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Abstract 

 

The aim of this paper is to analyze the theoretical and econometric implications of omitting spatial 

dependence in the Mankiw, Romer, and Weil model. Indeed, the international distribution of income 

levels and growth rates suggests the existence of large international disparities, and therefore the 

important role of location on economic performance. However, taking spatial dependence into account 

requires resorting to the methods of Spatial Econometrics, not only for a valid statistical inference, but 

also for revaluating the impact of the variables generally considered as crucial in the growth 

phenomenon and finding the processes underlying growth rates and income levels. 
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Introduction 
 

In their 1992 paper entitled “A contribution to the empirics of economic growth”, Mankiw, 

Romer and Weil intend to show that, despite its shortcomings, the Solow model is a 

satisfactory enough framework for growth analysis. They show indeed that with a larger 

definition of capital that includes “human capital”, and the hypotheses of a technological 

progress and constant scale returns in production, one can explain a large part of international 

disparities in international income levels and per capita growth rates differences. 

Therefore, Mankiw and al. revive the basic equations of the Solow model by adding a 

measure of human capital in the production function. However, as for most empirical studies 

in economic growth, they run cross-section regressions estimated by OLS, then omitting 

among others all space-related influences on income levels and growth rates. The observation 

of international data on growth though suggests the existence of a certain tendency to 

geographical pooling among rich nations, and the same is true of poor ones. This leads 

Temple [1999] to remind us that regional dummy variables have often been significant  

Then, growth performance is probably not insensible to country location, even if those issues 

raised by the fact of taking space into account have very seldom inspired empirical studies in 

economic literature. Walter Isard already mentioned an “Anglo-Saxon bias” in the 50’s, 

regretting the absence of spatial dimensions in the analysis of economic phenomena. 

Therefore, it is only very recently that empirical studies started to explicitly integrate space 

effects on growth (Cf. Moreno et Trehan [1997], Easterly et Levine [1998], Fingleton [1999]).  

However, it is a long time since problems resulting from the handling of spatial data have 

been highlighted in econometric models of regional science. The term “Spatial Econometrics” 

is precisely due to the latter discipline, more exactly to J. Paelinck, and is defined by Anselin 

(1988) as “the collection of techniques dealing with the peculiarities caused by space in the 

statistical analysis of regional science models”.  

Spatial data actually have the special feature of bearing information not only on the observed 

value of a given variable, but also and above all, on the relative location of the observation 

unit. Henceforth, cross-section regressions usually implemented in empirical studies on 

growth no longer give satisfactory results because of the potential presence of two spatial 

effects: spatial autocorrelation and spatial heterogeneity. 

However, while spatial heterogeneity can generally be treated by means of standard 

econometrics, the presence of spatial autocorrelation in the data substantially modifies 
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statistical inference and requires the use of spatial econometric techniques. In particular, it 

reappraises a fundamental hypothesis of the Ordinary Least Squares method that is 

independence between observations, and then the estimations made by Mankiw and al. may 

turn out inconsistent or inefficient. 

Therefore, on the basis of the standard specifications in the MRW model, the first step of our 

study will be to test the omission of spatial autocorrelation in the residuals of the least-squares 

estimation; the international distribution of income levels and growth rates indeed let us think 

that these equations are wrongly specified because geographic spillovers are not considered.  

Then, we turn to finding the most convenient way of modelling relationships between 

countries when relative position in space is taken into account, and so resort to the different 

specifications and statistical tests suggested in spatial econometrics. We lastly come back to 

the conclusions of Mankiw and al. in order to assess the influence of location on the 

determinants of steady-state and growth performance. 

 

1. The Mankiw, Romer and Weil Model 
The Mankiw, Romer and Weil model relies on a production function that follows the 

traditional hypotheses of the Solow model, and henceforth verifies the inherent conditions of 

a neoclassical technology: decreasing and positive marginal productivities (for each factor of 

production), constant scale returns (for both factors) and Inada conditions. 

However, the MRW model formally differs from the Solow model because of the insertion of 

a variable representative of “human capital” in the production function. Thus, we have: 

                             ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) βαβα −−== 1,, tLtAtHtKtLtAtHtKFtY                          ( )1  

With ,0>α  ,0>β 1>+ βα   ; α andβ  are constant. 

Y represents the flow of production; K , the physical capital stock; H , human capital; A , is 

the level of technological progress, and L  labor supply. In addition, technology and labor 

supply grow exogenously, more precisely as following: 

                                                            
( ) ( )
( ) ( ) nt

gt

eLtL
eAtA

0
0

=
=

                                                             ( )2  

Then it follows that the number of efficiency units in the economy grows at rate gn + . The 

weighting of the production function (using the constant returns hypothesis) by the inverse of 

the efficiency units ( )AL1  allows us to rewrite it in an intensive form. Thus, we obtain: 

                                                   ( )3  ( ) βαhkhkfy == ,
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Therefore, the flow of production per efficiency unit is a function of the physical and human 

capital stocks per efficiency unit. Moreover, every period, constant and exogenous parts of 

production (respectively ks  and hs  ) are devoted to  physical and human capital 

accumulation. In the meantime, capital obsolescence implies the vanishing of a constant       

part, δ , in the physical and human capital stocks. Thus, the effective depreciation rate of 

these stocks equals δ++ gn , and then, the more the number of efficiency units grows, the 

more the capital stock (both physical and human) decreases. Henceforth, we can write the 

following system that formally describes the dynamics of the physical and human capital 

stocks per efficiency unit. We have: 

                                                
( )

( )⎪
⎪
⎩

⎪⎪
⎨

⎧

++−=

++−=

•

•

hgnhksh

kgnhksk

h

k

δ

δ

βα

βα

                                                  ( )4  

In addition, the steady-state of the economy may be characterized by equaling each of the 

above first-order differential equations to zero (at steady-state, the physical and human capital 

stocks no longer vary). The solution that ensues from this system then defines the long-term 

equilibrium of the economy, and relies on the following values for k  and h : 

                          
βααα

δ

−−−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
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=

1
1

1
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−−−

⎥
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⎣

⎡
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=

1
1

1
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ss

h hk                          ( )5  

From the expression of the intensive production function in a logarithmic form, and for the 

steady-state values k  and h , we derive the “income equation” which represents the first 

estimable equation in the Mankiw, Romer, and Weil model, that is: 

                   ln ( ) εδ
βα

βα
βα

β
βα

α
+++

−−
+

−
−−

+
−−

+= gnssay hk ln
1

ln
1

ln
1

ˆ               ( )6  

This equation explains long-term per capita income level by the human and physical capital 

accumulation rates, and by the corresponding effective depreciation rate. Therefore, Mankiw 

and al. rely on this equation to show that the reaction of long-term per capita income to the 

saving and population growth rates is stronger when the definition of capital is expanded to 

integrate human capital; elasticities of production to the latter variables are indeed higher in 

the MRW model than in the Solow model, what leads Mankiw and al. to consider that their 

model is able to account for the large income disparities one can observe on an international 

scale. Their analysis then relies on the following “convergence equation”: 

( )
( ) ( ) ( ) εθδ

βα
βαθ

βα
βθ

βα
αθ +−++

−−
+

−
−−

+
−−

+=⎥
⎦

⎤
⎢
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⎡
0lnln

1
ln

1
ln

10
ln ygnssa

y
Ty
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Insofar as the income equation highlights the fact that economies will have as different long-

term income levels as their saving and population growth rates are different, Mankiw and al. 

uphold that “absolute convergence” hypothesis, often adopted as a the conclusion in the 

Solow model, is no longer valid and that one should rather think of a “conditional 

convergence” when accounting for growth experiences throughout the world. 

