relationships. In this study , a city system is defined as hierarchicallycoordinated multi-level cities which affect eachother's growth. Two hierarchical levels of centers are defined : (i) growth centers (ii) large centers (cities 100 000 – 300 000). Let us denote this system by L with p= 1,2 as follows :

 $L1 = Pj / j \quad j = 1,...,ng$ growth centers $L2 = Pj / j \quad j = 1,...,m$ cities 100 000 - 300 000

The existing hierarchy of cities is determined solely on the basis of population data. It is assumed that population is an important index determining city rank. Taking into consideration the particular circumstances of Turkey the population threshold for growthcenters is assumed to be 300 000. This assumption is also supported by previous studies. For instance, according to Berry (1970), above 250,000 the necessary conditions for self-sustaining growth, to the point that growth is diffused outward, seem satisfied. There were seven centers in this category in Turkey in 1997 (see in Table 1 and figure 1). Some of these growth centers have played important roles in the historical backround of the country. For instance : Bursa , and afterwards Istanbul , had been for year's capital cities of the Ottoman Empire and therefore both cities have considerable economic, social and cultural potential. Yzmir was and had been important harbour and trade center for international import and export trade. Gaziantep, located on the Ystanbul - Baghdad rail way (an important transportation connection in the late 19 th and early 20 th century), has had traditional manufactoring potential. Ankara which became the capital of the country after the foundation of the Turkish Republic in 1923 has changed gradually from a small Anatolian city to a main service center. The growth process of this city has been so succesful that four large centers in its proximity have flourished. With urbanization and industrialization of the country, several central activities have located in each of these centers, partially as a result of the investments by the government and partially due to their strategic locations at the hub of several transportation connections. Adana has become an industry center based on agricultural production in its hinterland. According to the socio-economic changes in these centers, their population has increased permanently as well. It could be said that these growth centers, with settlements in their hinterlands, create to some extent a hierarchically coordinated multi-level system of centers.

Table 1. Population of Growth Centers

Growth Centers	197	5	1980	1985		1990	1997
Istanbul	2547364		2772708	2772708 5475982		2 6620241	
8260438							
Ankara	1701004		1877755	2235035		2559471	
2984099							
Izmir	636834	757	854	1489772	1757	7414	2081556
Adana	475384	574	515	777554	916	5150	1041509
Bursa	346103		445113	6125	10	83457	6
1066559							
Gaziantep	300882		374290	4786	35	60343	34
712800							
Konya	246727		329139	4391	81	5133	46
623333							

Source: D.Ý.E., 1997 Census.

Level two consisted of large centers with population between 300,000 and 100,000. Their relative size indicates that the cities have begun to outdistance most competitors within their national or regional city-system. Much of their growth is attributable to the impact from growth centers. They also contain several urban activities, however, at a lower level than these in growth centers. If a large center is in the vicinity of a growth center, its urban activities have an intensive functional relationship with those in that relevant growth center. These large centers have also been supported by urban and rural hinterlend linkages. There were 36 such centers in 1997 in Turkey (see Table 2). Of them, 36 were included in the analysis. The boundary of urban hinterlend is assumed to be 100 km for large centers. Based on the condition of Turkey's transportation system this seems to be a reasonable distance, which should correspond approximately to 3 hours go-and-back travel time between large centers and their hinterlends for socio-economic, commercial and managerial daily activities. As such, this is accepted as the maximum distance between two centers to go from one to the other, meet some needs and return on the same day to the dwelling site. Due to the insufficient transportation network in Turkey, interactions of a large center with rural and small centers outside of its hinterland do not seem realistic and therefore have not been taken into consideration in the analysis.

In functional terms, cities are an aggretion of specialized activities which are spatially concentrated and functionally interrelated. Each activity has its own set of relationships with the centers below and above its level in the hierarchy. Because of the multidimensional aspects of these relationships, the boundary of urban hinterlands is the result of the spatial rangeof several central place activities. By taking into consideration the interdependence between the levels of the system, the growth potential of a center can be defined as a function of the change in the locational potential with respect to growth centers as well as the locational potential with respect to urban and rural centers within its hinterland.

