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ABSTRACT 

The interest on regional economics has strongly progressed in the latest decades; 

however, and in spite of the great extension of the information that statistical sources of 

data offer to economic researchers, one of the major problems arising with these kind of 

studies still keep being the lack of data. 

Regional studies can be focused from several points of view, one of these is the 

input-output framework. This method allows the economic researcher to analyse the 

intersectoral relationship underlying on a economy in a joint way, as well as the 

aggregate demand, so it makes feasible to get a integrated knowledge of economic 

activity. This technique is a key part on the knowledge of a region, because supplies the 

necessary information to study the economic situation of the mentioned region. 

However, its use now at days is quite restricted because the discontinuity in the 

publications of the input-output (IO) tables by statistical agencies, as well as the long 

time is necessary to wait between each published table. Specifically, focusing the 

problem on the region of Asturias (north of Spain), the last available input-output table 

was made for 1995, having been published in 1999.  Having account this situation, we 

believe that for an effective and rigorous application of this kind of analysis a previous 

step we must take is the input-output tables series estimation. 

The input-output table elaboration is a work that implies a great effort to get 

statistical information, as well as a very high cost on every kind of resources. So, the IO 

tables obtaining by the use of indirect methods of estimation would reduce  the needs 

for information and material  and human resources.  
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The information theory is being applied in the latest decades as a very flexible 

tool that allows to estimate the IO tables coefficients when the available data are not 

perfectly consistent. 

Our aim in this work is to make a comparison between the cross entropy method, 

an information theory derived technique, and the biproportional RAS method, with a 

long tradition on applied works (Robinson et al. 1998, Mc Dougall, 1999). On a second 

stage, and basing on the conclusions for the previous comparison and our information 

availabilities, we will estimate the input-output tables series corresponding to the region 

of Asturias for the years 1995-2000. For this estimation, we will apply a cross-time 

analysis taking as starting point the IOT for Asturias in 1995.   

 

1. INTRODUCTION AND MOTIVATION 

 

In spite of the progress of regional economic studies in the last decades, in Spain 

the statistical information they are based on still presents important deficiencies.  

A very useful tool in regional economic analysis is the input-output approach, 

which allows researching the relationship between economic sectors as well as their 

final demand.  However, this approach has a very restrained use because of the 

discontinuity in the publication of input-output tables (IO tables), in addition to the 

lengthy time lag between each table published1.  For these reasons, in search of an 

efficiently and rigorously applied use of this kind of analysis, a previous step must be 

the estimation of a sufficiently large series of IO tables.  

The estimation process of these tables may be based on a spatial or temporal 

approach. The former lies in the assumption of equality between the national and 

regional economic structures, while the latter takes the regional economic structure as a 

starting point but in a moment prior to the estimation. 

In preceding works2, it has been empirically proven that the use of temporal 

information, if we wish to make a short-run prediction, generally provides more 

accurate estimates than the spatial approach.  This result appears because the economic 

structures suffer very little changes in short intervals of time; for this reason, a better fit 

can be achieved than translating the national economic pattern for a region.  

Another important fact, when the objective is the estimation of IO tables, is the 

choice of a good estimation method that allows us to reach that goal3.  A classical and 

very often used method for this kind of problem is the RAS technique, which presents 
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good behavior from both the theoretic and applied viewpoint.  On the other hand, the 

mathematical information theory has been being applied in the last decades as a very 

flexible instrument for reaching coefficient estimations when the available data are not 

perfectly consistent.  

In this work, we pursue a double objective: first, we will make a comparison 

between the cross entropy method (CE), an information theory derived technique, and 

the biproportional RAS method, with a long tradition of applied works (Robinson et al. 

1998, McDougall, 1999). In a second stage, and based on the conclusions of the 

previous comparison and the information available, we will estimate the input-output 

table series corresponding to Asturias for the years 1995-2000, following a temporal 

approach. 