Mankiw, Romer and Weil show in addition that the convergence equation estimation results 

corroborate the predictions of the model. Indeed, with a value of 31 for the α  and β  

parameters, and a %1  rate for the population growth rate, one can expect a %2  estimation for 

the convergence rate (this result is very common in growth literature) whereas one would 

have obtained a %4  rate in the Solow model. Moreover, the estimation results for   α  and β  

parameters in the constrained version sensitively fit what the model suggests. 

Therefore, our analysis will rely on these two estimable equations which definitely constitute 

the basis the MRW model. The latter indeed offers a relatively satisfactory framework for 

analyzing the growth process, even if it does not really provide any explanation for it as 

emphasized by endogenous growth theoreticians. Mankiw replies that what is at stake for the 

neoclassical growth model is rather being able to account for the large disparities in  

economic growth. 

 

2. Spatial Autocorrelation 
According to Anselin and Bera (1998 ), spatial autocorrelation “can be loosely defined as the 

coincidence of value similarity with locational similarity”. Otherwise, it expresses the 

existence of a functional relationship between observations in different locations over the 

space considered. The potential presence of spatial autocorrelation is largely due to the 

bidimensional nature of spatial data and to the multidirectional feature of relations in space. 

As a matter of fact, for every observation unit, we have information both on the observed 

value of a certain variable and the location of the aforementioned unit. Henceforth, two 

different observation units may be correlated just because of their geographical position, and 

then, this happens in all directions.  

Formally, the presence of spatial autocorrelation between two any observation units i  and j  

can be expressed by a non-zero covariance between the values taken by the focus variable in 

the two corresponding locations. Thus, we obtain: 

                            ( ) ( ) ( ) ( ) jiavecyEyEyyEyyCov jijiji ≠≠−= ;0                       ( )8  
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Here, ji yandy  refer to the values of the focus variable, respectively in i  and j  

locations. However, it is worth noting that the above covariance may have a real spatial 

meaning only when the distribution of the observation units can be interpreted in terms of a 

spatial structure, interaction or arrangement. 

From a strictly econometric point of view, the zero covariance implies that there is no more 

independence between observations and then the hypothesis of spherical errors, which is 

fundamental to the OLS method, is no longer valid. It follows that when the error term is 

spatially autocorrelated, OLS estimators may turn out to be inconsistent and/or inefficient 

depending on the structure of spatial dependence that exists between the different locations in 

space. 

Indeed, in spatial econometrics, this structure relies on the definition of a specific process, 

accounting for the distribution of spatial units and subsequently conditioning the functional 

form inter-individual covariances. Then, such an approach is quite different from the one 

adopted in geostatistics because, in the latter case, the structure of covariances is rather a 

priori imposed. 

However, from an estimation standpoint, a problem of identification arises for the 

n observations available in the sample do not ensure for the estimation of n  individual 

variance and ( ) 2/1−nn  inter-individual covariance terms. Then, spatial econometrics offers 

such tools as spatial weights matrices and spatially lagged variables which allow dealing with 

such problems. 

 

2.1 Weight matrices and spatially lagged variables 

Weight matrices have a key role in Spatial Econometrics. Indeed, not only do they ensure the 

resolution of the estimation problems related to the bidimensional and multidirectional nature 

of spatial data, but they also allow the definition of a topology across the space under 

consideration ( by defining the relative locations of spatial units) and the relative weight of the 

corresponding spatial units. 

From the definition of spatial autocorrelation given by Anselin and Bera (1998), one may 

easily imagine the important role of notions such as “proximity” and “neighborhood” for 

outlining spatial patterns, and more generally, for the modelling of spatial autocorrelation. 

These notions may have different interpretations, however. 

Two main conceptions, respectively based on contiguity and distance, have generally been 

adopted for defining spatial weights. The first measures of spatial dependence are due to 
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Moran (1948) and Geary (1950), and are based on the concept of binary contiguity. Besides, 

they lead to the use of “contiguity matrices” which rely on the sharing of a common border 

between spatial units. In other words, two locations will be said to be contiguous as far as they 

are neighbors. 

Formally, a contiguity matrix represents each location of the spatial system in row and 

column. The “spatial weights” (i.e. the elements of the weight matrix) are supposed to be 1 

whenever we have two contiguous locations and 0, should it be otherwise. In the meantime, a 

given location cannot be contiguous to itself. Then, for any region i  , and J  the set of its 

neighbors, the elements of the weight matrix ( )ijwW =  are defined as it follows: 

                                            
Jj
Jj

for
for

wij ∉
∈

⎩
⎨
⎧

=
0
1

 ;   iwii ∀= ,0                                      ( )9  

The idea of neighborhood exclusively based on the notion of contiguity has a certain number 

of shortcomings. Indeed, binary contiguity describes the pattern of the spatial system only 

very roughly, and consequently, it does not allow for a true capturing of the strong 

dependence relationships which may exist between spatial units. Besides, the notion of 

contiguity is no longer obvious when one faces a regular spatial pattern. 

On the other hand, the principle of distance matrices relies on the general idea of  an 

interaction all the stronger (weaker) as the distance between two any spatial units is        

longer (shorter). Cliff and Ord (1981) originally provided this kind of specification for spatial 

weights, by combining  a function of the inverse distance between two locations and the 

relative length of their common border. Thus, the elements of the corresponding matrix can be 

written as following: 

                                               
( ) ( )

⎩
⎨
⎧

=
≠∀

=
−

0
;

ii

b
ij

a
ij

ij w
jidw β                                                   ( )10  

Where ijd  represents the distance between two spatial units i  and j ; ijβ ,  the relative share 

of the common border between spatial units i  and j  in the total perimeter of i ; a  and b are 

fixed parameters.  

However, the most common specifications implemented in empirical studies involve much 

simpler expressions for the spatial weights. In fact, weight matrices very often rely on a 

negative exponential function or the inverse distance between two any i  and j  spatial units. 
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Thus, we formally have:  

(a)  jie
w
w ijd

ii

ij ≠∀

⎩
⎨
⎧

=
= − ,

0

α

 or (b)  ( ) jid
w
w ij

ii

ij ≠∀

⎩
⎨
⎧

=
= − ,

0

β

      (11) 

Where, α and β  are fixed parameters.  

