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Abstract   

Methods for combining the steps of the sequential travel forecasting procedure have 

gained more and more interest in recent years.  A comparison of two state-of-the-art 

combined models is presented: VISUM/VISEVA by PTV AG and Technical University 

Dresden, Germany, and CMMC (combined multi-class multi-modal travel choice 

model) by University of Illinois at Chicago, USA.  Each model is tested on large-scale 

networks used by practitioners at Chicago and Dresden. 
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Introduction 
 
The basis for most travel choice models is the conventional sequential procedure, which 

separates prediction of travel choices into trip generation, trip distribution, mode choice 

and assignment steps. Over the course of several decades, new methods and better 

algorithms have been developed for each step to improve the computed results.  More 

recently, feedback was introduced into the models in an attempt to achieve an internally 

consistent prediction, one that takes the results of previous steps into account. 

 
In this paper we compare two state-of-the-art models: first, a combined multi-class, 

multi-modal travel choice model formulated by Boyce and Bar-Gera (2003). This model 

combines trip distribution, mode choice and traffic assignment into a single consistent 

model referred to as CMMC in this paper. Second, a model using VISUM by PTV AG 

and VISEVA by Lohse et al. (1997) that combines the four steps into one automated 

solution process. VISEVA is a program for solving trip generation and simultaneous 

origin-destination and mode choice. VISUM is a program for modeling a network and 

solving route choice. A macro was used to interrelate the two programs (Lohse 2002). 

This model is referred to as VIS in the paper.  

 
We applied both models to two large-scale urban road networks. First, the Chicago 

Regional Model was solved for the Zone 1995 System and Road Network. This network 

includes Chicago and seven surrounding counties. It consists of 1790 zones, 12,982 

nodes and 39,018 links, of which 34,484 represent arterials, 976 represent freeways and 

existing tollways and 3,560 are zone centroid connectors. Second, the Dresden Model 

was solved for the road network. This network represents the Dresden, Saxony, as well 

as seven surrounding counties. The zone system and network consist of 688 zones, 

8,794 nodes and 21,477 links of which 1,376 links are zone centroid connectors.  

 
Travel Forecasting Models 

 
Most travel forecasting models are based on the concept of a sequential travel 

forecasting procedure consisting of four steps: trip generation, trip distribution, mode 

choice, and traffic assignment: 

 
1. In the trip generation step, planners address the problem of where trips begin and 

end in the network.  The planning area is divided into small, homogenous zones; 
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2. The trip distribution step links origins and destinations together. The result is a trip 
matrix containing the total number of trips per hour among all origin-destination 
pairs (OD-pairs).  

 
3. In the mode choice step, trips are allocated among all modes so that one trip matrix 

now contains all trips among all origin–destination pairs for each specific mode; 
 
4. In the traffic assignment step, flows are assigned to the road and transit networks. 

The result is flows by each mode on the network links during a specific time period. 
 
Each step is well defined and usually solved independently of every other step. The 

concept is based on the assumption that travelers make sequential choices in deciding 

where, when, and how to travel. Because of inherent problems, such as unknown travel 

times and costs, and the point that travel times on links determined in the last step 

influence decisions in previous steps, feedback was introduced. Recently, sequences of 

some steps have been integrated into one model formulation. We present two state-of-

the-art travel choice models that solve the travel forecasting problem in different ways. 

 
Formulation of a Multiclass Combined Model of OD, Mode and Route Choice 
 
CMMC integrates the trip distribution, mode choice, and route choice steps into one 

consistent model formulation. The desired equilibrium solution is determined when 

generalized costs (a linear combination of travel times and monetary costs) are identical 

for these three choices. A consistent and explicit formulation of the model interrelates 

the variables, which can be solved by a convergent algorithm, as described by Boyce 

and Daskin (1997). 

 
The total demand computed in the trip generation step is fixed and given for each 

destination and origin. This demand is classified according to classes l. The total flow 

from origin p to destination q by mode m for class l is l
pqmd . The modes are auto (h) and 

transit (t), and are independent of each other. P and Q are the sets of all origins and 

destinations; here P = Q. The multi-class model is implemented for the morning peak 

only, so no choice of departure time is considered. The multi-class combined origin-

destination-mode model with user-optimal route choice (following Wardrop’s first 

principle of equal and minimal travel times on all used routes) may be formulated as: 
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The solution must satisfy the following constraints: conservation of route flows (2), 

regional mode choice (3), conservation of mode choices (4), conservation of the total 

flow from each origin (5) and to each destination (6), non-negativity of route flows (7), 

and definition of link flow equal to the sum of route flows (8). The toll term in the 

objective function represents small existing tolls on tollways in the Chicago region. 