 

2. COMMENTS ABOUT THE ESTIMATION METHODS OF COEFFICIENTS  

 In this section, comments about the fit techniques pointed out above, RAS and 

CE, will be formulated.  In both cases, we focus our attention on the temporal approach. 

 

2.1 THE RAS METHOD 

 This technique, owing to Richard Anthony Stone (1962), needs the knowledge 

of an initial coefficients matrix as the starting point to estimate a new matrix referred to 

at a later moment, for which the sum of its rows (columns) is known.  In general, this 

method lies in changing the starting matrix, multiplying it by adjustment coefficients 

over rows as well as columns.  So, the sums (horizontal and vertically) of the estimated 

matrix elements are the “closest” ones to the real values.This technique will be 

explained later on in detail4.  

 The set of three elements (A,x,y) is called problem, where A is a matrix 

and x(X

nn ×

1×1,X2,...Xn) and y(Y1, Y2,... Yn) are positive element vectors5 with  and 1  

as respective dimensions.  The first stage of the RAS method lies in fitting the starting 

matrix by changes on the rows.  Let us consider at this stage t=0, so A

n

1R

n×

0 is the starting 

matrix of the estimation process.  Now, the first adjustment will be A1= Aˆ 0, where the 

elements are: 1R̂

∑
=

j

0
ij

i1
i a

X
r  
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and A1i=x, where i is a row vector of ones and is a diagonal matrix with  elements 

in the main diagonal and all other entries equal zero.  The next step will be to change 

the resulting matrix from the previous step by columns: A

1R̂ 1
ir

2=A1 S1ˆ , where the main 

diagonal elements of the (diagonal) matrix are now: 1Ŝ

 

∑
=

i

1
ij

j1
j a

Y
s  

 From these expressions, we can write A2= , with i´A1ˆˆ SAR 01 2=y.  This process 

will be successively repeated.   In general, the changes by rows will be obtained from 

the expression A2t+1= , where the elements of matrix  will be: 2t1t AR +ˆ 1tR +ˆ

∑
=+

j

t2
ij

i1t
i a

X
r  

with A2t+1i=x. 

Regarding column adjustments, we will have A2t+2= , 

where the elements of matrix S will be: 

1t2t1t1t12t SARSA ++++ = ˆˆˆ

1t+ˆ

∑ +
+ =

i

1t2
ij

j1t
j a

Y
s  

and where i´A2t+2=y, with a ≥0, ∀ t=1,2,... 1t2
ij

t2
ij a, +

 and  are diagonal matrices with and , respective coefficients in 

the main diagonal. Given a problem (A,x,y), we can say that A

1tR +ˆ 1tS +ˆ 1+t
ir

1+t
js

* is the problem’s 

solution if and only if A*= , with A*i=x y i´A*=y.  It can be proved 

that “if (A,x,y) is a feasible

1h2h1h SAR ++

∞→
ˆˆlim

h

6 problem, then it has a solution and this is the only one”. 

 

2.2 THE CROSS ENTROPY METHOD  

In the last decades, the mathematical information theory has been being applied 

as a useful tool in the input-output coefficient estimation. One of the measures from this 

approach is the cross entropy that is based on Kullback-Leibler's divergence (1951). In 

developing this approach, let us start from an experiment that has n possible outcomes 

(states) E1, E2,...En with respective probabilities q1, q2,...qn, which will be considered as 

prior probabilities. Let us suppose that new information embodied in a message is 
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received, which implies that prior probabilities are transformed into posterior 

probabilities p1, p2,... pn.  If the message is just an outcome Ei, the amount of received 

information will be –ln(pi). Therefore, because of this new information for each 

outcome Ei, an “information increase” will be observed and it will be measured as: 

[ ]ii
i

i lnqlnp
q
pln −−=−  

So, the expected information can be defined as: 

-I(p,q)= ∑
=









−

n

1i i

i
i q

plnp  

where I(p,q) is the Kullback-Leibler’s divergence measure. This measure allows us to 

quantify the distance between two probability distributions: before and after the new 

message (information) is received. 