Moreover, these different kinds of spatial weights may be generalized by either setting a cut-

off distance beyond which any interdependence disappears, or by restricting the neighborhood 

for each spatial unit to a certain number ( )k of locations (there is no interaction beyond that 

space), and then, the corresponding matrix is called a “k-nearest neighbors”.  

The use of distance matrices precisely requires the choice of a distance criterion. The first 

criterion one may think of probably is the one of geographical distance (Euclidian distance, 

great circle distance ...) but other concepts, based on social or economic variables, have also 

been suggested in literature with the concern of better comprehending inter-individual 

relationships over space (Cf. Case [1993], Conley et Ligon [2001]).  However, this type of 

distance crucially poses the question of exogeneity for the spatial weights.  

In addition, spatial weight matrices are generally row-standardized so as to have an easier 

interpretation for the spatial weights at the end of estimation. Thus, each row i  of a given 

spatial weight matrix,W , is typically divided by the sum of its j elements ( ijw ) and then, the 

spatial weights can be written as it follows: 

                                                          
∑

=
j ij

ijs
ij w

w
w , i∀                                                     ( )12  

The row-standardization of the weight matrix also offers the advantage of ensuring the 

comparison between spatial parameters resulting from different models insofar as the weights 

of a row-standardized matrix no longer express absolute values but relative ones. 

The major role of spatial weights may also be appreciated through the concept of “spatial lag” 

which, for any location ( )i  and for any focus variable ( )y , relates back to the weighted (by 

spatial weights) average of  the corresponding observations in neighboring locations ( )J . 

Then, it synthesizes the information relating to the neighborhood of each location, and is 

obtained pre-multiplying y (the vector of the values taken by the focus variable in each 

location) by the spatial weight matrix ( )W . Thus, it may be written as following: 

                                                         [ ] jJj iji ywWy ∑ ∈
=                                                         ( )13  

With, ijw  represents the thj element in row i .  



 9

It is worth noting that spatial weights may be defined for higher orders of the weight matrix 

and then, they correspond to the weighted average of y -values for “neighbors of neighbors”. 

 

2.2 Moran’s I Test 

Moran’s “I” test (1948, 1950) for the absence of spatial autocorrelation was the first ever 

specification test to be suggested in spatial econometrics and generally constitutes the first 

stage in searching for the spatial process that best matches the data. In fact, this test allows 

one to pronounce on the appropriateness of specifications that explicitly include spatial effects 

even if, in itself, it does not give any indication on the way spatial autocorrelation          

should be modeled1. The test statistic is the following2: 

                                                           ⎟
⎠
⎞

⎜
⎝
⎛

′
′

=
εε
εε W

s
nI                                                              ( )14  

Theε  term represents the vector of residuals resulting from the OLS estimation of the non-

spatial model (the basic statistical model); W is the spatial weights matrix, n is the sample 

size, and s a standardization factor corresponding to the sum of all the elements of the 

spatial weights matrix. Cliff and Ord (1981) showed that when the assumption of a normal 

distribution is made for the error term ( )ε , under the null hypothesis of no spatial dependence, 

then the mean and the variance of the ( )I statistic can be written: 

                                                           ( ) ( )
Kn

MWtr
s
nIE

−
=                                                        ( )15  

And,  

                                ( ) ( ) ( ) ( )[ ]{ }
( )( )2

222

+−−
++′

⎟
⎠
⎞

⎜
⎝
⎛=

KNKn
MWtrMWtrWMWMtr

s
nIV                           ( )16  

Thence, the asymptotic distribution of the I statistic can be drawn from these two moments, 

and the test relies on the following IZ  variable: 

                                                   ( )
( )

( )1,0Ν→
−

=
IV
IEIZ I                                                      ( )17  

                                                 
1 Moran’s « I » test does not offer an alternative to the hypothesis of no spatial autocorrelation. 
2 For a row-standardized weights matrix, ns =  and the test statistic is rewritten: εεεε ′′= WI . The shape of 

this I statistic makes it very similar to the Durbin-Watson ( )1950 autocorrelation test for Time-Series. 
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The null hypothesis of no global spatial autocorrelation is typically rejected when the OLS 

residuals lead to a IZ -value that is higher than the critical value in the standard normal 

distribution3. 

 

2.3 Econometric Specifications 

2.3.1 The Spatial Autoregressive Model 

The spatial autoregressive model ensues from introducing a spatially lagged dependent 

variable among the regressors of the standard linear model.  It is often implemented when one 

has to deal with a spatial interaction pattern resulting from a theoretical model                       

(Cf . Case and .al [1993]; Moreno and Trehan ]1997[ ). Formally, we have: 

                                                        εβρ ++= XWyy                                                          ( )18  

Or, in a reduced form: 

                                             ( ) ( ) ερβρ 11 −− −+−= WIXWIy                                              ( )19  

These expressions imply that spatial autocorrelation occurs through the correlation between 

the spatially lagged endogenous variable ( )Wy  and the error term ( )ε . In fact, contrary to the 

Time-Series case, for which the lag 1−ty  is only correlated with the error term tε  when the 

latter is autocorrelated itself, the correlation in the spatial case is independent from the 

distribution of ε . Indeed, when the vector ε  is such that its components ( )iε  are ( )2,0.. σdii , 

the mean of the dependent variable ( )y is given by: 

                                                     ( ) ( ) βρ XWIyE 1−−=                                                       ( )20  

Then, the covariance matrix can be written: 

                                            ( ) ( ) ( )
1

2
−

⎥⎦
⎤

⎢⎣
⎡ −′−= WIWIyV ρρσ                                              ( )21  

This matrix is full, what denotes the fact that all locations in the spatial system interact, and 

the presence of a spatial autocorrelation in the data4. Moreover, the full interaction pattern 

highlighted by the covariance matrix can be split into two separate effects; this is done by 

rewriting ( ) 1−− WI ρ  into an infinite form in equation ( )19 . Thus, we obtain: 

                                                 
3 Burridge (1980) shows that Moran’s I test is asymptotically equivalent to the Lagrange Multiplier test, 
whereas King (1981) shows that it is a “Locally Best Invariant” test. 
 
4 In fact, this reduced expression of the model is only possible when the inverse matrix ( )I Wρ− is non singular 

ei. . for 0≠− WI ρ . This condition is confirmed for 0≠ρ and when1/ ρ  is not an eigenvalue of the weights 

matrixW . 
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                           ( ) ( )ερρβρρ ...... 2222 +++++++= WWIXWWIy                             ( )22  

In this expression, the first term on the right side denotes a spatial multiplier effect which 

means that in every location, ( )y depends not only on the observations in the same location, 

but also on the observations made in any other location of the spatial system. As for the 

second term on the right member, it represents a spatial diffusion effect so that an exogenous 

shock coming from a given spatial unit affects the dependent variable in this location, but 

stretches over all the other units in the spatial system. These two effects decrease in intensity 

as the neighbourhood order increases. 