 
The variables are defined as follows: 

a  any link 
p  origin zone 
q  destination zone 
l  class, defined here to be trip purpose  
m  mode of travel (auto h , and transit t ) 
r  any route 

av  flow on link a 
l
rh  total vehicle flow on route r in auto equivalent units per hour 
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a
rδ  1 if link a belongs to route r, Rr ∈ , and 0 otherwise 
( )aa vc  auto in-vehicle travel time as a function of flow on link a 

l
pO  person trips (per hour) starting in p for trip purpose l  
l
qD  person trips (per hour) ending in q for trip purpose l 

l
tM  target person trips (per hour) by transit for trip purpose l  

lβ  origin-destination cost sensitivity parameter for trip purpose l  
lµ  mode cost sensitivity parameter for trip purpose l  

atoll  toll on link a (cents) 
lη  auto occupancy factor for trip purpose l  (persons/vehicle) 

pqtc  transit in-vehicle travel time (minutes) 

pqhk  auto out-of-vehicle cost like parking fees (cents) 

ad  length of link a (miles) 

pqtk  transit fare (cents) 
l
pqhω  auto out-of-vehicle travel time (minutes) 
l
pqtω  transit out-of-vehicle travel time (minutes) 
l
pqhd  person trips (per hour) from p to q by auto mode  
l
pqtd  person trips (per hour) from p to q by transit mode  
l
pqmd  person trips (per hour) from p to q by mode m   
l
hIVTTγ  coefficient of auto in-vehicle time for trip purpose l (gcu/minute), which equals 

1, and therefore is omitted in the statement of the formulation 
l
hdistγ  coefficient of auto distance for trip purpose l (gcu/minute) 
l
hOVCγ  coefficient of auto out-of-vehicle cost for trip purpose l  (gcu/cent) 
l
hOVTTγ  coefficient of auto out-of-vehicle time for trip purpose l  (gcu/minute) 
l
tollγ  coefficient of auto toll for trip purpose l (gcu/mile) 
l
tIVTTγ  coefficient of transit in-vehicle time for trip purpose l (gcu/minute) 
l
tOVTTγ  coefficient of transit out-of-vehicle time for trip purpose l (gcu/minute) 
l
tfareγ  coefficient of transit fare (monetary) for trip purpose l  (gcu/cent) 

 
In order to derive the optimality conditions, we form the Lagrangian, take partial 

derivatives with respect to route flow by class, and origin-destination-mode flow by 

class, and solve for the flow from origin p to destination q by mode m for class l: 
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Equation (9) is the nested origin-destination-mode travel choice function with 

endogenous auto travel costs; l
q

l
p BA ,  are balancing factors. See Nöth (2001) for details. 

 

The generalized travel costs l
pqmc  are a weighted linear combination of auto and transit 

travel times and monetary costs. Auto generalized costs are: in-vehicle travel time, out-

of-vehicle travel time, tolls, monetary cost, and distance (to represent the disutility of 

distance and fuel consumption). In-vehicle travel time on links of the road network are 

non-negative, increasing, separable functions of total link flows va. The Bureau of 

Public Roads (BPR) travel time function is adopted for representing the relationship 

between flow va and travel time ca on link a: 
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where ca(va) is the travel time on link a with flow va, ca

0 is the free-flow travel time on 

link a, and za is the capacity of link a in vehicles per hour; φα   and   are parameters to 

adapt the BPR-function to links with different characteristics (here we use α = 0.15 and 

φ = 4). Average out-of-vehicle travel times include walking times to the car and to the 

final destination. Costs at destinations, like parking fees, are included in out-of-vehicle 

costs. Transit costs are in-vehicle travel time, out-of-vehicle travel time, and fares. All 

costs are represented in the form of the generalized cost unit (gcu), which is equal to 

auto in-vehicle travel time, by applying money-time conversion factors. 

