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Abstract

In this paper, we extend the standard discrete choice modelling
framework by allowing for random variation in the substitution pat-
terns between alternatives across respondents, leading to increased
model flexibility. The paper shows how such a Mixed Covariance model
can be specified either with purely random variation or with a mixture
between random and deterministic variation. Additionally, the model
can be based on an underlying GEV or ECL structure. Finally, the
model can be specified as a continuous mixture or as a discrete mixture.
A brief application on simulated data shows that our proposed model
structure is able to retrieve variations in the error-structure across re-
spondents, hence avoiding a source of bias in forecasting applications.

1 Introduction

Discrete choice models have been used extensively in various areas of eco-
nomic research, notably transport studies, for over thirty years. Initially,
virtually all applications were based on the basic Multinomial Logit (MNL)
model (Luce 1959, Marschak 1960, McFadden 1974), which, although easy to
specify, estimate and apply, has significant disadvantages in terms of flexibil-
ity, most notably in the form of very restrictive substitution patterns across
alternatives (governed by the IIA assumption). Initial gains in flexibility
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were made by the development of structures belonging to the family of Gen-
eralised Extreme Value (GEV) models, allowing for heightened correlation
between alternatives that are closer substitutes for each other, thus relax-
ing the assumptions imposed on MNL cross-elasticities. The best known
example of a GEV model is the Nested Logit (NL) model (Williams 1977,
McFadden 1978, Daly & Zachary 1978), which has been used extensively
by researchers and practitioners. Further increases in flexibility can be ob-
tained with the use of models allowing for multi-nest membership. The gen-
eral form of these models is given by the Cross-Nested Logit (CNL) model
(Vovsha 1997, Vovsha & Bekhor 1998, Papola 2004, Bierlaire 2005); other
well-known models such as the Ordered Generalised Extreme Value (OGEV)
model (Small 1987) or the Paired Combinatorial Logit (PCL) model (Chu
1989) can be seen as special cases of this CNL structure. Two even more
general model forms have recently been proposed; the Generalised Nested
Logit (GNL) model of Wen & Koppelman (2001) generalises all two-level
GEV structures, while Daly & Bierlaire (2005) propose a model form that is
also able to generalise existing multi-level GEV models1. For an extensive
review of GEV models, see Koppelman & Sethi (2000) and Train (2003).

While GEV models avoid the often unrealistic substitution patterns of
the MNL model, they are, like the MNL model, restricted to expressing taste
heterogeneity across respondents in a deterministic fashion. Given the usual
limitations of the data, along with inherent randomness involved in decision-
making, there is however generally some remaining non-quantifiable (ran-
dom) variation in tastes, which, if left untreated, can lead to biased model
estimates. Researchers have recently begun to increasingly exploit the power
of an alternative model form, the Mixed Multinomial Logit (MMNL) model,
in which choice probabilities are expressed as integrals of MNL choice prob-
abilities over the (assumed) distribution of the error terms present in the
model, in addition to the usual IID extreme-value terms. Due to the absence
of a closed-form solution for the MMNL choice-probabilities, numerical tech-
niques, typically simulation, are required in the estimation and application
of this model. The computational cost of these numerical techniques meant
that the MMNL model remained largely confined to theoretical discussions
for years following its development (the MMNL model was first discussed by
Boyd & Mellman 1980 and Cardell & Dunbar 1980). However, with the de-
velopment of ever more powerful computers and simulation techniques (c.f.

1The work by Daly & Bierlaire (2005) combines earlier work by Daly (2001) on the
Recursive Nested Extreme Value model and by Bierlaire (2002) on the Network GEV
model.
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Hess, Train & Polak 2005), the number of applications using the MMNL
model has increased significantly over recent years.

Two distinct interpretations of the MMNL model have been discussed
in the literature; the Random Coefficients Logit (RCL) formulation exploits
the error structure of the MMNL model to accommodate a random distri-
bution of tastes across decision-makers, while the Error Components Logit
(ECL) formulation allows the model to approximate any GEV correlation
structure arbitrarily closely. The two approaches can also be combined to
allow for the joint modelling of random taste heterogeneity and flexible sub-
stitution patterns. The RCL formulation is used more regularly than its
ECL counterpart, with some recent examples in the field of transport stud-
ies being given by Bhat (2000), Bhat & Castelar (2002), and Hess & Polak
(2004, 2005b). The ECL formulation has been used amongst others by Bhat
(1998), Brownstone & Train (1999) and Hess, Polak, Daly & Hyman (2005).
For more details on the two specifications, see McFadden & Train (2000),
Walker (2001) and Train (2003). Finally, an alternative to the ECL formu-
lation for the joint representation of random taste heterogeneity and flexible
correlation structures is to use integration of GEV-style choice probabilities
over the distribution of taste coefficients, leading to a Mixed GEV model
(c.f. Bhat & Guo 2004, Hess, Bierlaire & Polak 2005a). This model form not
only reduces the number of random terms in the models to the number of
random taste coefficients, hence easing the computational burden, but also
avoids important issues of identification that need to be faced when using
the ECL formulation (c.f. Walker 2001).

While the developments in relation to closed-form GEV as well as GEV
mixture models have led to gradual gains in modelling flexibility, by allowing
modellers to accommodate correlation across alternatives as well as deter-
ministic and random taste heterogeneity across respondents, little effort has
gone into the development of model forms allowing for a representation of
heterogeneity across respondents in the correlation structure in place be-
tween the different alternatives. Such correlation heterogeneity is however
potentially a crucial factor in the variation of choice-making behaviour across
decision-makers. As an example, in an airline-choice scenario, travellers’ be-
haviour can be strongly affected by their membership in a given airline’s
frequent flier programme, to the point that, in the case where seats on their
desired flight are not available, they are more likely to switch to a different
flight on the same airline than to choose a flight by an alternative airline. In
many cases, it may not be possible to accommodate the effects of airline al-
legiance directly, mainly for data reasons (c.f. Hess & Polak 2005a). In these
circumstances, the greater substitution between flights on the same airline
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can be accommodated through a nesting structure that allows for correlation
between flights on the same airline. It is clearly possible that the effects of
airline allegiance, and hence the level of correlation, vary across travellers,
meaning that the use of an approach which imposes covariance homogeneity
potentially leads to biased model results.