 

2.3.2 The Spatial Error Model 

This specification is based on the rejection of the hypothesis of spherical errors in the standard 

linear model, the choice of an explicit spatial process for the error term ( )ε . In fact, several 

types of processes may be used but the spatial autoregressive specification is the most 

commonly used5. Thus, we have: 

                                                            
⎩
⎨
⎧

+=
+=

uW
Xy
ελε

εβ
                                                            ( )23  

 

In this specification, λ represents the spatial autoregressive coefficient related to the spatially 

lagged error term ( )εW , and ( )u is a vector of homoskedastic errors. The corresponding 

reduced form to this specification can be written as following6: 

                                                      ( ) uWIXy 1−−+= λβ                                                     ( )24  

When the error term ( )u is such that its components are ( )2,0.. σdii , the mean for ( )y  is given 

by ( ) βXyE = and the covariance matrix has the following expression: 

                                        ( ) ( ) ( ) ( )
1

2
−

⎥⎦
⎤

⎢⎣
⎡ −′−== WIWIVyV λλσε                                       ( )25         

As for the SAR model, this matrix is full and the spatial interaction pattern it represents is 

global with the result that all the locations in the spatial system interact. However, this spatial 

                                                 
5 Alternative specifications such as the Moving Average ( Cliff et Ord [1981], Haining [1988, 1990] ) and 
Kelejian et Robinson [1993,1995] processes have also been suggested for the error term. However, the use of 
these specifications remains relatively uncommon in empirical studies. They are generally obtained by breaking 
down the error term into two components, the first representing the specific shocks to each location while the 
second denotes a weighted average of errors in neighboring locations.  
6 As for the SAR specification, this reduced form only exists when the ( )WI λ− matrix is non singular , and λ  
subject to the same conditions as for ρ . 
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interdependence is only relies on a spatial diffusion effect since equation ( )24  can                 

be rewritten:  

                                               ( )...22 ++++= WWIXy λλβ ε                                           ( )26               

Then, an exogenous shock in a given spatial unit affects the dependent variable ( )y in all the 

locations of the spatial system under consideration; however, this impact decreases when 

moving away from the same spatial unit.  

 

2.3.3 Alternative Specifications 

By analogy with first-order differentiation in Time-Series, the dependent variable can be 

spatially filtered in the two aforementioned models. This operation consists in isolating the 

spatial autocorrelation and leads to consistent and efficient OLS estimators.  

In the case of the SAR model, transposing Wyρ into the left side gives the following equation: 

                                                      ( ) εβρ +=− XyWI                                                        ( )27   

Then, ( )yWI ρ− is the spatially filtered variable, whereas the right side of the equation is the 

same as the one in the standard linear model. On the other hand, the spatial error model is 

such that the spatial filter applies to the endogenous variable ( )y as well as to                       

the exogenous variables in the ( )X matrix. Indeed, pre-multiplying both sides                       

of ( )24  by ( )WI λ− , we obtain the equation below: 

                                                 ( ) ( ) uXWIyWI +−=− βλλ                                               ( )28  

It results that the spatial error model is equivalent to a standard linear model in which both the 

endogenous and exogenous variables are spatially filtered. In addition, this expression of the 

spatial error model can be rewritten into a “Spatial Durbin” specification (Cf. Anselin, 1988). 

 

In fact, developing the equation above and shifting the spatial autoregressive term ( )Wyλ into 

the right hand side, we have7: 

                                                    uWXXWyy +−+= βλβλ                                               ( )29             

Or8: 

                                                     uWXXWyy +−+= γβλ                                                 ( )30  

                                                 
7 This “Spatial Durbin” model refers to the Durbin model usually implemented in Time-Series. It is also known 
as the “Common Factor” model. 
8 The equivalence between these two specifications is not so obvious and it requires testing for a certain number 
of nonlinear constraints. These constraints boil down to the following condition: γλβ −= , and the 
corresponding test is called the “Common Factor” test.  
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The “Spatial Durbin” model represents a reduced form of the spatial error model, and 

equations ( )29 and ( )30  also show that it is an extension of the spatial autoregressive model, 

obtained by adding a set of spatially lagged exogenous variables ( )WX  to equation ( )18 .  

The spatial error model is generally implemented when the analysis is about accounting for 

the diffusion of shocks or disturbances over a given space. Moreover, it allows solving some 

problems related to the omission of decisive variables in the phenomenon under 

consideration, this is more particularly the case when these variables are spatially correlated9.  

The SAR and SEM specifications may be combined into a general spatial model (GSM) 

which formal expression is given by: 

                                                        
⎩
⎨
⎧

+=
++=

uW
XyWy

ελε
εβρ

2

1                                                       ( )31                        

As in the previous cases, this model can be rewritten into a reduced form, thus we obtain: 

                                   ( ) ( ) ( ) uWIWIXWIy 1
2

1
1

1
1

−−− −−+−= λρβρ                                   ( )32  

And the covariance matrix is given by: 

                            ( ) ( )( )⎥
⎦

⎤
⎢
⎣

⎡
−−⎟

⎠
⎞⎜

⎝
⎛ ′−⎟

⎠
⎞⎜

⎝
⎛ ′−=

−

122

1

1
2 WIWIWIWIyV ρλλρσ                          ( )33  

Moreover, Equation can also be written in the form of an extended “Spatial Durbin” model. 

Indeed, one can show that: 

                                uXWXyWWyWyWy +−+−+= βλβρλλρ 21221                               ( )34                 

 

For WWW == 21 , this equation becomes10: 

                                       ( ) uWXXWWyy +−+−+= βλβρλλρ 2                                     ( )35  

Although the general spatial model has been implemented in certain empirical studies such as 

those of Case [1991, 1992] related to demand analysis or to the diffusion of innovation, it 

remains rarely used in comparison with the specifications it generalizes11. 

In conclusion, several specifications may be used to model spatial autocorrelation. More 

complex processes such as Huang’s SARMA (Spatial Autoregressive Moving Average) 

                                                 
9 This model is notably implemented in studies on hedonic prices ( Pace et Gilley [1998], Dubin [1998] ) or 
conditional convergence ( Fingleton [1999] ).  
10 In this specific case, ρ and λ parameters are only identified when the ( )X  matrix contains at least one 
exogenous variable element (apart from the constant term). Moreover, nonlinear constraints must be imposed 
these two specifications so to ensure that spatial parameters will be unique and identified. 
11 According Anselin an Bera (1998), this type of processes often results from misspecification of the weights 
Matrix which entails, for example, the presence of spatial autocorrelation in a model with a spatially lagged 
dependent variable. 
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model (1984) have also been suggested in literature, but the SAR and SEM models offer the 

advantage of being relatively simple from a statistical inference standpoint. 

 

3. Maximum likelihood estimation  
The recourse to the maximum likelihood principle as an estimation method for spatial models 

is due to the original work of Cliff and Ord (1973) and Ord (1975) who applied it to the SAR 

(spatially lagged dependent variable) and SEM (spatially autocorrelated errors). However, 

when applied to spatial models, the maximum likelihood method requires that some particular 

conditions ensuring the consistency, and asymptotic normality and efficiency of estimators 

are verified12. 