 
Travelers are assumed to minimize their generalized cost in making their travel choices. 

Due to lack of information, unmeasured benefits at destinations, individual desires, and 

behavior about comfort and attractiveness of alternatives, travelers generally do not 

actually choose the least cost alternative. This dispersion to higher cost alternatives is 

modeled by including an entropy term. In particular, dispersion to “more expensive” 

modes and destinations is considered. 

 
Solution Algorithm 
 
The algorithm used for solving the above combined model is a generalization of the 

Evans (1976) algorithm, which relies on the partial linearization of the objective 

function. In each iteration the algorithm seeks a feasible direction to decrease the value 
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of the objective function. A line search is applied to obtain the optimal step size. The 

algorithm iterates until a specified level of convergence is reached. The model was 

programmed in  C-language at UIC. Because of its research character, the program 

does not offer a graphical interface or other options.  

 

Formulation of VISEVA / VISUM Travel Choice Model 
 
VISUM is a product of PTV AG, a German engineering consulting company, for 

network manipulation and trip assignment. VISUM has been used in practice for about 

20 years. VISEVA is a product of PTV AG and TU Dresden and has been developed 

over the last seven years. VISEVA offers a characteristic value model (systematic 

disaggregation of households, person categories and activity pairs; called 

Kennwertmodell in Germany) for trip generation and an algorithm for simultaneous 

solution of trip distribution and mode choice (four impedance functions are predefined, 

and additionally a user specified impedance function may be defined; two algorithms 

are available for balancing the trip tables: MULTI-Model by Lohse (1997) and Furness-

Model). Because of their commercial history, both programs offer several additional 

options and auxiliary functions. In this paper we apply the EVA-Function for OD and 

mode-choice and the Learning Procedure for route choice, both developed by Lohse 

(1997). Because the combined model used does not include trip generation, we used 

fixed demand for each origin and destination for each trip purpose. 

 
Trip distribution and mode choice are computed simultaneously instead of being 

computed sequentially. The basis for computing the flow of class l from zone p to q by 

mode m, l
pqmd , is the user’s “evaluation of the costs/impedance/deterrence of this trip”; 

or in other words, the probability BW (a function of the generalized cost or impedance 

or Bewertungswahrscheinlichkeit) that a user makes this trip from zone p to q by mode 

m. For trip purpose types 1 and 2 (the origin or destination is either home or work, or 

otherwise type 3 is used), the flow may be computed as: 

 l
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l
m

l
q

l
p CBA  and ,  are balancing factors used for solving for the trip matrices. BW is a 

combination of costs (like travel time, monetary costs, speed and some more) and is 

computed with the EVA-Function (Lohse 1997). BW is computed separately for each 

cost k. Since each cost is regarded as independent of each other, all BW are multiplied to 

compute a total BW for a flow l
pqmd .  
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The EVA-Function also includes an exponential function, like is typically used in a 

gravity model; but, with its three parameters E, F and G, it is more flexible and easier to 

adapt in an analysis. Additionally, the EVA-Function shows better properties for short 

trips, whereas the exponential function decreases too sharply. Figure 1 shows the two 

functions for β = 0.04, E = 2, F = 5, G = 0.09: 

Figure 1: Comparison of Exponential- and EVA-Function 
 

Figure 2 presents the elasticities of the two functions. The exponential-function has a 

linear decreasing elasticity, while the elasticity of the EVA-function has a lower 
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elasticity for low and high cost and a higher elasticity for cost in between. This 

characteristic seems to represent human behavior better, and is similar to a PROBIT- 

function, which is regarded as best for describing human behavior.  

 

Figure 2: Elasticises of Exponential- and EVA-Function 
 
The three-dimensional routine Multi-Model was used for balancing the model. The 

convergence criterion seeks to minimize the information gain between a probability 

matrix and the trip matrix. The E, F, and G parameters were obtained from TU Dresden 

for the Dresden Network, and by applying a calibration tool for the Chicago network. 

Destination and mode choice had to be computed separately for each trip purpose. 

Indicator matrices for computing BW were obtained from VISUM, which in turn uses 

VISEVA trip matrices as an input for trip assignment. In this work we used only travel 

time (including out-of-vehicle time for walking to and from a car) as generalized cost. 

All trip matrices by class were summarized to one total trip matrix. 