Large centers	1	975	19	80		1985	5 19	990	1997	1
Kocael i	1	6548	3		1	9042	3	233	338	256882
202003										
Erzurum	162973		190241	2	24605	53	242391		298756	
Sivas	149201	1	72864	1	9855	53	221512		224103	
Denizl i	10690	2	13537	73	169	9130	2041	18	2307	708
Tarsus	102186	1	21074	1	4650)2	187508		192413	
Kýrýkkal e	137874	1	78401	2	2080	18	185431		205208	
Sakarya	114130	1	30977	1	5229	91	171225		184013	
Bal ýkesir	99443	1	24051	1	4998	39	170589		184612	
Gebze-Kocael i	33110		5	8318		92	592 1	5911	6 2	37494
Manisa	78114		94167	1	270	12	158928		194775	
Ýskenderun	107437	1	24824	1	5209	96	154807		166228	
Van	63663		92801	-	106	53	153111		225628	
Batman		6438	4	86172		110	0036	1473	47	212563
Trabzon	97210	1	08403	1	4200	28	143941		177904	
Kütahva	82442		99436	-	187	73	130944		158776	
Hatav	77518		94942	-	078	21	123871		140601	
Osmanive	61581		84212	-	038	24	122307		159318	
Corum	64852		75726		967	25	116810		147391	
Zongul dak	90221	1	09044	1	178	79	116725		106742)
Isparta	/011	6287	0	86475		101	1215	1121	17	126196
Avdýn	59579		74021		904	49	107011		133939)
Karabük	69182		84137		948	18	105373		102728	3
U°ak	58578	71469	88267	10527	0	124042				-
Edirne	63001	71914	86909	10234	5	108547				
Ordu	47481	52785	80828	10210	-)7	116083				
Adývaman	43782		53219		716	44	100045		213596	5
Afvon	60150		74562		870	33	95643		111580)
Aksaray	45564		62927		810	56	90698		100944	1
Nazil Li-Avdýn	52176		60003		776	20 27	80277		102503	2
Karaman	13750		51208		647	25	76525		102070	
Corlu-Tekirdað	43737	1013	1	17086	047.	55 50	10525	716	21 21	, 117//7
Siirt	35651	4015	4	47000	538	ВИ 27	68320	740	104475	5
Sin t Kúzúl topo Mardin	21521		20115		100	57	60124		11250/	1
Viransekin Unfo	21031	40020	30443		400		00134		112004	t
	26244	40820	45329	5/	401	106685				
	18520 10775	22190 1 O		524 C	00 1067	10101	20021	1	01526	
Bismil-Diyarbak yi	12//5	19	0099	24	+002		37834	I	01520	

Table 2- Population of Large Centers

3. MODEL

Source : D.Ý.E ., 1997 Census

A model is developed to investigate the key nodes which have growth potential in an urban hierarchy. This model were based on a technique developed by Fotheringham (Fotheringham, 1979). The main emphasis is given to the supposed interdependences of a city-system in a developing country, and especially to the importance of growth transmission linkages between growth centers and large centers supported through urban and rural center linkages. The interdependences of the system are especially investigated for large centers because of the difficulties of measuring locational growth potential for small centers since they are easily affected by even small local investments.

A multiple-regression model is used for the analysis. The growth rate of large centers is assumed to be the dependent variable of the analysis. Locational potential of large centers with respect to growth centers, to small centers, to rural centers and distances to the growth center which effects large centers are taken as independent variables. It is assumed that growth is transmitted from growth centers to large centers if the supporting potential on large centers from small and rural centers in their hinterlands exists. In other words, there should be backward and forward growth transmission linkages from large centers to the surrounding hinterland to secure a genuine growth diffusion from growth centers to large centers. The multiple-regression model used in the analysis is given below :

whore .	ri = a0 + a	a1 VSi + a2 Vgi (1)					
where:	ri	growth rate of large centers ;					
	a0,a1,a2	constants;					
+,	Vsi	locational potential of large centers with respect					
to		centers within 100 km					
	Vgi	locational potential of large centers with respect					
		growth centers					

The variables of the model – the locational potential , urban growth rate – are explained below.

3.1. Locational Potential

The proximity of individual centers to each other represents an important element in the definition of the urban system. Geographical

8

patterns of accessibility to population can often be expressed in terms of potential value for city i as (see, e.g. Isard, 1060) :

$$Vi = ? Pj / d?$$
 (2)

where

Vi	locational potential of n centers on center i
Pj	population of the center j
d?	distance between the points i and j
b	exponent
n	number of urban centers.

If the hierarchy concept is included in the simulation of locational potential, the locational potential of a large center can be decomposed into two elements :

(i) locational potential with respect to growth centers, (ii) locational potential with respect to small centers. These can be expressed as follows :

$$VSi = \stackrel{\text{ns}}{\stackrel{?}{_{Pj}}} \stackrel{b}{_{J=1}} (3)$$

This expression of locational potential provides a comprehensive measure for the analysis by taking into consideration the weighted distances by population of the centers whose impacts are in question. The distances are expressed in terms of real distance measures.

The correlations between the growth rate (dependent variable) and VGi, VSi in each remaining combination are determined.