As usual, the method relies on the log-likelihood function and on the normality hypothesis for 

the model residuals. Its application to the GSM model offers a global presentation from which 

one can easily draw the corresponding results for the SAR and SEM models. Indeed, starting 

with the GSM model and making the assumption of a normal joint distribution for the vector 

of error terms (i.e. ( )INu 2,0 σ→ ), we can write the likelihood function as it follows:  

                                                  ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ ′−−

=
uun

euL 22
1

222 σπσ                                                    ( )36  

However, as the error term ( )u cannot be observed, the likelihood function must be expressed 

in terms of the observations on the endogenous variable ( )y . Thus we use the Jacobian of the 

transformation ( )J , that is:   

                                            21det WIWI
y
uJ λρ −−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=                                              ( )37  

Where ( )( )βρλ XyWIWIu −−−= 12 , and we can write the log-likelihood function in terms 

of the endogenous variable ( )y . Indeed, we have13: 

           ( ) ( ) ( ) uuWIWInnyL ′−−+−+−−= 221
2

2
1lnlnln

2
2ln

2
,,ln

σ
λρσπβλρ              ( )38  

                                                 
12 These regularity conditions specified by Heijmans et Magnus (1986a, 1986b, 1986c) et Magnus (1978) and 
boil down to the existence of the log-likelihood function, and to continuous and differentiable elements for the 
corresponding Score and Hessian matrix. For the most common spatial models, these conditions come down to 
restrictions on the spatial weights and on the parameter space associated to each spatial coefficient. 
13Then, the log-likelihood function only exists when the matrices forming the Jacobian, i.e. ( )1WI ρ− et 

( )2WI λ− are non singular. Moreover, these matrices are not triangular (as this may be the case for Time- 
Series), which considerably complicates the computations related to the evaluation of the log-likelihood 
function. However, Ord (1975) showed that spatial jacobians can be written in terms of the eigenvalues of the 

corresponding weights matrix. Thus, we have: ( )∏
=

−=−
n

i
iWI

1
11 1 ρωρ , and ( )∏

=

−=−
n

i
iWI

1
22 1 λωλ . 
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Furthermore, the log-likelihood function exists when J  is strictly positive, now the 

determinants that make up the Jacobian are strictly positive when the following conditions are 

respectively verified: 

                              
max1min1

11
ω

ρ
ω

<< ,  and   
max2min2

11
ω

λ
ω

<<                                   ( )39  

The terms minω and maxω  respectively represent the highest negative and positive eigenvalues 

(in absolute value) of the corresponding weights matrix ( 1W  for ρ , 2W  forλ )14. 

Then, maximum likelihood estimators are obtained by resolving the following system: 

( ) 0ln
=

∂
∂

=
θ

θ LS ; with representing the Score vector (the first-order partial derivatives of the 

log-likelihood function and [ ]λρβθ ,,= , the vector containing the parameters of the model. 

One can show that these estimators are asymptotically efficient (provided that regularity 

conditions are confirmed), as the variance-covariance matrix equals the inverse of Fisher’s 

Information Matrix (Cramer and Rao’s Lower Bound); indeed we have: 

( ) ( )[ ] ,1−= θθ IV   with: ( ) ⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

= 2

2 ln
θ

θ LEI  

On the other hand, some authors like Anselin (1980, 1988) showed that the Instrumental 

Variables Method may also be used in order to deal with the non-consistency of estimators 

resulting from the correlation between a spatially lagged dependent variable ( )Wy and an error 

term ( )ε . The Generalized Method of Moments has also been suggested for estimating models 

with spatially autocorrelated errors insofar as it leads to consistent estimates for the spatial 

autoregressive coefficient.  

 

4. Specification Tests 
In the previous section, we showed that the spatial autocorrelation existing in the residuals of 

the standard linear model can be modelled in several ways. However, the choice between the 

presented specifications requires implementing a series of tests which alternative hypothesis 

offers an explicit spatial specification (contrary to Moran’s “I” test). These tests procedures 

may be based on the Likelihood Ratio, Wald or Lagrange Multiplier principles; however, the 

Lagrange Multiplier principle offers the great advantage of only requiring estimation under 

                                                 
14 When a moving average process is chosen for the error term ( )ε , the parameter space for the spatial 
autoregressive coefficient is given by the following interval: ] [minmax 1;1 ww −−  . 
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the null hypothesis, which most often boils down to the classical linear regression model, 

estimated by OLS, and so considerably facilitating statistical inference. 

 

4.1 Test for an omitted spatial error autocorrelation 

This test is based on the omission hypothesis of a spatial autoregressive process for the error 

termε  (i.e. uW += ελε ) in the standard linear regression model and concerns the nullity of 

the coefficient ( )0:0 =λH . Then, the test statistic is the following (Cf. Burridge [1980])15: 

                                                        
[ ]

T

W
LM

2

2ˆ
ˆˆ
σ

εε
λ

′
=                                                         ( )40  

In this expression, T represents the trace of matrix ( )2WWW +′ , whereas ε̂  and 2σ̂ are the 

estimates for ε and 2σ in the constrained model. Under the null hypothesis 0H ,                     

we have: ( )12χλ →LM .  

4.2 Test for an omitted spatially lagged endogenous variable 

The corresponding statistic to this test was defined by Anselin [1988] and can be written as it 

follows, under the null hypothesis of  0=ρ  : 

                                                       
1

2

2

ˆ
ˆ

ˆ

T

Wy

LM
⎥⎦
⎤

⎢⎣
⎡ ′

= σ
ε

ρ                                                        ( )41  

In the expression above, we have ( ) ( )( )( ) 221
1 ˆˆˆˆˆ σσββ ⎥⎦

⎤
⎢⎣
⎡ +′′−

′
= − TWXXXXXIWXT .Under 0H , 

ρLM  also has a ( )12χ  distribution. 

However, Anselin and Bera [1998] show that in the local presence of ρ  (resp. deλ ), when 

carrying out the λLM test (resp. ρLM ), the corresponding test statistics are no more 

distributed with a ( )12χ 16. Then, two different approaches can be used: the first one boils 

down to testing the joint hypothesis 0:0 == ρλH in the general spatial specification, 

whereas the second is conditional insofar as it consists in testing the omission of a spatial 

                                                 
15 It is shown that this test statistic is identical to the one for an error term ( )ε  that is subject to a spatial moving average 
process. 
16 For example, in the case of the λLM test, the null hypothesis might not be accepted, even for 0=λ . 
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error autocorrelation in a model containing a spatially lagged endogenous variable, and     

vice-versa. 