While some of the covariance heterogeneity can conceivably be accom-
modated through an appropriate segmentation of the population (using sep-
arate models), it is likely that some within-segment heterogeneity remains.
The existing literature seems to contain only two examples of a model al-
lowing for such heterogeneity. The first of these comes in the form of the
Covariance Nested Logit (COVNL) model discussed by Bhat (1997). In the
COVNL model, the structural parameters themselves (and hence the pattern
of substitution between alternatives) are a function of socio-demographic
attributes of the decision-makers, such that the correlation heterogeneity is
explained with the help of these attributes. Koppelman & Sethi (2005) later
expand this approach by incorporating covariance heterogeneity in a GNL
model2, where they additionally allow for heteroscedasticity across respon-
dents through a parameterisation of the scale factor (c.f. Swait & Adamowicz
1996, 2001), describing the resulting model as the Heterogeneous General-
ized Nested Logit (HGNL) model.

While it is highly desirable to explain any covariance heterogeneity in
a deterministic way, this is clearly not always possible, and even where it
is possible, there is potentially some remaining random heterogeneity that
cannot be explained in a deterministic fashion. The aim of this paper is
therefore to develop a model structure that can accommodate random co-
variance heterogeneity in addition to deterministic covariance heterogeneity.
The discussion presented in this paper is based on an underlying GEV model
for representing the correlation between alternatives; it is similarly possible
to do this with the help of an ECL structure, and the development of such
a framework is described in Appendix A.

The remainder of this paper is organised as follows. The methodology
for the Mixed Covariance GEV model is introduced in Section 2. Section
3 presents an application showing how one specific example of a Mixed
Covariance GEV model works in practice. Finally, Section 4 presents the
conclusions of the research.

2Thus also allowing for cross-nesting.
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2 Methodology

We will now develop the structure for our Mixed Covariance GEV model,
where the derivation described here looks mainly at the case of a simple
two-level NL model; the extension to multi-level as well as cross-nesting
structures is possible, and several notes to that extent are made in the
text. The exposition of the theory is divided into three parts. We first look
at the general model form, in Section 2.1, before moving on to the cases
of purely random variation (Section 2.2) and combined deterministic and
random variation (Section 2.3).

2.1 General model form

The choice probabilities in a nested model are represented through a prod-
uct of successive choice probabilities that represent a chain from the root
of the tree (upper-most node) to the elementary alternative for which the
probability is calculated. In a two-level NL model, the choice probability of
alternative i (belonging to nest m) for individual n is then given by:

Pn (i) = Pn (Sm) · Pn (i | Sm)

=
eλmIm,n∑M
l=1 eλlIl,n

· e
Vi,n
λm∑

j∈Sm
e

Vj,n
λm

(1)

with logsum term

Im,n = ln
∑

j∈Sm

e
Vj,n
λm , (2)

where Vj,n gives the observed utility for alternative j and individual n, λm

is the structural parameter associated with nest m, Sm defines the set of
alternatives contained in nest m, and M gives the total number of nests.
The extension of the choice-probability from equation (1) to the multi-level
case is straightforward, with details given for example by Koppelman &
Sethi (2000).

The COVNL model of Bhat (1997) expands on the standard NL model,
by parameterising the structural parameters λ as:

λm,n = F
(
α + γ ′zn

)
, (3)

where α is a constant, zn is a vector of attributes of decision-maker n, and
where γ is a vector of coefficients. In this notation, λm,n is the structural
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parameter for nest m and decision-maker n. Both α and γ are to be esti-
mated.

To ensure consistency with utility maximisation, F () needs to be speci-
fied so as to produce values in the 0− 1 interval. Furthermore, Bhat (1997)
states that increases in zn should have a monotonic effect on λn (where this
ensures consistency in the case of multi-level structures, c.f. equation (7)).
This double requirement can be satisfied by using a function F () with:

F (−∞) = 0
F (+∞) = 1

f (x) =
∂F ()
∂x

> 0 (4)

These conditions are met by the use of a continuous cumulative probability
distribution function, where Bhat (1997) suggests the use of the logistic
distribution.

We now extend this approach to the case where λm follows a random
distribution across individuals. Conditional on a given set of values for the
vector (of length M) of structural parameters λ, the NL choice probabilities
are given by equation (1). We now assume that the vector λ is distributed
according to f (λ | Ω), where Ω is a vector of parameters of the distribution
of the different elements of λ. This specification is general, and can be
adapted for the special cases presented in Sections 2.2 and 2.3.

The conditional choice probability in equation (1) is now replaced by the
unconditional choice probability:

Pn (i) =
∫

λ
Pn (i | λ) f (λ | Ω)dλ (5)

=
∫

λ

eλmIm,n∑M
l=1 eλlIl,n

· e
Vi,n
λm∑

j∈Sm
e

Vj,n
λm

f (λ | Ω)dλ, (6)

where λ = {λ1, ..., λM}. Here, equation (6) is specific to the two-level NL
model given in equation (1), while equation (5) shows the general form,
where Pn (i | λ) can represent the conditional choice probability for any GEV
model3. The logsum term Im is defined as in equation (2), and it should
be noted that this logsum term is conditional on a given value of λm, and

3In the case of cross-nesting structures, there is an additional dependency on a vector
of allocation parameters, which is not explicitly stated in equation (5). There is in that
case also a possibility of allowing for deterministic as well as random variations across
agents in the allocation parameters.
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hence λ, by being inside the integral. The behaviour of the model depends
crucially on the specification used for f (λ | Ω), where the requirements on
the range of the structural parameters need to be borne in mind. This issue
is discussed in more detail in the description of the two special cases in
Sections 2.2 and 2.3.

The approach becomes more complicated in the case of multi-level struc-
tures, due to the condition that the structural parameters need to decrease
as we move down the tree. In the COVNL, this is made possible by speci-
fying the structural parameter of a lower-level nest, λl, as in equation (3),
and by adapting the specification of the upper-level nesting parameter as:

λm,n = F
[(

α + γ ′zn

)
+ G

(
δ + η′wn

)]
, (7)

where wn is an additional vector of individual characteristics, which can be
the same as zn, and where δ and η are a constant and vector respectively
that need to be estimated. Finally, G () is a monotonically increasing func-
tion mapping real numbers onto the space of positive real numbers, such as
for example with the exponential distribution.

In the case of the Mixed Covariance NL model, the issue becomes more
complicated, as the different structural parameters are now random vari-
ables. To ensure consistency with utility maximisation, the distribution of
the structural parameters must be specified such that structural parameters
belonging to the same link in a tree are no longer distributed independently.
As it is desirable not to have to impose a constraint of equality of the
structural parameters on a given level4, it is preferable to use a top-down
approach in the notation for the Mixed Covariance NL model, given that
a specific node may have multiple descendants, while, in a model without
cross-nesting, each node has only one direct ancestor.