3.2. Population Growth Rate³

The urban growth rate is another variable of the analysis. The calculation procedure for the urban growth rate assumes that past population growth has followed a linear pattern in which population is explicitly a function of time. In order to take into consideration the differing time periods, each intercensal period was reduced to an average annual change figure. This is expressed as :

where:

- ri annual population growth rate for the city i
- Pn population of city i in most recent census
- Po population of city i in the preceding census
- N number of years in an intercensal period

4. REGRESSION RESULTS

According to the regression results , it is found that in Turkey there is not a correlation between growth rate and the population potential and distance to the growth centers. The regression results do not support the core-periphery model of growth for all the periods (1975-1997).

Again according to the regrassion results, there is a correlation between growth rate and the population potential and distance to the growth center which influences large centers with population between 200.000 – 300.000 in 1970-1975 period.

When we separete Large centers into four groups by their Location as Western Turkey, Middle and Nothern Turkey, Middle and Southern Turkey and Eastern Turkey; regression results as below :

During the period between 1975-1997 there is not a correlation between growth rate and the population potential and distance to the growth centers in the Western Turkey.

In the Eastern Turkey there is a correlation between growth rate and the population potential and distance to the growth centers during te period between 1985-1990. All other periods, there isn't a correlation.

In the Middle and Nothern Turkey there is a correlation between growth rate and the population potential and distance to the growth centers during the period between 1975-1980. All other periods, there isn't a correlation.

In the Middle and Southern Turkey there is not a correlation between growth rate and the population potential and distance to the growth centers during all the periods (1975-1997).

These results could be attributed chiefly to the government's socio-economic policies against unbalanced urbanization and the lower socio-economic status of some regions of the country during the latter mentioned time periods.

The regression results doesnot support the core-periphery model of growth for all the period (1975-1997) for Turkey. These results could be attributed chiefly to the government's socio-economic policies against unbalanced urbanization and the lower socio-economic status of some regions of the country during the mentioned time periods.

5. CONCLUSION

The main objective of the study is to investigate whether the new forces of urban growth can be used to channel development into peripheral areas that are lagging behind the nation in income and employment opportunities. For this purpose, the relationship between the growth rate of a city and its locational potential with respect to other centers at different levels of the hierarchy were investigated. Urban growth with respect to the urban system is a difficult process to model. In this study, a model was developed to determine the key nodes which had growth potential relative to the system of cities. Because of their potential for growth, special emphasis was given to large centers. It was accepted that in a multi-level coordinated hierarchical system of cities, a city is not only under the potential influence of centers in levels above but also under the potential influence of centers in lower levels as well. Previous studies, however, have taken into consideration only the impact to a center from centers in levels about it. A step-wise regression analysis was used for this purprose. The growth rate of large centers was taken as the dependent variable. The independent variables were the locational potential of large centers with respect to growth centers, small centers in their hinterlands.

A important result of the analysis as to highlight the reality that the growth rates of large centers was influenced mostly by changes in rural centers. In other words, investments in large centers attracted population from rural centers. Urbanization and industrilization were the main factors in Turkey causing permanent migration since the 1960's from rural areas to urban centers, especially to growth centers and large centers. It is, therefore, urgently necessary to set a rational development planning into action to control disorderly urbanization and industrilization in North-West, and to situmulate existing resources and to create new resources in Eastern Turkey. So it could be possible to stabilize population flows in an optimum level.

It is possible that the explanation of growth could be improved by the use of other variables for which population is used as a surrogate, or by modifying the formulation of the locational potential. For instance, to get more comprehensize results, industrial investments made to different levels of the urban hierarchy and locational potential of a large center with respect to other large centers could be included as further independent variables to the analysis, or instead of population growth, the employment growth rate could be taken as the dependent variable. Spatial autocorrelated error and internal dependence of variables could be tested as well with the help of more comprehensive analysis. These could be the subject of further research. In addition, more comprehensive results can be obtained when the analysis is repeated to include time periods after 1980.

In recent years, important progress has been made in the analysis and development of urban systems. However, their diverse results indicate that further extensive research is needed to predict the foundamental characteristics of urban growth processes with respect to international urban networks.

6. REFERENCES

1. Berry, B.J.I. (1970). Labour Market Participation and Regional Potential. Growth and Change. 3-10.

2. Berry, B.J.I. (1973). Growth Centers in the American Urban System 1, Cambridge: Ballinger

3. Böventer, E.v.(1973). City Size System : Theoretical Issues, Emrirical Regularities and Planing Guides. **Urban Studies**, **10**, 163-168.3.

4. Derwent P.F.(1969). Growth polles and growth centers in regional planning : A Review , **Environment and Planning A1**5-32

5. D.P.T. (Turkish Prime Ministry State Planning Organization) (1963). Kalkýnma Planý 1963-1967, Ankara

6. D.P.T. (1967). Kalkýnma Planý 1968-197,2Ankara.

- 7. D.P.T. (1971). 1971 Yýlý Programý
- 8. D.P.T. (1972). 1972 Yýlý Programý
- 9. D.P.T. (1973). 1973 Yýlý Programý
- 10. D.P.T. (1973). Kalkýnma Planý 1973-197,7Ankara.