 Starting from the previous expression, Golan, Judge & Robinson (1994) suggest 

the following measure to estimate the IO table coefficients: 

∑∑












i j
0
ij

ij
ij a

a
lna  

where aij represents a (normalized by columns) coefficient from the matrix that is going 

to be estimated and a  is a generic coefficient from the matrix taken as a starting point.  0
ij

 Now, the problem is minimizing the “distance” between the initial matrix and 

the one we wish to estimate, subject to a restriction set.  So, the non-linear program will 

be: 

                                              Min         ∑∑












i j
0
ij

ij
ij a

a
lna  

                                               s.t.           ∑  =
j

ijij XYa

 ∑ =
i

ij 1a  

    0  1a ij ≤≤

where Xi is the by row and Yj is the by column respective “real” sums.  That is, the first 

restriction group guarantees that the estimated coefficients are consistent with observed 

by row and by column sums, and the remaining restrictions refer to the average expense 

properties (taking values between zero and one). The program's result is the following7: 
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∑∑ λ

λ
=

i j
ji

0
ij

ji
0
ij

ij )Yexp(a
)Yexp(a

a  

where λ are the Lagrange restriction multipliers and the quotient’s denominator is a 

normalization factor. 

 

2.3 RAS AND CROSS ENTROPY:  A COMPARISON  

 

 In this section, a comparison between both methods of estimation will be made. 

The comparison will be developed for three points or approaches: the incorporated 

information approach comparison, the analytic approach and the applied approach. 

 

2.3.1 A COMPARISON FROM THE INCORPORATED INFORMATION 

APPROACH 

 In applying any of the previously explained estimation methods (RAS and CE), 

two kinds of information are needed:  on the one hand, prior information that may be 

national (spatial approach) as well as regional (temporal approach), and on the other, 

specific regional data relating to the moment when one wishes to estimate the IO tables.  

In applying a spatial approach and considering prior information, it will be embodied in 

the IO tables holding the flows and relationship at the national level in the same t period 

where one wants to make the estimation, that is, NIO TABLESt.  Under the temporal 

approach, the starting point matrix would be regional IO tables (RIO tables), relating to 

a previous moment t-k, that is to say, RIO TABLESt-k. In this work, based on the 

reasons explained before, this last approach will be used. 

 Briefly, both methods need quite similar information: the starting matrix that can 

be spatial as well as temporal, and the knowledge of by row and by column sum vectors 

(x and y). 

 Robinson et al. (2000) point out the major flexibility of the CE method as 

opposed to the RAS method in the following way: with the CE method one is allowed 

to include additional information or to make estimations, even with a lack of data 

(information). 

 Let us suppose that a few intersectoral flows are known in the estimating period 

t, and that these are some of the IO table entries. This information can be included using 

additional equality restrictions.  Assuming k restrictions, we will obtain: 
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∑∑ γ=
i j

k
ij

k
ij zg  

where gij are the elements of matrix G, which will be one or zero.  They will be one in 

the respective entries of known values and zero in other cases.  The elements zij are flow 

values between the i and j sector, while γk is the known value of the aggregate. 

 Similarly, perhaps the by row or column sum values are not precisely known.  In 

this case, inequality restrictions will be added to the problem considering margins 

bounding the values, that is: 

 

∑ ≤≤
j

2
iij

1
i XzX  

where  and  are the margins for the X1
iX 2

iX i value. 

 We consider that, even though the “basic” RAS method does not allow for the 

inclusion of additional information to realize estimations with incomplete information, 

these difficulties can be overcome by applying some of the extensions of the RAS 

method.  So, the extension proposed by Paelinck & Waelbroeck can be pointed out 

because this method implies the incorporation of known matrix coefficients, 

specifically, most problematic coefficients, that is to say, the ones with a major 

“divergence” with regard to the real ones. 

 Being A a matrix that has been partitioned into submatrices A11, A12, A21 and 

A22; that is:  









=

2221

1211

AA
AA

A  

considering that, for the sake of simplicity, the elements of submatrix A22 are known. A 

residual matrix E is built as the difference between A and C: 









−








=−

222221

1211

A0
00

AA
AA

CA  

where in matrix C all entries are zero except for A22 composed of known coefficients. 