One possible way of ensuring decreasing structural parameters is to spec-
ify the values as follows. With an upper-level structural parameter being
given by:

λu ∼ f (λu | Ωu) , (8)

the structural parameter of one of its descendants, λli, is given by:

λli = λu · λ̂li, (9)

with

λ̂li ∼ f
(
λ̂li | Ωcλli

)
, (10)

4This approach is taken by Bhat (1997).

7



where, in either case, the subscript imposed on Ω refers to the subelements
linked to the structural parameter in question. This approach avoids the
need to specify a complete joint density for the structural parameters.

The structural parameter at a lower level is thus given by multiplying
the structural parameter at the level above it with a draw from the distrib-
ution used for the structural parameter at the lower level. As this draw is
contained between 0 and 1, the resulting product is necessarily constrained
between 0 and λu, giving 0 ≤ λli ≤ λu ≤ 1. If, at a given level, the draw
from the distribution approaches 1, such that the resulting structural pa-
rameter takes the same value as its ancestor, this level of the tree becomes
obsolete in that link, and the nests below it can be attached directly to the
ancestor node. Extension of this theory to models with more than three
levels is straightforward.

Extensions to models allowing for cross-nesting is also possible, although
slightly more tedious. In this case, a given node can have multiple ancestors,
and the condition of decreasing structural parameters needs to apply for each
of the links to an ancestor. This means that the structural parameter at
a given node needs to be less than or equal to that of the direct ancestor
with the lowest structural parameter. Hence, in equations (9) and (10), λu

is accordingly replaced by the structural parameter of this specific ancestor
node. As it is thus possible to adapt this approach for models allowing for
cross-nesting as well as for models allowing for multi-nest membership, it
can be seen that the approach should be applicable for all existing GEV
structures.

The final step in the theoretical development of our proposed model
form is the representation of taste heterogeneity across individuals, where
this heterogeneity relates to the coefficients multiplying the attributes of the
alternatives, as opposed to the structural parameters. The above framework
clearly already allows for deterministic variations in tastes; additional ran-
dom variation can be accommodated very easily in the present model form,
through integration of the choice probabilities that are conditional on β over
the assumed distribution of the taste coefficients. This comes in addition to
the integration over the distribution of the structural parameters.

Let Pn (i | β,λ) give the choice probability of alternative i for individual
n, conditional on β and λ. Following the theory described in this section,
we then have:

Pn (i | β) =
∫

λ
Pn (i | β,λ) f (λ | Ω)dλ. (11)

By assuming that the tastes are distributed randomly across decision-makers
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according to g (β | Θ), with parameter vector Θ, we obtain the unconditional
choice probability5:

Pn (i) =
∫

β
Pn (i | β) g (β | Θ)dβ

=
∫

β

(∫
λ

Pn (i | β,λ) f (λ | Ω)dλ

)
g (β | Θ)dβ. (12)

2.2 Model with purely random covariance heterogeneity

We now look at the case where any variation in the structural parameters
(and hence the correlation) across individuals is purely random. Two pos-
sible approaches arise in this case.

In the first approach, we rewrite the choice probabilities in equation (5)
as:

Pn (i) =
∫

x
Pn (i | λ = T (x)) f (x | Ω)dx, (13)

where T (x) is a transform that maps the elements in x from the real space of
numbers into the 0−1 interval. With this approach, any choice of statistical
distribution can be used for f (x | Ω), and a transform such as the logistic
distribution can be used for T (x).

The second approach avoids the use of the additional transform T (x),
and draws for the structural parameters are produced directly from the
function f (λ | Ω), as shown in equation (5). In this case, the condition
on the range of the structural parameters applies directly at the level of
f (λ | Ω), leading to a requirement to use distributions bounded on either
side, with the left bound being greater than 0, and the right bound being
smaller than 1. The vector Ω now contains the parameters of the actual
distribution of the structural parameters, as opposed to the distribution of
the random vector x used as the base of the transform described in the first
approach. A number of different statistical distributions can be used with
this approach, including basic examples such as the Uniform or Triangular,
or indeed the Johnson SB distribution.

It is not clear a priori which of the two approaches is preferable. The
former approach allows for greater freedom in the choice of distribution for
f (x | Ω), while the latter approach provides more control over the actual
shape of the distribution of the structural parameters. The merits of the
two approaches potentially need to be evaluated on a case-by-case basis.

5Although beyond the scope of the present discussion, it is possible to expand this
approach to the case where β and λ follow some form of joint distribution.
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2.3 Model with deterministic and random covariance het-
erogeneity

While the description in Section 2.2 has shown that the framework developed
in Section 2.1 can be adapted straightforwardly to allow for a purely ran-
dom distribution of structural parameters across individuals, the use of this
approach leads to similar issues of interpretation as in the case of randomly
distributed taste coefficients in a GEV mixture model. Indeed, this approach
provides little information about the values of the structural parameters for
a given individual or a given population group, although posterior methods
can be used to infer some such information. It is thus clearly preferable to
as much as possible explain this covariance heterogeneity in a determinis-
tic manner, as in the COVNL model of Bhat (1997). As mentioned in the
introduction, this is not always possible, such that the Mixed Covariance
models presented in this paper present a useful alternative. However, it is
conceivable that there are cases in which it is possible to explain some of
the variation in a deterministic way, while some remaining part of covari-
ance heterogeneity can only be explained in a random way, along the lines
of λ = F (α + γ ′zn + ε), where ε is a random component. Two approaches
are possible in this case, one is to use a mixed version of a formulation
analogous to the COVNL formulation (but within a top-down approach),
while the other is to parameterise the parameters of the distribution used
to represent covariance heterogeneity in the Mixed Covariance GEV model.
We will now look at these two approaches in turn.

2.3.1 Extension of COVNL approach

We begin the description of this approach by rewriting the choice probabil-
ities in equation (5) as:

P (i) =
∫

θ
P (i | λ = T (H (zn,θ))) f (θ | Ω)dθ, (14)

In this notation, T () is defined as previously as a transform mapping inde-
pendent elements from the real space of numbers into the 0−1 interval. The
function H (zn,θ) is used to generate a vector of length m of real numbers,
as a function of the parameters contained in the vector θ and the vector
of individual-specific attributes zn, with θ being distributed according to
f (θ | Ω). This model can be seen to be an extension of the COVNL model
described in Section 2.1 as follows. Let us assume that we have a model
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with a single structural parameter λm. It can be seen that, by specifying
T () to be the logistic transform, H (zn,θ) to yield α + γ ′zn, and setting
f (θ = (α, γ) | Ω) = 1, the model reduces to the COVNL model. In this
case, the parameters contained in the vector θ are fixed across individuals.
However, the model uses a top-down approach, which makes for easier adap-
tation in the case of multi-level structures or cross-nesting structures (see
Section 2.1).