11. D.P.T. (1979). Kalkýnma Planý 1979-1983 Ankara.

12. Esparza A. And Krmenec A.J. (1994). Business services in the space economy : a model of spatial interaction. **Papers in Regional Science : The Journal** of the RSAI 7355-72 13. Fik Tj ,1988, Hierarchical Interaction : The Model I ing of a Competing Central Place System. **The Annals of Regional Science 22** 48-69

14. Fotheringham, A.S.(1979). Pol arized Growth within a Mul ti-growthcenter Environment : A case study of the United States 1920-1970. Environment and Planning A1.193-208.

 Fotheringham, A.S.(1981). Spatial Structure and distance – decay parameters in Repl y. Annals of the Association of American Geographers 72425-436
 Fotheringham, A.S.(1982). Distance-Decay Parameters in Repl y. Annals of the Association of American Geographers 72551-553

 Fotheringham, A.S.(1983). A New Set of Spatial -Interaction Models : The Theory of Competing Destinations. Environment and Planning a 1515-36
 Fotheringham, A.S.(1984). Spatial Flows and Spatial Patterns.
 Environment and Planing A 16529-543

 Fotheringham, A.S., Weber M.J (1980). Spatial Structures and the Tarameters of Spatial Interaction Model s. Geographical Analysis 1233-46
 Friedmann J. (1966). Regional development policy : A case study of Venezuela Cambridge, Mass. : MIT Press.

21. Gil bert A. (1974). Growth pol es : The Instant Sol ution to Regional Problems Ýn R.S. Thomas (Ed.), Proceeding of the Commission on Regional Aspects of Development. 1: Methodology and Case Studies. Toronto : Al I ister Publishing.

22. Gil bert A. (1977). The Arguments of Very Large Cities Reconsidered : A Repl y, **Urban Studies 14**225-227

23. Hansen , N.M. (1972). Growth centers in regional economic developmentNew York : Free Press.

24. Hansen , N.M. (1978). Human Settlement Systems : International Perspectives on Structure, Change and Public PolicyCambridge : Ballinger, p.4.

25. Higgins B. (1972). Growth pol e pl icy in Canada. In N.M. Hansen (Ed.),
Growth Centers in Regional Economic DevelopmentNew York . the free Press.
26. Isard, W. Et.al .(1950). Methods of Regional Analysis Cambridge : M.I.T. Press.

27. Konstantinov, C.A.(1977). Role of New Towns in the Development of Settlement System in the USSR, Geographica Polonica 37115-120.

28. Krmenec A.J. and Esparza A. (1993). Model I ing Interaction in a System of Markets. **Geographical Analysis 25** 354-68.

29. Logan, M.L.(1973). The Spatial System and Planning Strategies in Developing Countries : in John Bladen et.al. Regional Analysis and Development Open University Publication, Amsterdam. 30. Morrill, L. (1968). Waves of Spatial Diffusion. Journal of Regional Science8 1-18

31. Morril I, R.L. (1973). On the Size and Spacing of Growth Centers. Growth and Change 4 21-24

32. Mosel ey M. (1974). Growth Centers in Spatial Planning.Oxford : Pergamon Press.

33. Mulligan G.F. (1984). Agglomeration and Central Place Theory : A Review of the Literature. International Regional ScienceReview 9 1-42.

34. Parr J.B. (1973). Growth poles, Regional Development and Central Places Theory. Papers of the Regional Science Association 31174-212

35. Parr J.B. (1973). Regional Competition, Growth Pole Policy and Public Intervention : In W.Buhr and P. Friedrich (Ed.), Konkurrenz Zwischen Kleinen Regionen : Competition Among Small RegionsBaden Baden : Nomos Verlag.

36. Parr J.B. (1981). The Distribution of Economic Opportunity in a
Central Place System : Dynamic Aspects and Growth Poles : in A. Kuklinski
(Ed.), Polarized Development and Regional Policies Tribute to Jacques Boudevil I e.
The Hague: Mouton.

37. Parr J.B. (1987). Interaction in an Urban System : Aspects of Trade and Commuting. **Economic Geography 64** 223-240

38. Richardson and Richardson (1975). The Rel evance of Growth Center Strategies to Latin America. Economic Geography 51 163-178.

39. Robson, B.T.(1973). Urban Growth : An Approach, London : Menthuen and CO.Ltd.

40. Wal sh F. (1980). The Demise of Growth Center Policy : The Case of the Irish Republic. Paper presented to the annual conference of the British Section of the Regional Science AssociationLondon.