 
VISUM / Learning Procedure 
 
VISUM offers five different algorithms for auto assignment and three methods for 

transit assignment. This paper focuses on the Learning Procedure, which is an 

algorithm for auto assignment. This algorithm approaches traffic assignment by 

modelling the decision making process of a user: before starting a trip from origin p to 

destination q she compares different routes using estimated travel times on each link. 
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After choosing the least cost route she learns the real travel time on this route (route 

travel time is the sum of all link travel times, which are part of this route). Based on this 

experience she may change the route in the next iteration in case there is a gap between 

estimated travel time and perceived travel time. If enough iterations (n > 40) are 

performed, a solution is approached in which the realized travel times approximate the 

estimated travel times for all links. Compared to a Wardrop (1952) equilibrium, 

however, this solution does not equalize travel times on used routes; indeed, it assigns 

some flow to routes with higher costs, which is considered to be more realistic.  

 
The Learning Procedure is modeled in VISUM with a best-way algorithm and 

“retrograde calculation” (Rückrechnung). VISUM uses the BPR-function for computing 

link travel times. In each iteration all trips from p to q are assigned to the least cost 

route, which is found by averaging the estimated and realized impedances (linear 

combinations of travel time and other defined costs) for each link in the previous 

iteration using the Learning Equation: 

10        )),1()1(()1()( ≤∆≤−−−⋅∆+−= ntntntnt estimatedrealizedestimatedestimated  (18) 

For faster convergence the averaging factor ∆ is introduced as variable, which is 

optimised in each iteration. If the gap between estimated and realized travel times is 

small enough, the algorithm stops. The gap is computed with a relative-variable 

measure ε. In the retrograde calculation step, all flows on link a are summed up over all 

iterations and are divided by the number of iterations n. Lohse (1997) presents this 

algorithm as shown in Figure 3. 

 
For the actual computation of travel forecasts, both programs are either linked by hand 

or by a VBA-macro. The trip matrix computed with VISEVA is input to an assignment 

in VISUM. Then, indicator matrices are computed with VISUM for solving a new 

destination and mode choice with VISEVA. This process is repeated until equilibrium is 

reached (usually about 5 to 10 iterations are necessary). Figure 4 shows the process. 

 
The convergence criterion seeks to find an equilibrium between demand (trip matrix) 

and supply (network). The macro used for this study utilizes stability of link flows to 

check convergence. For computing this stability of link flows between two iterations, 

the Learning-Procedure criterion is used.  
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Figure 3: Best-Way-Algorithm with Retrograde Calculation and Learning Procedure 
 

 
INPUT: 
- trip matrix dpq 
- connection of all links a in the network 
- link characteristics = A 

↓↓↓↓ 
n = 0 

↓↓↓↓ 
Retrograde calculated link flow v*a(n) of all links  a in iteration n :    v*a(n=0) = 0 

↓↓↓↓ 
n = n + 1 

↓↓↓↓ 
Computation of deterrence/impedance t

realized, a
(n) of all links a with CR-function: 

t
realized, a

(n) = F(A, v*a(n-1)) 

↓↓↓↓ 

                   n>1   TEST :  T(n = 1)   n =1                             

    
Estimation of deterence/impedance t

estimated, a
(n) of links a with Learning 

Equation :  
t
estimated, a

(n) = F(t
estimated, a

(n-1),    t
realized, a

(n)) 

  
test., a (n) = treal., a (n) 

   ↓↓↓↓                
yes      Test for all links a :    T((test., a (n -1) - treal., a (n )) / test., a (n -1)) ≤≤≤≤ ε ) 

   ↓↓↓↓ no                             
Find best-way for all origin-destination pairs pq using 

deterrence/impedance   t
estimated, a

(n)   

↓↓↓↓ 
Assign all trips dpq to the best-way  

sum up all route flows to link flow va(n), if link a is part of this route 

↓↓↓↓ 
Sum up all link flows  va(n)  of each iteration to link flow  Sva(n)  over iterations 1 bis n : 

      n 
Sva(n) =  �  va(k) 

       k=1 
↓↓↓↓ 

Compute new link flow  v*a(n)  for all link a :      v*a(n) = Sva(n)  /  n 

            
 