So, matrix E is formed by initial coefficients excluding the problematic ones, which will 

have been replaced by zeros8.  The next step is to apply RAS in matrix E and, finally, 

the matrix is estimated as A*= E(RAS) + C. Therefore, an estimated element matrix 

will be available, which is formed by submatrices A11, A12 and A21. 
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 Another extension of the RAS method is proposed by Hitz and Schmid (1978).  

In this method, limits are set up for the margins without perfectly known values.  A set 

of restrictions is included as follows: 

 

∑ ≤≤
i

2
jij

1
j YzY  

∑ ≤≤
j

2
iij

1
i XzX  

∑∑ ≤≤
i j

2
ij

1 XzX  

where  represent column margins,  row margins and  represent 

global limits.  So, if some of the extensions of the RAS method are taken into account, 

properties similar to the CE method can be noticed. 

)Y(Y 2
j

1
j )X(X 2

j
1
j )X(X 21

  

2.3.2 ANALYTIC COMPARISON 

 Considering the comparison from an analytic approach, McDougall (1999) 

proves that the RAS estimation method is equivalent to a minimization model of cross 

entropy.  From the following expression: 

 

∑∑∑ ∑∑


















=



















=
i j

0
j

0
ij

j

ij

ij

j i j
0
j

0
ij

j

ij

j

ijj
j

j

Y
z

Y
z

ln
X
z

Y
z

Y
z

ln
Y
z

X
Y

EC
X
Y

 

 

it is possible to prove that minimizing this objective function is equal to minimizing: 

 

∑∑ 










i j ij

ij
ij c

d
lnd  

where 
X
z

d ij
ij =  and 0

0
ij

ij X
z

c = . 

 

 With the first order conditions, the following expression is obtained: 

 

 8 



ji
ij

ij 1
c
d

ln µ−λ−−=  

and with the right mathematical transformations, dij=ricijsj is yielded, the RAS method 

solution, where r and s . i1
i e λ−−= jej

µ−=

 So, we conclude that the RAS method can been seen not as a technique different 

from CE, but as a particular case of this method using normalized matrix coefficients. 

 

2.3.3 APPLIED COMPARISON 

 We thought it would be interesting to conclude this analysis by making an 

applied comparison between the RAS and CE method results in IOT estimation.  

Specifically, the 1995 IOT for Asturias has been estimated because it is the last one 

published for this region. We have taken a temporal approach, which is why the 1990 

IOT for Asturias is the starting point of the process.  

 The first step is to realize that this comparison lies in previous information 

processing in search of homogenizing data.  The 1995 IOT for Asturias has suffered a 

significant methodological change, because it was elaborated under the 1995 European 

System of Accounts (1995 ESA).  As a consequence of this change, the sector number 

and composition have been modified. So, in the 1990 table (AIOT-90), one can 

distinguish 50 sectors while the 1995 table (AIOT-95) is classified into 60, 31, 16 and 4 

sectors.  For simplicity’s sake, we have chosen to use the Hermes classification and to 

work with nine aggregated sectors.  However, two problems arise:  the first one refers to 

the manufacturers of furniture and other products sector, which includes three 

subsectors (manufacturers of metal products, manufacturers of wood products and 

manufacturers of other products).  The second one, the research and development sector 

and the health activities sector, is not included in commercial services and non-

commercial services, as occurs in the 1985 IOT.  In both cases, a similar information 

treatment has been applied, quantifying the average weight of manufacturers of metal 

products subsector with respect to the other three in the 1985 and 1990 tables, keeping 

this weight for 1995. Following this approach, the weights for the education and 

(commercial and non-commercial) research activities sectors and the health activities 

sectors (commercial and non-commercial) have been unchanged in relation to their 

values in past tables.  The following chart shows this aggregation: 
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Chart 1. Classification Correspondences between AIOT-90 and AIOT-95 under the 