By removing the assumption that f (θ = (α, γ) | Ω) = 1, we obtain a
model with random variation in the structural parameters across individu-
als. Depending on the specification of f (θ | Ω), only some of the elements
in θ will be random, allowing for example for a random offset α across in-
dividuals, with purely deterministic variation on top of it, or a fixed offset
point with random and deterministic variation on top of it, or both. Differ-
ent choices for H () and T () (with appropriate domain conditions) lead to
differences in model behaviour. Finally, it can be seen that by setting all el-
ements in zn to be zero, we obtain a model with purely random variation as
in the first approach described in Section 2.2. This completes the extension
of the COVNL framework to the case with random parameters.

2.3.2 Parameterisation of distributional parameters

We will base our derivation of the parameterisation method on the second
approach described in Section 2.2, such that draws for λm are obtained
directly from an appropriate distribution with an acceptable domain, as op-
posed to requiring the use of a transform (which is also possible). Let us
assume that we have ωm ∈ Ω, such that ωm represents for example the
mean used in the distribution function of structural parameter λm, with
a corresponding variable σm ∈ Ω giving the dispersion parameter of the
distribution of structural parameter λm. For now, let us assume that σm

stays constant across individuals; extension to the case where it varies (de-
terministically across individuals) in addition to ωm is straightforward. We
now look at the case where some of the variation in λm is explained by
random variation (through using the distribution f (λm | ωm, σm) and some
variation is explained by the attributes of the decision-maker, by parame-
terisation of ωm. This approach acknowledges the fact that we can get an
idea of the structural parameter of a given decision-maker with the help of
individual-specific attributes (as in the COVNL model), but that there is
some remaining error, or deviation, from this estimate. Specifying ωm,n to
be the mean value of the distribution of λm for decision-maker n, we can
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then simply use:

ωm,n = αωm + γωm
′zn, (15)

where zn represents a vector of attributes of decision-maker n, and αωm and
γωm represent a constant and a vector of coefficients respectively, both of
which are specific to the parameter ωm.

In the case where no parameterisation of the parameters of the distri-
butions is (or can be) used, only the constant αωm will be estimated. In
this case, ωm,n stays the same across respondents, and the only differences
in the value of λm across respondents are due to random variation. On the
other hand, a model version that is very similar to the COVNL model can
be obtained by only using one distributional parameter for each structural
parameter, i.e. by setting

P (λm,n = ωm,n | Ω) = 1 (16)

This is equivalent to setting the dispersion term σm to be equal to zero.
In this case, different structural parameters are still used for different indi-
viduals, but they no longer vary randomly across individuals; the variation
is entirely deterministic. By further setting γωm = 0 for all m, the model
reduces to the NL model.

2.3.3 Discussion

It is of interest to briefly discuss the differences between the two approaches.
Both approaches attain the goal of jointly introducing deterministic and
random covariance heterogeneity. The former approach has the advantage
of easier interpretation, and possibly simplifies more easily to models with
purely deterministic covariance heterogeneity, as well as models with fixed
covariances. The only apparent advantage of the second approach is that
it can avoid the need for additional transforms in the case where strictly
bounded statistical distributions are used. Although, like the first approach,
this variant also allows for an impact by an unlimited number of socio-
demographic attributes, their impact needs to be gauged simultaneously for
a minimum of two separate values, giving the mean and dispersion of the
associated statistical distribution. As such, the former approach is probably
preferable, although a detailed empirical comparison would be needed to
reach a definitive answer.
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3 Application

In this section, we present an application of one specific type of Mixed Co-
variance GEV model, namely a discrete mixture of a two-level NL model,
with two possible levels of correlation in the population, leading to a Discrete
Mixture Covariance NL (DM-COVNL) model. As such, the work presented
here relates to the discussion on discrete mixture models by Hess, Bier-
laire & Polak (2005b), where, in the present context, the mixture allows for
covariance heterogeneity, as opposed to taste heterogeneity.

The justification for using the DM-COVNL model instead of a continu-
ous mixture in this application is primarily a pragmatic one. Indeed, while
it can simply be seen as a special case of a continuous mixture, it has the
clear advantage of not requiring simulation in estimation. However, the
discrete approach also has some advantages in terms of illustration of the
differences with a homogoneuous covariance model, as well as having con-
ceptual advantages in terms of the notion of an unobserved attribute leading
to inter-alternative correlation for only part of the population of decision-
makers.

Let the choice probability for alternative i and individual n in a model
with K nests be given by:

Pn (i | β) =
M1∑

m1=1

. . .

MK∑
mK=1

Pn

(
i | β,λ =< λm1

1 , . . . , λmK
K >

)
·πm1

1 ·. . .·πmK
1 ,

(17)

where the structural parameter λk, associated with the kth nest, takes on Mk

separate values, defined as λ1
k to λMk

k , where each has an associated proba-
bility (or mass), with 0 ≤ πmk

k ≤ 1 ∀k, mk, and where
∑Mk

mk=1 πmk
k = 1 ∀k.

Here, in addition to the taste coefficients, estimates need to be produced
for the different levels for all the structural parameters, as well as for the
associated probabilities.

With the aim of illustrating the ability of the model to recover covariance
heterogeneity, and to show the bias resulting from an inappropriate assump-
tion with regards to covariance homogeneity, the application presented here
makes use of quasi-simulated data, making use of data from an SP survey
conducted to estimate the hypothetical demand for a new high-speed transit
system in Switzerland; the Swiss Metro (c.f. Abay 1999, Bierlaire et al. 2001).
This dataset provides us with good attribute-level data, avoiding the issues
caused by the randomness in purely-simulated data. The choice-vectors used
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in the various case-studies are entirely independent of the original SP survey
responses.

Three alternatives were included in the choice-set; car, rail and Swiss
Metro (SM). Only three attributes, namely travel-time, travel-cost, and
headway (for rail and SM) were used here. In each case-study, separate
travel-time coefficients were used for the three modes (βTT,car, βTT,rail, and
βTT,SM ), in conjunction with a common travel-cost coefficient (βTC), a joint
headway coefficient for rail and SM (βHW ), and two ASCs, for car and SM
(δcar and δSM ). A sample of 9, 000 observations was used, based on an orig-
inal sample of 3, 000 observations, where the data augmentation was based
on small random variations of the original attribute levels. The generation
of the data is based on the principle of nine observations per individuals, as
opposed to a purely cross-sectional approach. Formally, in the generation
of the data, the 1, 000 individuals were split into two groups. In the first
group, representing 30% of the population, there is high correlation between
the error-terms for the rail and SM alternatives, with a structural parameter
equal to 0.3. In the remaining 70% of the population, the structure equates
to a MNL model. The allocation to the two groups is performed on a purely
random basis (taking into account the 30%− 70% split), such that a deter-
ministic segmentation of the population cannot be used to account for the
differences in correlation structure. This construction represents a situation
in which, for example, for some individuals, an unobserved attribute leads
to heightened substitution between rail and SM, while, for the remainder of
the population it does not6.