 
RESULT:                   Link flow  va  for all links  a of the network:        va =  v*a(n-1) 
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Figure 4: Travel Choice Computation with VISEVA / VISUM 
 

Computational Results 
 

All computations are limited to the morning peak period: 6:30 to 8:30 am for Chicago 

and 6:00 to 8:00 am for Dresden; the total flow for Chicago is approximately 1.51 

million person trips per hour and for Dresden approximately 256,000 person trips per 

hour. For Chicago total flow is divided into two trip purposes: Home-Work, Home-

Nonwork, which also includes all other trips. For Dresden 15 trip purposes are used (see 

the Appendix). Because of lack of data and different approaches in modeling the transit 

mode, we excluded transit and therefore mode-choice. This omission also speeds up 

solution times considerably; solution times are in a range of 10 to 60 hours for the 

Chicago network. The generalized costs used in both models are based on in-vehicle 

travel time and out-of-vehicle travel time. Other costs were not included as a result of 

inconsistencies and lack of data and parameters.  

 
Solution Procedure 
 
In order to compare the models we solved them in the following way: 

 

Network for mode 
(least cost route / assignment) 
--Result--------------------------------------------------- 
Indicatormatrices for each mode  
Link flows (node flows) 

Trip Generation (Kennwertmodell) 
--Result---------------------------------------- 
demand at origins Op  and destinations Dq  

Destination and Mode Choice (simultaneous) 
---Result---------------------------------------------------------------------------- 
Auto-Trip matrix 

 
F 
e 
e 
d 
b 
a 
c 
k 
 

Iterationcounter n 
n= 0 � demand dpqm (n=0) =0 

dpqm (n) ≥0 

n=n+1 
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1. To compare the networks used by planning officials and companies, alter both 
networks slightly to make them fit both models, CMMC and VIS (e.g., delete 
elements of modes other than auto, convert the Chicago network to meters). 
 

2. Solve the Chicago network with CMMC and the Dresden Network with VIS, using 
the “original” parameters. These solutions, which are different from the calibrated 
solutions (e.g. no transit), are our new “correct” solutions. 

 
3. Solve the Chicago network with VIS and the Dresden Network with CMMC. 
 
4. Calibrate them with respect to average travel distance. 
 
5. Compare these solutions to the “correct” ones with the following measures: average 

travel distance (ATD); average travel time (ATT); average travel speed (ATS); link 
flows; and integrals of link travel time functions.  

 
Results for the Dresden Network 
 
First, we solved the Dresden network with VIS. Thereafter CMMC was calibrated with 

respect to ATD. Table 1 presents results for ATD, ATT, ATS and person-trips for the 

solutions with CMMC and VIS. ATDs are in agreement for all trip purposes. ATTs and 

ATSs match in particular for trip purposes with a high number of trips. The different 

characteristics of the exponential function and EVA-function lead to more interzonal 

travel for VIS: 

Table 1: Average Measures for Dresden 
 

trip
purpose CMMC VIS CMMC VIS CMMC VIS CMMC VIS
HW 16.07 15.97 27.50 26.96 35.08 35.53 148387 153842
HK 6.03 6.01 11.11 14.12 32.58 25.52 8584 10062
HE 15.16 14.31 28.77 24.56 31.62 34.95 13373 14754
HU 14.82 14.80 30.50 25.74 29.16 34.50 4207 4229
HS 8.39 8.45 13.20 17.50 38.13 28.95 10837 12257
HO 11.19 11.20 21.97 21.58 30.57 31.13 20732 22004
WH 16.28 16.32 22.75 26.68 42.94 36.71 435 450
KH 6,132 6.22 8.75 13.98 42.05 26.68 406 468
EH 13.40 13.19 15.57 21.84 51.65 36.24 294 324
UH 15.32 15.34 21.02 24.74 43.72 37.19 23 23
SH 8.59 8.51 12.48 17.42 41.31 29.33 1899 2130
OH 11.36 11.43 16.04 21.03 42.48 32.63 4325 4552
OW 10.86 10.99 16`.35 20.64 39.85 31.94 7642 8478
WO 12.09 12.07 20.73 22.41 34.99 32.31 5249 5641
OO 9.33 9.28 16.64 19.33 33.65 28.79 7084 7383

total 14.21 14.01 24.63 24.55 34.62 34.25 233478 246595

in km in minutes in km/h (interzonal)
avg. travel distance avg. travel time avg. travel speed person-trips 
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Figure 5 shows the differences in link flows for these solutions. About half of all links 

have similar flows (±50 autos/2h). For more than 800 links, differences in link flows are 

±500 autos/2h, which is noticeable. About 3,000 links show a relative difference of ±10 

% and show similar flows. Nearly the same number of links show a relative difference 

of ±100 %, mostly due to links, which get small flows in CMMC and zero flows in VIS.  