Hermes Classification 

 

HERMES SECTORS  AIOT-90 Sectors AIOT-95 Sectors 

Agriculture (A) 1-2 1-2-3 

Energy (E) 3-4-5-6-7 4-5-17-32-33 

Manufacturers of 

Intermediate Products (Q) 

8-9-10-11-12-13-14-

15 

6-7-8-18-20-21 

Manufacturers of 

Equipment Products (K) 

16-17-18-19-20-21-22 22-23-24-25-26-27-28-29-30 

(partially) 

Manufacturers of 

Consumption Products (C) 

23-24-25-26-27-28-

29-30-31-32-33-34 

9-10-11-12-13-14-15-16-19-30 

(partially) 

Construction (B) 35 34 

Transport & Communications 

(Z) 

39-40 39-40-41-42-43 

Commercial Services (L) 36-37-38-41-42-43-

44-45-46 

31-35-36-37-38-44-45-46-47-

48-49-50 (partially)-51-53 

(partially)-54 (partially) 

Non Commercial Services (G) 47-48-49-50 50 (partially)-52-53 (partially)-

54(partially)-56-57-58-59-60 

 

Once the information is homogenized as explained, the AIOT-95 is estimated 

using the RAS as well as the CE method.  To analyze the proximity (similarities) of our 

estimations, we have applied the following measure proposed by Le Masne: 









−−= ∑−

i

C
ij

R
ij

CR aa5.01100S  

where are the estimated coefficients by the RAS method and ( ) are the ones 

estimated by the CE method. This measure is bounded between 0 and 100, and the more 

similar the coefficients are, the closer the measure is to 100.  The results obtained are 

shown in Chart 2: 

)a( R
ij

C
ija
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Chart 2. Analysis of the Similarity in the Estimations 

Sector A E Q K C B Z L G 

SR-C 95.98 99.32 98.50 97.57 98.80 97.23 94.21 96.63 94.76 

 

 Thus, the high similarity between the RAS and the CE methods can be noted.  

The use of numerical methods in the estimation process is the reason for the observed 

differences.  

 

3. ESTIMATION OF IO TABLE SERIES FOR ASTURIAS 

 Taking into account the previous information processing, an IO table series can 

be estimated in this section. Specifically, we have obtained tables for the 1995-2000 

period. Before making this estimation, let us consider a few notes on the statistical 

information processing applied. 

 

3.1 ESTIMATION OF ROW AND COLUMN MARGINS 

 To estimate the IO table series, one needs to know the row and column sums of 

intermediate consumptions and the technical coefficient matrix that will be used as a 

starting point in the estimation process. 

 The Gosh model (1958) can be approached from the following equation: 

w=(I-D’)-1g 

where w is the effective production vector, D is the market coefficient matrix and g is 

the gross value added to the purchase prices. Once the effective production is 

calculated, it is feasible to obtain the column sums of intermediate consumptions (v), 

just considering the following equation: 

w=v+g 

from which we can obviously state that v=w-g. On the other hand, and taking into 

account the Tilanus (1966) model, it is possible to derive the equation that follows: 

q=(I-A)-1d 

where (I-A)-1 is the Leontief inverse matrix. Reordering the terms in the previous 

expression we obtain: 

d=(I-A)q 
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and so, the row sums of intermediate consumptions (u) are obtained from the 

equationu . AqA)q(Iq =−−=

That is to say that ut+h=At+hqt+h , and from this, following Tilanus, we can state 

that ut+h=Atqt+h.  In other words, the row sums of intermediate consumptions will be 

obtained using the expression u1995+h=A1995q1995+h, ∀h=1,2...5.  However, and because 

the q values for time periods after 1995 are unknown, they must be previously 

estimated. For this, we use the following assumption: the total output / gross value 

added ratio stands unchanged over the mentioned period.  That is, 

1,2...9i  K
g
q

i1995
i

1995
i =∀=  

and so: 

 

1,2...9i  K
g
q

i1995
i

1995
i =∀=  

 

 Following this method, all the information necessary for the estimation process 

has been obtained. However, a last step in the statistical information process must be 

undertaken. Since we are going to estimate the IO tables from 1995 to 2000, it is 

essential to deflate these matrix entries beforehand since we are working with only a 

few years and the transactions among sectors are expressed in current monetary units 

(Barriga,1992; Pulido & Fontela, 1993). 