On the basis of the resulting individual-specific structural parameters,
and the coefficient values reported for the true model in Table 1, the choice-
probabilities for the three alternatives were calculated for each individual, on
the basis of a two-level NL structure nesting rail with SM, where, for those
individuals with λ = 1, the probabilities correspond to a MNL structure.
A Monte-Carlo exercise was then used to determine the chosen alternative.
As such, for each individual, the actual structural parameter applying for
that respondent was used. This is more correct, and consistent with the
underlying true model, than an approach which uses simulation over the two
values, assigning to each individual the weighted choice probability across
the two values for λ. As such, the resulting dataset reflects a real-world
situation (in which a single value applies for each individual), rather than
a DM-COVNL approximation to such a real-world situation. This in turn

6This could for example simply reflect an inherent dislike of car-travel for some respon-
dents.
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means that the estimation can show how well the DM-COVNL model, which
does use a weighted average across the two values for λ, can replicate the
true model7.

Three separate models were estimated on the resulting dataset; a MNL
model, a simple NL model nesting together rail and SM, and a DM-COVNL
model. All three models were coded in Ox. In the DM-COVNL model, we
estimate two distinct structural parameters for the rail-SM nest, specified as
λa and λb. As such, with λa, the choice probability of rail in the tth choice
situation for individual n is given by:

Pn,t (rail | λa) =
e
λa ln

 
e

Vrail,n,t
λa +e

VSM,n,t
λa

!

eVcar,n,t + e
λa ln

 
e

Vrail,n,t
λa +e

VSM,n,t
λa

! · e
Vrail,n,t

λa

e
Vrail,n,t

λa + e
VSM,n,t

λa

,

(18)

where Vrail,n,t, VSM,n,t and Vcar,n,t give the observed utility for rail, SM and
car respectively, for individual n, in choice situation t. The corresponding
choice probabilities for SM and car are given by:

Pn,t (SM | λa) =
e
λa ln

 
e

Vrail,n,t
λa +e
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!
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e
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! · e
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e
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(19)

and

Pn,t (car | λa) =
eVcar,n,t

eVcar,n,t + e
λa ln

 
e

Vrail,n,t
λa +e

VSM,n,t
λa

! (20)

On the basis of equations (18), (19) and (20), the probability of the observed
sequence of choices for individual n, conditional on λa, is given by:

L (n | λa) =
Tn∏
t=1

[δn,t,railPn,t (rail | λa) + δn,t,SMPn,t (SM | λa) + δn,t,carPn,t (car | λa)] ,

7It should be noted that similar issues apply in the case of continuous mixture models,
where the use of a single draw from the assumed distribution of β for each individual in
the generation of the simulated data is more consistent with the conceptual notion of a
model with randomly varying tastes across respondents, than the use an actual mixture
model in the simulation of the data (see also Hess, Bierlaire & Polak 2005c).
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(21)

where Tn gives the number of choice-situations for respondent n (equal to
9 in this application), and where the dummy variable δn,t,rail is equal to 1
if respondent n chooses rail in the tth choice-situation, and zero otherwise,
with a corresponding definition for δn,t,SM and δn,t,car.

With an equivalent notation in the case of the second structural parame-
ter, λb, the contribution by individual n to the likelihood function is given
by:

L (n) = πλa L (n | λa) + πλb
L (n | λb) , (22)

where πλa and πλb
give the mass for λa and λb respectively, with 0 ≤ πλa ≤ 1,

0 ≤ πλb
≤ 1, and πλa + πλb

= 1. The fact that the weighting over the two
support points occurs at the level of L (n | λa) and L (n | λb), rather than
at the level of individual choice probabilities, reflects the notion that tastes
stay constant across replications for the same individual.

Finally, on the basis of equation (22), the log-likelihood function for the
DM-COVNL model used in this example is given by:

LL = ln

(
N∏

n=1

L (n)

)

=
N∑

n=1

ln [πλa L (n | λa) + πλb
L (n | λb)] , (23)

where N gives the total number of individuals, with, in the present applica-
tion, N = 1, 000.

The estimation results for the three models are summarised in Table
1, together with the coefficient values used in the generation of the data.
The results show that the use of the NL model leads to statistically signif-
icant improvements in model fit over the MNL model, by 20.89 units, at
the cost of one additional parameter. The DM-COVNL model leads to the
best model fit overall, offering an improvement by 29.62 units over the NL
model, with two additional estimated parameters (λb and πλa). It should
be said that, although statistically significant, these improvements are not
dramatic, suggesting that the likelihood function is relatively unaffected by
the treatment of correlation. Additionally, it can be seen that the results
in terms of willingness-to-pay indicators are very similar across the three
models. Indeed, the recovery of the true values is very good, and the dif-
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True model MNL NL DM-COVNL
Final LL - -7136.16 -7115.27 -7085.65

Parameters - 7 8 10
adj. rho2 - 0.2776 0.2796 0.2824

est. t-stat. est. t-stat. est. t-stat.
δcar -4 -4.3977 -34.31 -4.0194 -30.96 -3.9547 -30.77
δSM -3 -3.5073 -33.80 -3.0582 -28.01 -3.0376 -28.51
βTC -0.1 -0.1082 -51.03 -0.0999 -42.17 -0.0994 -41.82

βHW -0.02 -0.0233 -32.06 -0.0205 -27.62 -0.0202 -28.27
βTT,car -0.03 -0.0331 -39.36 -0.0302 -33.17 -0.0300 -32.97
βTT,rail -0.04 -0.0446 -47.61 -0.0402 -37.32 -0.0399 -37.31
βTT,SM -0.035 -0.0382 -37.14 -0.0350 -33.32 -0.0347 -33.42

λa 1 - 0.78 7.52 1.00 0.00
λb 0.3 - - 0.32 12.50

πλa
0.7 - - 0.71 9.96

Monetary value CHF/hour CHF/hour CHF/hour CHF/hour
TTcar 18.00 18.36 18.13 18.11
TTrail 24.00 24.74 24.17 24.11
TTSM 21.00 21.21 21.05 20.96

HW 12.00 12.95 12.33 12.22

T-statistics for structural parameters calculated wrt 1

Table 1: Estimation results on mixed covariance data

ferences in bias are very small, where the lowest bias is obtained with the
DM-COVNL model8.