 

Figure 5: Link Flow Differences between CMMC and VIS for Dresden 
 
However, other reasons for the large differences were identified in rounding errors 

during the inputting of trip matrices by VISUM, consideration of turning penalties in 

VISUM and, of course, different models. We solved with VIS a network without 

turning penalties (referred to as “all turns”) to check this assumption. Additionally, we 

solved with this modified network a trip matrix multiplied by 1000 to decrease rounding 

errors (referred to as “1000”, the rounding errors decreased flow by about 20%). 

VISEVA and VISUM offer various models for solving OD, mode and route choice. We 

tested an exponential function for OD and mode-choice with the equilibrium assignment 

in comparison to EVA-function and Learning Procedure. Table 2 shows total results for 

some measures. 
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Table 2: Average Measures for modified VIS Solutions 
 
Figure 6 shows differences in link flows between CMMC and VIS “1000”. In particular 

fewer links exhibit large absolute and relative differences. Even so, the discrepancies 

are large. Astonishingly, VIS solutions are in better accordance with each other than 

with the CMMC, despite the fact that in one VIS formulation an exponential-function 

and equilibrium assignment have been used.  

 

Figure 6: Link Flow Differences between CMMC and Modified VIS for Dresden 
 
These outcomes lead to the question of accuracy. While CMMC solved the assignment 

to an accuracy (relative gap) of 0.0001 in this study, VISUM uses integers for flows. By 

increasing the number of trips with a factor of 1000, we addressed this problem in part. 

Another point concerns when to stop the computations. CMMC uses the integrals of the 
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ATD ATT ATS
Model in km in minutes in km/h
Exp.-Fct./Equilibrium 16.04 26.5 36.3
Exp.-Fct./Equilibrium "all turns" 13.82 25.7 32.2
Exp.-Fct./Equilibrium "1000" 13.45 26.1 30.9
EVA-Fct./Lernverfahren 13.44 23.7 34.1
EVA.-Fct./Equilibrium "all turns" 12.07 24.0 30.3
EVA.-Fct./Equilibrium "1000" 11.87 24.0 29.6
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link travel time functions in the optimization function to monitor convergence and to 

define a termination point. Although the VIS convergence criterion seeks to find an 

equilibrium between demand (trip matrix) and supply (network), the macro also uses 

stability of link flows to check convergence. In fact, link flows do fluctuate to a small 

extent. Table 3 shows the number of links with changing flows. 

 

Table 3: Number of Links with Changing Flows between VIS Solutions for Dresden 
 
Table 4 indicates the fluctuation of the sum of link travel time integrals of the VIS 

solutions. The value for CMMC is 22,494,191 (in CMMC the flow actually assigned to 

the network is about 20% higher than for these VIS solutions). 

 

Table 4: Sum of Link Travel Time Integrals of VIS Solution for Dresden 
 
Results for the Chicago Network 
 
First, we solved the Chicago network with CMMC. Thereafter the three EVA 

parameters were calibrated with regard to ATD. Table 5 presents results for ATD, ATT, 

ATS and person-trips for the solutions with CMMC and VIS (after six feedback loops). 

Clearly, ATD does not match for the two trip purposes, which is also true for ATT and 

ATS. Only the number of interzonal trips is similar in both solutions.  