 

3.2 OBTAINING A DEFLATOR SERIES 

 The technical coefficients are quotients expressed in monetary values, and the 

numerator and denominator values come in different prices. Let us consider the 

production structure for the initial year in the following terms:     

 

0
ij0

j

0
i

0
j

0
j

0
i

0
ij

0
j

0
ij0*

ij a
p
p

pX
px

z
z

a ===  

where  is the technical coefficient of the initial year (in current monetary values),  

and 

0*
ija

0
j

0
ip

p   are the goods and service prices for the same year,  is the transaction values 

between sectors i and j, and finally, X

0
ijx

j is the total input for sector j.  

 The technical coefficients for the following year would be: 
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1
ij1

j

1
i

1
j

1
j

1
i

1
ij

i
j

1
ij1*

ij a
p
p

pX
px

z
z

a ===  

where all the terms refer to this year. 

 It seems reasonable to compare the coefficients in constant prices, because the 

observed variation among years may be caused by price changes only, without an 

economic structure change. That is, 

ij
j

i*
ij a

p
pa ∆









∆=∆  

 The deflators used9 refer to intermediate consumption, the Paid to Farmers 

Prices Index for Agriculture; the Residential Construction Investment Deflator for 

Construction; the corresponding Gross Value Added (GVA) at Purchase Price Deflators 

for Transportation & Communications, Commercial Services and Non Commercial 

Services; the corresponding Industrial Price Index for Energy, the Manufacture of 

Intermediate, Consumption and Equipment Products. The GVA’s have been deflated 

using the implicit deflators.    

 

3.3 ESTIMATION OF THE IO TABLE SERIES 

 To perform the estimation of the IO table series, it was essential to use 

information from the Regional Accounts of Asturias (elaborated by SADEI, the regional 

statistical office) and from the Spanish Regional Accounts (SRA, elaborated by the 

Spanish Statistics Institute, INE).  For this reason, it was necessary to aggregate the 

sectors included in the SRA, following the Hermes classification.  Chart 3 shows this 

aggregation: 
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Chart 3: SRA Sectors according to the Hermes Classification 

HERMES SECTORS  SRA SECTORS  

Agriculture (A) 01 

Energy (E) 06 

Manufacturers of Intermediate Products (Q) 13-15-17 

Manufacturers of Equipment Products (K) 24-28 

Manufacturers of Consumption Products (C) 36-42-47-50 

Construction (B) 53 

Transport & Communications (Z) 60 

Commercial Services (L) 58-69-74 

Non Commercial Services (G) 86 

 

 The necessary gross values added to purchase prices to estimate the series have 

been obtained starting from the 1995 value multiplied by the growth rate of this value 

every year according to SRA data. From this quantity and using the model proposed in 

the previous section, row and column margins have been calculated. Once these data are 

available, the IO table series can be estimated.  

 For that goal, we have used the EViews software. This software allows the 

creation of specific program to estimate the IO tables. Taking the AIOT-95 as a starting 

point, the row (u) and column (v) intermediate consumption margins and production 

(w) are the ones corresponding to Asturias for this year. The convergence criterion used 

is the one proposed by Pedreño & Muñoz (1986): 

 j , ε 
(1)v

v(1)v
and i,ε

(1)u
u(1)u

j

K
jj

i

K
ii ∀<

−
∀<

−  

where uk and vk are the estimated vectors in the last iteration. The ε value has been set 

at 10-11; that is, the relative differences between real and estimated vectors, measured in 

absolute values, must be smaller than this arbitrary and rather small number. The 

estimation results are included in Appendix 1. 
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4. CONCLUSIONS 

 This work compares the two most frequently used methods in IO analysis 

estimation:  the RAS and the CE method. The CE method is a more flexible technique 

than the “basic” RAS method, because it allows the inclusion of information related to 

some of the matrix entries, such as the use of row or column sums  (even when these are 

not exact).  However, this potential advantage may be reduced if some of the extensions 

of the RAS method are considered, such as the ones proposed by Paelinck & 

Waelbroeck or by Hitz & Schmid.  When this occurs, both methods behave similarly.  