More significant differences however arise when looking at the impli-
cations in terms of correlation between the unobserved utility components
for the rail and SM alternatives. The MNL model, by definition, offers no
treatment of the correlation, and as such fails to allow for the heightened
substitution between rail and SM. The simple two-nest NL model is based
on the assumption of a homogeneous correlation structure. Here, the esti-
mate produced for the unique nesting parameter in this model, at 0.78, is
virtually indistinguishable from the weighted average of the two structural
parameters present in the true population (0.3 · 0.3 + 0.7 · 1.0 = 0.79). This
result is consistent with a similar observation made in the case of discrete

8The fact that the bias decreases as we move from the MNL model to the NL model and
on to the DM-COVNL model does suggest some interaction between observed and unob-
served utility components, where a proper treatment of the unobserved utility components
in the DM-COVNL model results in lower impact on the observed utility components.
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Original probabilities Forecasted probabilities
Rail SM Car Rail SM Car

True model 17.49% 33.01% 49.49% 4.07% 38.38% 57.55%
MNL 15.65% 30.76% 53.59% 3.15% 35.32% 61.53%

NL (λ = 0.78) 14.41% 32.41% 53.18% 2.17% 38.67% 59.16%
DM-COVNL (λ = 1) 17.38% 32.23% 50.39% 4.07% 37.42% 58.50%

DM-COVNL (λ = 0.32) 4.94% 35.06% 60.00% 0.03% 38.98% 60.98%
DM-COVNL (total) 13.73% 33.06% 53.21% 2.89% 37.88% 59.23%

Relative change Bias in predicted change
Rail SM Car Rail SM Car

True model -76.76% +16.28% +16.28% - - -
MNL -79.87% +14.82% +14.82% +4.06% -8.96% -8.96%

NL (λ = 0.78) -84.93% +19.31% +11.26% +10.65% +18.62% -30.84%
DM-COVNL (λ = 1) -76.55% +16.10% +16.10% -0.27% -1.07% -1.07%

DM-COVNL (λ = 0.32) -99.30% +11.18% +1.65% +29.37% -31.29% -89.89%
DM-COVNL (total) -78.96% +14.57% +11.32% +2.87% -10.48% -30.46%

Table 2: Forecasting on mixed covariance data: representative individual
with λa = 1.0 (observation 2,044)

mixture models for taste heterogeneity by Hess, Bierlaire & Polak (2005b),
reflecting the fact that single parameter models yield estimates that are
weighted averages of the actual values present in the population. It should
be noted that, in the current example, with only two parameters, this ap-
proximation is made relatively easy, and more bias could be expected in the
presence of more than two values for a parameter. Finally, the DM-COVNL
is able to essentially perfectly recover the nature of the correlation structure
in place in the true data; λa obtains a value equal to 1.0, while, for λb, the
estimated value is very close to the true value of 0.3, with the difference
being significant only at the 28% level. Similarly, the estimated shares for
the two structural parameters, at πλa = 0.71 and πλb

= 0.29 are indistin-
guishable from the true 70% − 30% split. In an actual application, where
the true number of structural parameters present in the population is not
known, and where it can in any case not be assumed to be finite, it would,
after model estimation, be of interest to proceed with a posterior analysis,
to produce the most likely structural parameter for each of the individu-
als. The same approach would be used in the case of a continuous mixture
model. On the basis of the results from such an analysis, attempts could
then be made to relate the correlation to socio-demographic attributes, and
to use an appropriate segmentation in later forecasting applications.
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Original probabilities Forecasted probabilities
Rail SM Car Rail SM Car

True model 37.96% 25.03% 37.01% 20.86% 38.64% 40.50%
MNL 36.60% 33.01% 30.38% 29.22% 36.86% 33.92%

NL (λ = 0.78) 36.92% 32.33% 30.75% 28.63% 37.34% 34.03%
DM-COVNL (λ = 1) 38.13% 33.83% 28.05% 31.17% 37.63% 31.20%

DM-COVNL (λ = 0.32) 36.56% 25.01% 38.43% 20.61% 37.46% 41.93%
DM-COVNL (total) 37.67% 31.24% 31.09% 28.07% 37.58% 34.35%

Relative change Bias in predicted change
Rail SM Car Rail SM Car

True model -45.07% +54.39% +9.45% - - -
MNL -20.16% +11.64% +11.64% -55.26% -78.60% +23.17%

NL (λ = 0.78) -22.45% +15.51% +10.65% -50.18% -71.49% +12.70%
DM-COVNL (λ = 1) -18.25% +11.24% +11.24% -59.51% -79.33% +18.98%

DM-COVNL (λ = 0.32) -43.62% +49.75% +9.11% -3.21% -8.53% -3.56%
DM-COVNL (total) -25.47% +20.29% +10.47% -43.47% -62.69% +10.80%

Table 3: Forecasting on mixed covariance data: representative individual
with λb = 0.3 (observation 7,301)

In practice, posterior analyses of this nature are used very sparsely; in
the absence of the resulting insight into the actual structural parameters,
the mixture model, in this case the DM-COVNL model, would thus poten-
tially be used directly in forecasting9. As such, it is of interest to compare
the forecasting performance of the three models. To illustrate the differ-
ences in performance depending on the correlation structure in place in the
true data, two representative individuals were selected, one belonging to the
group with λa (respondent 228), and one belonging to the group with λb

(respondent 812). In each case, a single observation was selected, where, for
respondent 228, the first observation was used (observation 2, 044), while,
for respondent 812, the second observation was used (observation 7, 301).
The forecasting analysis looks at the changes in the choice probabilities for
the three alternatives following an increase in the cost of rail-travel by 10%.
The results of the forecasting exercise are summarised in Table 2 for ob-
servation 2, 044 and Table 3 for observation 7, 301. The bias measure used
as an indicator of the correct recovery of the behaviour implied by the true
model is defined as ∆−∆T

∆T
, where ∆ gives the proportional change in choice-

probability in the target model, and ∆T gives the proportional change in
choice-probability in the true model. In each case, the results for the DM-

9As opposed to using a posterior segmentation.
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COVNL are split into three parts, showing the results for the part of the
model that uses λa, the part of the model that uses λb, and the results for the
combined model. This gives an idea of the gains in performance that could
be expected if the forecasting exercise was preceded by a posterior analysis
that was able to yield an appropriate segmentation, while also giving an
account of the bias introduced by using the actual DM-COVNL, instead of
its sub-parts.