 

4.3 Joint test for a spatially lagged dependent variable and a spatial error 

autocorrelation  

This test relies on the null hypothesis in the general spatial model, i.e. 0:0 == ρλH . When 

this hypothesis is accepted, one finds the standard linear regression model again whereas 

otherwise, there is indication about the process underlining spatial dependence. The test 

statistic is the following: 

                                    ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
−+= −

1222

2

2

21 ˆˆ2ˆ
ˆ

ˆˆˆ TddTdDdELM ρλρλλρ σ
                                 ( )42  

Here, ( ) ( )2
12222 TTDE −= σ

 and : ⎥⎦
⎤

⎢⎣
⎡ ′+= jijiij WWWWtrT  ; ( ) ( ) 2

1111 σββ TXWMXWD +′=  

and ( )[ ]WWWT +′= . ρd  and λd represent the score vectors, respectively for ρ  and λ . 

Under 0H , this statistic is distributed with a ( )22χ . 

 

4.4 Conditional Tests 

This approach comes down to testing one of the basic specifications (spatially lagged 

endogenous variable or spatial error autocorrelation), supposing that the other one is already 

present. Then, we can test for the omission of a spatially lagged dependent variable in a SAR 

model with spatially autocorrelated errors estimated by maximum likelihood. Then, the test 

relies on the residuals and the statistic is written: 

                                                    
( ) ( )ρ

ρ
ρλ ~~

~

2
2122

2

VTT
d

LM
A−

=                                                ( )43  

With: ⎥⎦
⎤

⎢⎣
⎡ ′+= −− 1

12
1

1221 AWWAWWtrT A , and 1
~WIA ρ−= . Under the ( )0H  null hypothesis, 

ρλLM  with an unbiased ( )12χ . The omission of a spatially lagged endogenous variable in the 

SEM model can also be tested with the help of the following statistic: 

                                                 
[ ]

( ) θρθρρ
λρ θ

ε
HVHH

yBWB
LM

′−

′′
= ~~

~ 2
1                                                ( )44  
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In this statistic, ε̂  represents the vector of residuals resulting from the model with spatial 

autoregressive errors estimated by maximum likelihood, ( )2,, σλβθ ′=  and 2
~WIB λ−= . 

Moreover, we have: 

                       ( ) ( ) ( ) ( ) ( )
2

111
1

1
1

2
1 ~

~~

σ
ββ

ρ
XBWXBWBBWBBWtrWtrH

′
+

′
+= −−                          ( )45  

And: 
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                                     ( )46  

Under 0:0 =ρH , it is shown that ( )12χλρ →LM . 

 

4.5 Robust tests 

On the basis of the framework defined by Bera and Yoon (1993), Anselin and al. (1996) 

implemented robust tests to a local misspecification which are adjusted versions of λLM and 

ρLM tests. In fact, they allow obtaining an unbiased ( )12χ  as asymptotic distribution under 

the null hypothesis, and this in the respective presence of ρ  orλ .  

The adjusted version of the λLM test under 0:0 =λH is written as following: 

  
[ ]

DTT

dDTd
LM ˆˆ
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12

σ

σ ρλ
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In the same vein, the robust test ∗
ρLM is written as following under the null 

hypothesis ( )0:0 =ρH  : 
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ρ                 ( )48  

Anselin and Rey (1991) suggest a combination of the tests presented above in order to choose 

the spatial model that best represents the data, when Moran’s test concludes that spatial 

autocorrelation is present. This procedure originally relied on the significance levels for λLM  

and ρLM tests, but Anselin and Florax (1995) suggested the addition of the robust λ
∗LM and 

ρ
∗LM tests which allow refining the data.   
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The tools we have just presented complete the analytical framework that will lead us to the 

definition of the spatial process governing relationships between the countries of our sample. 

Then, spatial econometrics allows us to take into account relative location, and measure the 

impact it may have on economic performance. However, Moran’s spatial autocorrelation test 

should more generally be implemented whenever cross-sectional data are concerned. 

Admittedly, the lack of data on location has been a problem for a long time, but the recent 

development of Geographic Information Systems allowed overcoming this obstacle. 

 

5. The effects of spatial autocorrelation in the MRW model 
5.1 Sample Data 

The data we use in this paper come from the 6.0 version of the “Penn World Table” series 

initiated by Summers and Heston in 1988. Our study relies on the same variables as those 

used by Mankiw, Romer and Weil, but observed on the 1960-1995 period; then, the countries 

of the sample are chosen on the basis of data availability for the variables and the period 

under consideration. Furthermore, we follow Mankiw and al. by excluding oil-producing 

countries, what finally leads us to a sample of 89 countries. 

Thus, 95ln gdp and 6095grate stand for the endogenous variables in the income and 

convergence equations of the MRW model. Indeed, these two variables respectively represent 

real GDP per capita in 1995 and the average yearly growth rate of GDP per capita through the 

period under consideration, in each of the 89 countries. The level of GDP per capita is itself 

obtained by the ratio of real GDP to the number of workers of the corresponding year for each 

economy. 

In addition, we approach the accumulation rate of physical capital by the share of investment 

in real GDP. The variable schoolln stands for the share of the working-age population 

enrolled in secondary school through the period while popln is the effective depreciation rate 

of the human and physical capital stocks, with observations on the population growth rate or, 

more precisely, on the growth rate of the working-age population (people whose age is 

between 15 and 64), given that like Mankiw and al. we fix the sum of the technological and 

depreciation growth rates to 5%.  

In our estimations, we use a single spatial weights matrix ( )W , which elements are obtained by 

taking the inverse distance between two any countries for quantifying the intensity of their 

economic relations. The latter distance is computed by locating each country with the help of 

the geographic coordinates of its national capital (latitude and longitude), and applying the 
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great-circle distance criterion17. The inverse distance matrix is very common in spatial 

econometrics and has been used in studies like those of Moreno et Trehan (1997) or       

Florax and Nijkamp (2003) to formally express the spatial interaction degree between 

economies. Moreover, we row-standardize the spatial weights matrix in order to make the 

interpretation our results easier. 

 

5.2 The search for spatial specification 

As noted above, the first step of our analysis is based on testing for the absence of spatial 

error autocorrelation in the basic specifications of the MRW model, estimated by the Ordinary 

Least Squares method. Then, results stemming from the OLS estimation and from       

Moran’s “I” test, respectively for the convergence and income models, are given below: 

Table I :   Ordinary Least Squares Estimation. 

Convergence Model 

 

 

 

 

 

 

 

 

 

                                                 
17 The longitudes and latitudes of the country capitals come from the “Thesaurus of Geographic Names” which is 
available on the following website: www.getty.edu. The spherical distance formula (great circle distance) 
computed in Spacestat © is given by: 
    { }jiJijiij XXXXYYarcd coscossinsincoscos3959 ∗+∗∗−∗=  ; the X and Y variables 

respectively stand for the latitudes ( )lat and longitudes ( )lon of the country capitals, transformed as following: 

X = ( ) 18090 π+− lat et ( )180π+= lonY . 