 

 On the other hand, McDougall proves that the RAS and the CE techniques are 

strongly connected. Even more so, the RAS technique may be considered a particular 

CE case when starting from normalized matrix coefficients.  For the sake of comparing 

the results from both methods, the IO table of Asturias for 1995 has been estimated.  

The temporal approach has been chosen and, so, the IO table for 1990 is our starting 

point.  The comparison has been undertaken using the Le Masne measure, which shows 

the results are quite similar, as we can expect.  

 

Finally, we have estimated an IO table series for the period 1995-2000.  

Therefore, a sufficiently wide set of information is available to be used in future works 

on our regional economy.  
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6. APPENDIX 1 

Chart  A.1: AIOT 1996 

 A         E C Q K B L G Z
A 0,215686         0,00796 0,235167 0,001187 0 0,000337 0,006099 0,00088 3,25E-06
E 0,029371         0,488482 0,019152 0,261067 0,038009 0,046114 0,035815 0,034289 0,092135
C 0,197599         0,004217 0,313735 0,028329 0,065579 0,12442 0,090174 0,032444 0,005279
Q 0,0055         0,010376 0,008777 0,131171 0,161114 0,144824 0,002902 0,00505 0,004613
K 0,014414         0,019114 0,007793 0,038537 0,314767 0,075668 0,018281 0,019758 0,025882
B 0,003566         0,026145 0,001208 0,013786 0,004187 0,001026 0,026503 0,012663 0,012741
L 0,009927         0,006232 0,012189 0,013554 0,037887 0,047505 0,051529 0,020282 0,020095
G 0,056219         0,012469 0,014298 0,02278 0,022934 0,031461 0,109849 0,262869 0,016138
Z 0,001204         0,003878 0,005354 0,009198 0,006765 0,01371 0,003548 0,002755 0,006767

 

Chart A.2: AIOT 1997 

  A         E C Q K B L G Z
A 0,21365        0,00829 0,22625 0,00119 0 0,00032 0,00569 0,00079 3,29E-06
E 0,02715        0,47492 0,01719 0,24341 0,0328 0,04121 0,0312 0,02868 0,0871
C 0,20468         0,0046 0,31564 0,0296 0,06341 0,12461 0,08804 0,03041 0,00559
Q 0,00576         0,01143 0,00892 0,13851 0,15744 0,14657 0,00286 0,00478 0,00494
K 0,01569         0,02188 0,00824 0,04231 0,31979 0,07962 0,01875 0,01946 0,02881
B 0,00376         0,02898 0,00124 0,01465 0,00412 0,00105 0,02632 0,01208 0,01373
L 0,01068         0,00705 0,01274 0,01471 0,03805 0,04942 0,05225 0,01975 0,02211
G 0,06421         0,01498 0,01586 0,02624 0,02445 0,03474 0,11824 0,27168 0,01885
Z 0,00131         0,00444 0,00566 0,0101 0,00688 0,01444 0,00364 0,00272 0,00754
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Chart A.3: AIOT 1998 