The results for observation 2, 044 (Table 2) show a decrease in the choice
probability of rail from 17.49% to 4.07%, following an increase in rail-fares by
10%10. The fact that λa is used for this individual implies an equal relative
shift of probability towards SM and car. The same applies in the MNL model
and the DM-COVNL sub-model with λa, resulting in the lowest bias for these
two models, where the fact that the bias in the DM-COVNL sub-model is
lower than in the MNL model (with the same treatment of correlation) can
potentially be explained on the basis of more accurate estimates for the
marginal utility coefficients. This is a result of the fact that the overall
DM-COVNL model accounts for the correlation in the second subgroup,
which the MNL model does not, where interaction between the observed
and unobserved utility components leads to the bias in the estimates. The
effects of the correlation structure become most visible when looking at the
forecasts produced by the NL model, with λ = 0.78, and the DM-COVNL
sub-model with λb = 0.32. Here, either approach leads to biased forecasts,
by falsely indicating heightened substitution from rail to SM, where, due to
the higher implied correlation, the bias is bigger in the DM-COVNL sub-
model with λb than in the NL model. Here, it should also be noted that
the DM-COVNL sub-model with λb significantly underestimates the original
choice-probability for rail. Finally, the combined DM-COVNL model leads
to lower bias than the NL model, where it should also be said that the DM-
COVNL model performs quite well overall for the changes in the probability
for rail and SM, with the only major bias, when compared to the MNL
model11, arising for the change in the probability of the car alternative.

The results for observation 7, 301 (Table 3) show a decrease in the choice
probability of rail from 37.96% to 20.86%, following an increase in rail-
fares by 10%. With individual 812 belonging to the 30% of the population
with heightened correlation between rail and SM, the true model shows a
much bigger relative shift from rail to SM than to car, a situation that is

10Lower decreases were observed at the population level (−35.89%), but the individual-
observation results are used here, as they provide more insight into substitution patterns.

11Which has the clear advantage in this case in terms of the correct correlation structure.
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recovered almost perfectly in the DM-COVNL sub-model using λb = 0.32.
The MNL model wrongly predicts equal relative shifts in probability from
rail to SM and from rail to car, where the same applies for the DM-COVNL
sub-model using λa = 1.0. While the NL model correctly recovers the fact
that there is a bigger than proportional shift towards SM than towards car,
it underestimates the extent of the differences, through underestimating
the correlation between the unobserved utility terms for rail and SM. The
same occurs in the overall DM-COVNL model, where the underestimation
is however less severe than in the NL model12. It should also be said that
all models, except the DM-COVNL sub-model with λb = 0.32, significantly
underestimate the decrease in the probability of the rail alternative, where
this bias is however smallest in the overall DM-COVNL model, which also
obtains the lowest overall bias out of the three full models.

In summary, this application has shown that the DM-COVNL model is
able to recover the distribution of the covariance in the simulated dataset
arbitrarily closely, while the simple NL model produces a weighted mean
of the true values, on the basis of an assumption of covariance homogene-
ity. The forecasting application has also shown that the DM-COVNL model
leads to lower bias than the NL model. Here, it should be noted that, in
the special case described here, the MNL model performs well for the part
of the population with no correlation between rail and SM, whereas it leads
to significant bias in the remaining part of the population13. The fact that,
in each case, the lowest bias is obtained by the appropriate DM-COVNL
sub-model again illustrates the potential gains that could be obtained by
conducting a posterior analysis to attempt to relate the difference in corre-
lation structure to socio-demographic attributes with the aim of obtaining
an appropriate segmentation for use in the actual forecasting exercise.

4 Summary and Conclusions

The aim of this paper was to extend the standard discrete choice modelling
framework so as to allow for random variations in the covariance structure
across respondents. The discussion in this paper has centred on the case
of an underlying GEV model, and specifically, a two level NL model. The
extension to other underlying GEV structures poses no major difficulties, as

12The shift from rail to SM is close to twice as big as the shift from rail to car, while,
in the NL model, the ratio is below 1.5. In the true model, the ratio is close to 6.

13Much poorer overall performance would be obtained in the case where, in the true
model, both structural parameters are inferior to 1, or if the share for λa = 1 was smaller.
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described in the text, while the use of an alternative approach, based on an
underlying ECL structure, is described in more detail in Appendix A.

The development of the Mixed Covariance GEV structure in this paper
has shown how it is possible to allow jointly for random as well determinis-
tic variations in the covariance structure across respondents. Additionally,
it is possible, by adding an extra layer of integration, to allow for ran-
dom taste heterogeneity, in addition to covariance heterogeneity. Here, it
should also be noted that additional random terms can be added to allow
for heteroscedasticity across alternatives, leading to additional dimensions
of integration.

The application presented in Section 3 has described one special case
of a Mixed Covariance GEV model, in which the mixture is discrete rather
than continuous. The results have shown that the DM-COVNL structure
is able to recover the covariance structure in place in the data very closely,
and leads to lower bias in forecasting than the simple NL model, which is
based on the assumption of a homogeneous covariance structure.

Much work remains to be done, including the development of more so-
phisticated mixed covariance structures, the testing of continuous mixture
structures on simulated data, and the use of discrete and continuous mix-
ture structures with real data. Here, it should be noted that the discussion
in this paper has focussed primarily on variations in the extent of corre-
lation across respondents, rather than variations in the actual correlation
structure. The latter applies for example in the case where, for individual
A, there is correlation between alternatives 1 and 2, while, for individual
B, there is correlation between alternatives 2 and 3. Such variations in the
actual structure can, in the absence of an appropriate segmentation, be ac-
commodated in a cross-nesting framework, with the variation in structure
accounted for primarily through variations in the allocation parameters.

In closing, it should be said again that mixed covariance models should
in part be seen as an explanatory tool, which, unlike other models, have the
power to highlight the presence of variations in the covariance across respon-
dents. On the basis of such results, the modeller can then attempt to refine
the model to accommodate some covariance heterogeneity in a determinis-
tic fashion, either through a segmentation of the data, or by parameterising
the covariance structure, as described by Bhat (1997), potentially with ad-
ditional random covariance heterogeneity, as described in Section 2.3. If
such attempts at a deterministic approach fail, it is still desirable, for in-
terpretation as well as forecasting reasons, to try to link the variations to
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socio-demographic information through a posterior analysis14. However, if
this is not possible, then it is clearly preferable to account for the varia-
tion in a random way (in interpretation as well as forecasting), as opposed
to maintaining the assumption of covariance homogeneity. Either way, the
modelling approach described in this paper is thus a valuable tool for the
analysis of choice behaviour.
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A Appendix: Development of ECL approach

We now describe how the ECL formulation of the MMNL model can be
adapted to allow for covariance heterogeneity. We first review the basic
theory behind the ECL model (Section A.1) and show how it can be used
to approximate the COVNL model (Section A.2). We then proceed to the
case where the covariance heterogeneity is purely random (Section A.3),
and to the case where part of the variation is deterministic with a remaining
random part (Section A.4).