Ordinary Least-squares Estimates 
Dependent Variable =  growth6095 

 
              R-squared                                                            0.5810 
              Rbar-squared                                                       0.5610 
              Std Dev- squared                                                 0.1637 
              Nobs, Nvars                                                         89,5 

 
Variable        Coefficient          t-statistic        p-probability 
const              3.424325            3.359787           0.001175 
lngdp60        -0.437037          -5.007810           0.000003 
lniony            0.520125            5.643363           0.000000 
lnschool         0.350873            3.982224           0.000145 
lnpop            -1.111355           -2.900470           0.004755 
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Income Model 

Ordinary Least-squares Estimates 
Dependent Variable = lngdp95 

 
            R-squared                                                              0.8086 
            Rbar-squared                                                         0.8019 
            Std Dev- squared                                                   0.2354 
            Nobs, Nvars                                                           89,4 
 
            Variable        Coefficient         t-statistic           p-probability 
             const              5.821510           5.138242              0.000002 
             lniony            0.537594           4.871840              0.000005 
             lnschool         0.647379           7.205227              0.000000 
             lnpop            -2.346590         -5.889002               0.000000 
 

 

Table II :   Moran I-test for spatial correlation in residuals 

                                  Convergence model                      Income model 
                                         
Moran I                                   0.04738847                                  0.03652254 
Moran I-statistic                     2.92649295                                  2.36077552 
Marginal Probability (p)         0.00551039                                  0.02458622 
mean                                      -0.01867508                                 -0.01749225 
standard deviation                   0.02257431                                  0.02288011 

 

The results given by Moran’s “I” test for both the “convergence model” and the “income 

model” lead to the rejection of the null hypothesis corresponding to the absence of spatial 

autocorrelation; indeed, the marginal probability (p) is lower than 5% in the two 

specifications. Therefore, the equations given by the MRW model are misspecified (for our 

sample) for the hypothesis of independent observations which underlies OLS estimation is no 

more valid, and so the resulting estimations are non-consistent and inefficient. 

 

5.3 Specification Tests 

Given that the presence of spatial autocorrelation is corroborated by Moran’s test, the next 

step leads us to wondering about the functional form of the spatial processes which generate 

the data, and at this prospect, we resort to the procedure initially suggested by Anselin and 

Rey (1991) and enhanced by Florax, Folmer, and Rey (2002).  

First, we carry out two simple hypothesis tests (based on the OLS residuals) which allow us to 

make a choice between specifications respectively involving a spatially lagged dependent 

variable and a spatial error autocorrelation, in order to take into account the spatial 

dependence found in the convergence and income equations. Therefore, we have: 

 



 22

                  Table III:      Simple tests of a spatial error autocorrelation or a spatially lagged 

                       dependent variable omission in the convergence and income models 

 

LM error test for spatial correlation in residuals 
                                           Convergence model           Income model 
 
       LM value                                  2.61073135                        1.55073935 
       Marginal Probability (p)           0.10614280                        0.21302633 
       chi(1) .01 value                         6.63500000                        6.63500000 

 

The results in Table III suggest a priori that the spatial autoregressive specification (spatially 

lagged endogenous variable) best matches the data generating process for the convergence 

model as well as the income model. In fact, the omission test of a spatially lagged endogenous 

variable is accepted for these two specifications (the marginal probability is lower than 5%) 

whereas the SEM specification is rejected. 

However, as previously noted, these simple tests do not take into account the possible local 

presence of a spatially lagged dependent variable when an omission test for a spatial error 

autocorrelation is carried out, and vice versa. As a result, these tests may be biased and then, 

one should rather implement robust tests in order to deal with this flaw. The results 

corresponding to the latter are given in the table below: 

 

               Table IV:      Robust tests of a spatial error autocorrelation or a spatially lagged 

                  dependent variable omission in the convergence and income models 

 

 

 

 

 

 

LM lag test for an omitted spatially lagged dependent variable 
                                      Convergence model             Income model          

 
       LM value                               5.50203643                           6.73366539 
       Marginal Probability (p)        0.01899434                          0.00946100 
       chi(1) .01 value                      6.63500000                          6.63500000 

Robust LM lag test for an omitted spatially lagged dependent variable  

                                      Convergence model             Income model          
 

       LM value                               2.94649641                          5.19171438 
       Marginal Probability (p)        0.08606395                           0.02269482  
       chi(1) .01 value                      6.63500000                          6.63500000 
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Table IV shows that the omission hypothesis of a spatial error autocorrelation is highly 

rejected as the marginal probability (p) is higher than 80% both for the convergence and 

income models. On the contrary, the robust tests suggest that the addition of a spatial lag, 

respectively for the average growth rate of income per capita and for long-tem income per 

capita (in logs), to the exogenous variables resulting from the theoretical model allows well 

capturing the spatial autocorrelation found following estimations in Table I; this also 

corroborates the results in Table III.  

 

5.4 Estimation of the spatial specifications 

Therefore, the SAR specification can be adopted as the data generating process both for the 

convergence and income models. Then, we can already estimate the “spatial convergence 

model” and the “spatial income model” by the maximum likelihood method, and so we obtain 

the following results: 

Tableau IV:  Estimation of spatial autoregressive specifications 

Convergence Model 

 

 

 

 

 

 

Robust LM error test for spatial correlation in residuals 
                                      Convergence model             Income model          

 
       LM value                               0.05519133                          0.00878833 
       Marginal Probability (p)        0.81426434                          0.92531085 
       chi(1) .01 value                      6.63500000                          6.63500000 

Spatial autoregressive Model Estimates 
Dependent Variable =  growth6095 

                    
           R-squared          =     0.5970                                     
           Rbar-squared     =     0.5779                                     
           sigma^2             =     0.1443                                    
           Nobs, Nvars       =    89,5                                         
           log-likelihood    =   -9.9378068                    
                                                         
           Variable       Coefficient     Asymptot t-stat    p-probability 
            const             3.477497         3.627769              0.000286 
            lngdp60       -0.427146        -5.209702              0.000000 
            lniony           0.502146         5.781010              0.000000 
            lnschool        0.309672         3.692904              0.000222 
            lnpop            -0.891775       -2.404042              0.016215 
            rho                0.545988         2.674385              0.007487 
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Income Model 

 

 

 

 

 

 

 

 

 

 

Observing these results, we find that all the exogenous variables in the right side of the basic 

specifications (non spatial models) remain significant even after the insertion of a spatially 

lagged endogenous variable as an additional regressor. This is also the case for the spatial 

parameter ( )ρ which is highly significant in the two spatial specifications respectively related 

to the convergence and income models.  