  A         E C Q K B L G Z
A 0,21449        0,00863 0,22533 0,00119 0 0,00032 0,00573 0,0008 3,43E-06
E 0,02632        0,4769 0,01654 0,23478 0,03189 0,03966 0,03031 0,02802 0,08772
C 0,2068         0,00481 0,31636 0,02976 0,06427 0,12497 0,08914 0,03096 0,00587
Q 0,00578         0,01189 0,00889 0,13841 0,15863 0,14613 0,00288 0,00484 0,00515
K 0,01559         0,02253 0,00812 0,04184 0,31885 0,07855 0,01868 0,01949 0,02975
B 0,00369         0,02948 0,00121 0,01432 0,00406 0,00102 0,02591 0,01195 0,01401
L 0,0106         0,00725 0,01255 0,01453 0,0379 0,0487 0,05199 0,01976 0,02281
G 0,0636         0,01537 0,01559 0,02587 0,0243 0,03416 0,11738 0,27117 0,0194
Z 0,00129         0,00451 0,00551 0,00985 0,00676 0,01405 0,00358 0,00268 0,00768

 

Chart A.4: AIOT 1999 

  A         E C Q K B L G Z
A 0,21459        0,00872 0,22311 0,00117 0 0,00032 0,00567 0,0008 3,51E-06
E 0,02611        0,47806 0,01624 0,22928 0,03132 0,03862 0,02973 0,02773 0,08882
C 0,21007         0,00494 0,31806 0,02975 0,06462 0,1246 0,0895 0,03137 0,00609
Q 0,00588         0,01222 0,00895 0,13859 0,15974 0,14593 0,0029 0,00491 0,00535
K 0,01569         0,0229 0,00809 0,04144 0,31759 0,07759 0,01858 0,01956 0,03055
B 0,00368         0,02967 0,00119 0,01404 0,004 0,001 0,02551 0,01187 0,01424
L 0,01068         0,00738 0,0125 0,0144 0,03778 0,04813 0,05175 0,01984 0,02343
G 0,06372         0,01556 0,01545 0,02551 0,0241 0,03359 0,11625 0,27097 0,01983
Z 0,00128         0,00453 0,00541 0,00963 0,00665 0,01369 0,00351 0,00266 0,00778

 

 18 



Chart A.5: AIOT 2000 

  A         E C Q K B L G Z
A 0,21454         0,00867 0,22422 0,00118 0 0,00032 0,0057 0,0008 3,5E-06
E 0,02622         0,47748 0,01639 0,23203 0,03161 0,03914 0,03002 0,02787 0,08827
C 0,20844         0,00487 0,31721 0,02975 0,06445 0,12479 0,08932 0,03117 0,00598
Q 0,00583         0,01205 0,00892 0,1385 0,15918 0,14603 0,00289 0,00488 0,00525
K 0,01564         0,02271 0,00811 0,04164 0,31822 0,07807 0,01863 0,01952 0,03015
B 0,00368         0,02957 0,0012 0,01418 0,00403 0,00101 0,02571 0,01191 0,01413
L 0,01064         0,00732 0,01252 0,01447 0,03784 0,04842 0,05187 0,0198 0,02312
G 0,06366         0,01546 0,01552 0,02569 0,0242 0,03388 0,11681 0,27107 0,01962
Z 0,00128         0,00452 0,00546 0,00974 0,00671 0,01387 0,00354 0,00267 0,00773
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NOTES 

                                                 
1 Specifically for Asturias, there are input-output tables available every five years and a lag in their 
publication of approximately three years.  
2 Ramos, C., M.J. Presno & R. Pérez (1999): Estimación de tablas input-output: un enfoque espacial-
temporal. XIII Reunión ASEPELT España, Burgos. 
3 An exhaustive analysis of different estimation methods can be seen in R. Álvarez (2001). 
4 The exposition line appearing in F. Ruiz (1996) will be followed, but slightly modified to be adapted to 
the context of social accounting matrices. 
5 As sums of rows and columns are the same, x and y are equal. 
6 Proofs of different properties regarding this method are made from the concept of a connected matrix.   
A is a connected matrix if there is no row and column partition in I, I´, J y J´, that verifies aij=0 ∀ i∈I y 
j∈J´ y ∀ i∈I´y j∈J.  
7 This problem does not have a closed-form solution, which is why one must use numerical optimization. 
8 The RAS method keeps zeros in the estimated entries. 
9 The indices employed refer to the national economy because the appropriate regional indices are not 
available. 
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