 

 

 

Iteration
1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10

± 1% 6822 9900 12243 13891 15113 15558 16202 16318 16397
± 5% 10047 15949 17924 18751 19288 19495 19635 19582 19618
± 10% 13193 18329 19384 19857 19986 20028 20065 20060 20087

Number of all Links 20299 20299 20299 20299 20299 20299 20299 20299 20299

Cumulatigve Number of 
Links with changing flows

Iteration Exp.-Fct./Equlibrium As. EVA-Fct./Learning Proc.
1 21,377,568 20,396,703
2 23,772,359 23,074,378
3 22,892,930 22,207,464
4 23,321,581 22,535,061
5 23,078,603 22,368,520
6 23,198,494 22,429,817
7 23,174,430 22,414,096
8 23,212,393 22,407,417
9 23,227,198 22,428,552
10 23,216,013 22,370,515
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Table 5: Average Measures for Chicago  
 
Because of the long computation times (roughly one week for six feedback loops), we 

were not able to re-calibrate the EVA parameters at this time. Furthermore, the Learning 

Procedure did not converge for the first setting of parameters, so that we had to change 

∆ after the third iteration; ∆ limits the maximum step size of the Learning Equation. 

Even after the change of ∆, the assignment was terminated after reaching the maximum 

number of assignment iterations, and did not reach the convergence criterion. From the 

fifth to the sixth VIS iteration, about 10,000 links show differences in link flow of ±1% 

and less, but about 6,000 links show differences in link flows of more than ±10%. The 

slow convergence might be a result of the large road network, which is rather congested 

in some parts, in particular in the Chicago Central Area.  

 

Again we tested an exponential function for OD and mode-choice with the equilibrium 

assignment in VIS. When using the same β parameter for OD-choice, ATD was about 

twice as large as in the CMMC solution. We had to increase the exponential-function 

parameter β substantially to approach the CMMC ATD, which increased the number of 

intrazonal trips from 60,000 trips to more than 400,000 trips. We are not aware of the 

reasons for these discrepancies at this time.  

 
Figure 7 presents the actual differences in link flows between the CMMC solution and 

the VIS solution. About 22,000 links show similar flows for both solutions (±50 Fz/2h), 

about 1,400 links show fairly big differences (±500 Fz/2h). 

 

 

 

 

 

 

trip
purpose CMMC VIS CMMC VIS CMMC VIS CMMC VIS
HW 19.02 21.50 25.5 30.6 27.8 42.1 929634 932911
HNW 7.70 8.90 10.7 13.5 26.9 39.7 511086 506502

total 15.21 17.07 20.2 24.6 27.7 41.6 1440720 1439413

avg. travel distance avg. travel time avg. travel speed person-trips 
in km in minutes in km/h (interzonal)
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Figure 7: Link Flow Differences between CMMC and VIS Solutions for Chicago 
 
More research testing the convergence characteristics of the Learning Procedure for 

different parameter settings and very large networks is underway. A new version of the 

VBA-macro will use Learning Feedback (averaging of trip matrices computed in 

consecutive iterations) to overcome convergence problems and reduce overall 

computation times.  

 
Conclusions 

 
Solutions of two state-of-the-art multi-class, multi-modal travel forecasting models are 

presented. In this study both models could be adopted to “foreign” networks with 

reasonable amount of time and effort leading to good results. The quality of the 

solutions could have been improved further. CMMC has the advantage of having a well-

defined objective function and a clearly defined termination criterion. VIS offers the 

user various procedures to compute OD, mode and route-choice. Furthermore EVA-

Function and Learning Procedure are probably the better choice, because of their 

characteristics in reflecting user’s behavior. However, observations in practice show 
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different states and flows from day to day and during the day, as was true for the various 

model solutions. Every solution is only one among other likely ones. Using different 

models might help to emphasize this fact. 
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Appendix 
 

Table 6: 15 Trip Purposes used for the Dresden Network 
 

WA Wohnen-Arbeit HW Home-Work
WK Wohnen-Kindereinrichtung HK Home-Nursery School
WB Wohnen-Bildung HE Home-Education
WH Wohnen-Hochschule HU Home-University
WE Wohnen-Einkaufen HS Home-Shopping
WS Wohnen-Sonstiges HO Home-Other
AW Arbeit-Wohnen WH Work-Home
KW Kindereinrichtung-Wohnen KH Nursery School-Home
BW Bildung-Wohnen EH Education-Home
HW Hochschule-Wohnen UH University-Home
EW Einkaufen-Wohnen SH Shopping-Home
SW Sonstiges-Wohnen OH Other-Home
SA Sonstiges-Arbeit OW Other-Work
AS Arbeit-Sonstiges WO Work-Other
SS Sonstiges-Sonstiges OO Other-Other
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