Therefore, the specification search we have just carried out suggests that the spatial 

autoregressive specification offers the best representation of the data for the sample under 

consideration, and this is moreover confirmed by the following tests for the absence of spatial 

autocorrelation in the SAR specifications estimated in Table IV: 

 

Tableau V: Tests for the absence of spatial autocorrelation in the residuals of the SAR specifications 

Convergence Model 

 

Income Model 

LM error tests for spatial correlation in SAR model residuals 
LM value                                                                   1.46114281               

               Marginal Probability (p)                                           0.22674837 
chi(1) .01 value                                                          6.63500000 

 

Once the spatial data generating process is chosen, we move to the next step which consists in 

studying its relevance, i.e. assessing the impact of the spatially lagged dependent variable 

Spatial autoregressive Model Estimates 
Dependent Variable = lngdp95 

 
                  R-squared          =      0.8198 
                  Rbar-squared     =      0.8134 
                  Time for t-stats  =     0.0310 
                  Nobs, Nvars       =     89,4 
                   log-likelihood    =    -25.811205 
 
                   Variable       Coefficient     Asymptot t-stat    p-probability 
                   const             2.748930        1.846952               0.064754 
                   lniony           0.505757         4.844385              0.000001 
                   lnschool        0.536354         5.868178              0.000000 
                   lnpop           -1.808048        -4.223398              0.000024 
                   rho                0.459989         2.814203              0.004890 

LM error tests for spatial correlation in SAR model residuals 
LM value                                                                  3.23582865 

               Marginal Probability (p)                                          0.07204385 
chi(1) .01 value                                                         6.63500000 
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added to the convergence and income models on the econometric results and theoretical 

conclusions obtained by Mankiw, Romer, and Weil. 

 

5.5 Results and Discussion 

Income Model 

The estimation results of a SAR specification for the income equation show that the spatial 

autoregressive parameter ( ρ ) is highly significant, with a marginal probability (p) which is 

about 0.5%. So, this corroborates the omission of a spatial lag for the endogenous variable in 

the standard specification (non spatial model) and the non-consistency and non-efficiency of 

the estimates obtained in Table I. In addition, the spatial parameter estimate shows that the 

spatial effects omitted in the standard specification are relatively important ( )0.46ρ = . As a 

matter of fact, for any given country, a 1% increase in the weighted average income per capita 

of its neighbors entails an increase of about 45% of its own long-term income per capita. 

However, the addition of a spatially lagged endogenous variable to the standard specification 

does not considerably modify the effect of the accumulation rate of physical capital on the 

long-term per capita income level, even if it slightly decreases. This is also the case for the 

variables respectively standing for human capital and the population growth rate. Henceforth, 

these results comply with what is often found in literature, and highlight the fact that the most 

important part of the spatial autocorrelation found in the data is related to some omitted 

variables in the theoretical model; moreover, these variables are probably autocorrelated and 

have a significant impact on the long-run per capita income level. 

Convergence Model 

The estimation of the SAR specification in the case of the convergence model shows that all 

the coefficient estimates for the exogenous variables of the non-spatial model are significant, 

and the corresponding signs match what economic theory suggests. In particular, we have a 

negative and very significant coefficient for the log of initial income level, what corroborates 

the conditional convergence hypothesis. Moreover, as for the income equation, we notice that 

the coefficients resulting from the SAR estimation are very close to those for OLS, even if the 

impact of the corresponding variables is globally (in absolute value) higher in the standard 

estimation.  

The results in table IV give a positive and significant estimation of the spatial autoregressive 

coefficient of about 0.55, which is again relatively important insofar as it the fact that the 

growth rate of an economy will ceteris paribus react to an 1% point increase in the weighted 
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average growth rate of the other countries by a 0.55 percentage point increase. Thus, from the 

growth rate perspective, there exist important geographic spillover effects beyond THE 

economies of our sample. 

In addition, the coefficient corresponding to the log of initial per capita income (lngdp60) in 

the SAR specification suggests an estimation of 1.6% for the speed of convergence, while the        

non-spatial model leads to an estimation of 1.5%.  

In other words, the addition of a spatially lagged dependent variable to the basic specification does not 

significantly affect the estimation of the rate at which economies move towards their steady-states. 

Besides, this result is remarkably robust for several empirical studies on regional convergence        

lead to the same conclusion. More generally, the estimation of the speed of convergence given by the       

SAR specification remains close to the 1.4% rate obtained by Mankiw, Romer, and Weil for          

their sample of 98 countries, or to the 2% rate which is very recurrent in empirical studies on 

economic growth (Cf. Barro et Sala-i-Martin [1995]).  

 

Conclusion 
Finally, the results above have allowed us to show that the both the “convergence equation” 

and the “income equation” are misspecified and that neither the long-run income level, nor the 

growth rate escape from the effects of location and space. As a matter of fact, in both cases, 

Moran’s test leads us to strongly reject the null hypothesis and suggests the omission of a 

significant spatial autocorrelation in the specifications of the basic model; thus, we draw the 

conclusion that OLS estimations are non-consistent and non-efficient. 

Henceforth, spatial econometric methods allow us to obtain a reliable statistical inference. In 

addition, when we implement the search procedure for spatial specifications suggested by 

Anselin and Rey (1991) and enhanced by Florax, Folmer, and Rey (2003), we are lead to 

adopt the SAR specification as the data-generating process, and the estimation of this 

specification for the convergence and income equations allows us to highlight the omission of 

important geographic spillover effects in the theoretical framework proposed by Mankiw, 

Romer, and Weil. 

Indeed, the long-run per capita income and the growth rate of an economy will be all the 

higher as the weighted average (by inverse distance) of per capita incomes and growth rates of 

neighboring economies is high. In other words, the richer its neighbors will be (resp. poorer), 

the richer the economy under consideration will be (resp. poorer); the faster (resp. slower) its 

neighbors will grow, the faster (resp. slower) its per capita income growth will be.  
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Considering the specification of our spatial weights matrix, we also note that the interaction of 

a country with its neighbors will be all the weaker as the distance separating them is high. 

However, alternative specifications for the spatial weights based on explicit economic 

variables, however complex, could allow better capturing the intensity of economic relations 

in space but this type of matrices raises the issue of exogeneity for the spatial weights.  

Even if the explicit consideration of spatial autocorrelation in the convergence and income 

equations does not change drastically the estimated coefficient values of the Mankiw, Romer, 

and Weil’s model, the addition of a spatially lagged dependent variable in these equations 

allows highlighting the omission of some important variables which underlie the growth 

process and are strongly influenced by the geographic position of these economies. 

Henceforth, several factors may explain the geographic spillovers we find in the convergence 

and income equations of the MRW model. As a matter of fact, capital mobility, international 

trade, and the technological transfers it generates, are so many vectors through which the 

spatial autocorrelation observed beyond per capita incomes and growth rates may happen.     

In particular, the effects of technological diffusion absolutely match the MRW model which 

theoretical construction leads to explaining long-run growth through the only growth of 

technology. This is also the case for international trade which plays a fundamental role in 

popularizing technologies and probably considerably participates in making technical 

progress a public good. 

Finally, even if the impact of the standard exogenous variables is not fundamentally changed, 

the consideration of spatial autocorrelation in the MRW model certainly allows obtaining 

more accurate results. In general, the addition of a spatially lagged endogenous variable in the 

convergence and income equations suggest that the effects of the exogenous variables are 

slightly overestimated and then, it notably follows a slight underestimation of the speed of 

convergence. This indicates the need to systematically test for the omission of spatial 

autocorrelation in the cross-section regressions traditionally implemented in empirical studies 

on growth.  
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