A.1 General ECL formulation

In the ECL model, correlation across alternatives is introduced through
the use of error-components that are shared between alternatives that are
closer substitutes for each other. The error-components take on the form of
Normally-distributed random variables with a mean of zero, and a standard
deviation of σ, where the estimate for σ is related to the correlation between
the alternatives.

Ignoring for the moment the issues of identification discussed by Walker
(2001), and the question of homoscedasticity15, the utilities of two alterna-
tives that have some correlation in the unobserved part of utility would be
written as:

Ui,n = Vi,n + εi,n + ζ1 (24)

and

Uj,n = Vj,n + εj,n + ζ1, (25)

where Vi,n and Vj,n give the observed part of utility for alternatives i and
j and respondent n, and εi,n and εj,n are iid type I extreme-value terms.

15Basic ECL approximations to GEV models are heteroscedastic, while GEV models
are homoscedastic, an issue that can be addressed by cancelling out the heteroscedasticity
in ECL models through the use of additional error-components.
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The additional error-term ζ1 is distributed N (0, σ1). With this, the covari-
ance between the two alternatives is given by σ2

1, while the variance for the
individual utilities is given by σ2

1 + π2

6 , leading to a correlation of:

ρ2 =
σ2

1

σ2
1 + π2

6

. (26)

It is easy to see that it is possible to rewrite the utility of alternative j as:

Uj,n = Vj,n + εj,n + σ1ξ1, (27)

where ξ1 ∼ N (0, 1), and where the subscript on ξ remains in use to guarantee
that individual draws are taken for each error-component (with the same
draws taken for the same error-component across alternatives).

For the choice-probabilities, integration over the N (0, 1) draws for the
error-components is required. Let Ψj define the set of error-components
included in the utility function of alternative j, such that:

Uj,n = Vj,n + εj,n +
∑
k∈Ψj

σkξk (28)

This notation allows for any structure for the error-components, including
homoscedastic as well as heteroscedastic ones. The choice probability for
alternative i and individual n is now given by:

Pn (i | σ) =
∫

ξ1

. . .

∫
ξK

 exp
(
Vi,n +

∑
k∈Ψi

σk · ξk

)
∑

j∈Cn
exp

(
Vj,n +

∑
l∈Ψj

σl · ξl

) · K∏
k=1

φ (ξk)

dξK . . .dξ1,

(29)

where K gives the total number of error-components used, and φ () is the
standard Normal density function.

A.2 Adapting the ECL formulation for deterministic covari-
ance heterogeneity

The ECL formulation can be extended straightforwardly to allow for de-
terministic covariance heterogeneity by parameterising σk, for example by
setting σk = f (θ,zn), where θ is a vector of parameters, and where zn

is defined as before. The only condition applying to f () is that it yields
positive values for the standard deviations16; equation (26) guarantees that
the resulting correlation falls between 0 and 1.

16This merits some clarification. Estimation code can deal with negative values for
standard deviation parameters in the case where they are only used in the form of variances
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A.3 Adapting the ECL formulation for purely random co-
variance heterogeneity

In the standard ECL formulation of the MMNL model, the choice probabili-
ties are obtained by integration over the distribution of the error-components,
with additional integration over the distribution of random taste-coefficients
in the case of added random taste heterogeneity. Focussing for now on
the case of error-components for correlation only (as opposed to additional
taste heterogeneity), random covariance heterogeneity can be introduced by
additional integration over the distribution of the variances of the error-
components.

The choice probability is in this case given by:

Pn (i) =
∫

σ1

. . .

∫
σK

[
Pn (i | σ) ·

K∏
k=1

g (σk | θk)

]
dσK . . .dσ1, (30)

where Pn (i | σ) is the choice probability for alternative i, conditional on the
vector of standard deviations σ, as in equation (29), and where g (σ1 | θ1)
is the density function for σ1, with parameters given by the vector θ1. Here
an appropriate choice of distribution for the standard deviations is of crucial
importance, given that they need to take on positive values17. An alternative
to the use of bounded distributions comes is to use a transform mapping
monotonically from the real domain to the space of positive numbers. The
adaptation of equation (30) to this case is straightforward.

A.4 Adapting the ECL formulation for joint deterministic
and random covariance heterogeneity

The extension of the approach described in Section A.3 to the case allowing
jointly for deterministic and random covariance heterogeneity is straight-
forward. We reuse the formulation from Section A.2, where σ = f (θ,zn).
This time however, we allow some of the elements of θ to be randomly
distributed across individuals. The choice probability for alternative i and

as opposed to standard deviations; in fact, in unconstrained estimation, it can often be
observed that estimation packages produce negative estimates for the standard deviations.
The problems arise in the case where f () allows for positive as well as negative values for
σ depending on the values of zn, leading to an underestimated mean level of correlation.

17Again, this requirement is used solely to avoid an underestimation of the mean level of
correlation in the case where the distribution yields positive as well as negative estimates
for σ.
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decision-maker n is now rewritten as:

Pn (i) =
∫

θ1

. . .

∫
θK

[
Pn (i | σk = f (θk,zn)∀k) ·

K∏
k=1

g (θk | Ωk)

]
dθK . . .dθ1,

(31)

where θk is distributed according to g (θk | Ωk), where the notation allows
for correlation between individual elements in θk. It can easily be seen that
this approach reduces to the purely random formulation in Section A.3, if
those parameters associated with zn are zero18, and the purely deterministic
formulation in Section A.2, in the case where g (θk | Ωk) produces only a
single (fixed) value for the vector θk.

A.5 Discussion

The discussion presented here has shown how the ECL framework can be
adapted to allow for deterministic as well as random covariance heterogene-
ity. In practice, it should be said that, due to the additional dimensions of
integration, the mixed covariance ECL approach is generally more expensive
in estimation and application than its GEV based counterparts described in
the main part of this paper, albeit that it has the advantage of a simpler
form for the integrand (MNL vs more general GEV). An additional issue
however arises with regards to identification, where appropriate conditions
on identifiability need to be worked out on a case-by-case basis.

18I.e., only a constant is estimated, which is distributed randomly across respondents.
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