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Abstract

In this paper a parametric framework for estimation and inference
in cointegrated panel data models is considered that is based on a
cointegrated VAR(p) model. A convenient two-step estimator is sug-
gested where in the first step all individual specific parameters are
estimated, whereas in the second step the long-run parameters are
estimated from a pooled least-squares regression. The two-step esti-
mator and related test procedures can easily be modified to account
for contemporaneously correlated errors, a feature that is often en-
countered in multi-country studies. Monte Carlo simulations suggest
that the two-step estimator and related test procedures outperform
semiparametric alternatives such as the FM-OLS approach, especially
if the number of time periods is small.
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1 Introduction

Since the papers by Levin and Lin (1992, 1993) and Pedroni (1995) it has be-

come popular to investigate long-run relationships by applying cointegration

techniques to multi-country data. The attractive feature of such an analysis

is that employing panel data with a substantial number of cross section units

(countries) takes advantage of a much richer data source than using pure

time series data.

An important problem with the analysis of panel data is its ability to cap-

ture heterogeneity due to country specific characteristics. The usual panel

cointegration framework therefore assumes that the mean (or trend) and the

short-run dynamics may differ across countries, whereas the long-run rela-

tionship is the same for all countries. The reason for assuming a homogenous

long-run relationship is that the underlying economic principles that are em-

ployed to establish the long-run equilibrium (for example the purchasing

power parity) should apply similarly in all economies, whereas the adjust-

ment process towards the long-run equilibrium may differ due to behavioral

and institutional characteristics.

Another important feature of the panel data model considered here is a

possible contemporaneous correlation among cross section units. In many

country studies this cross section correlation cannot be captured by a time-

specific random effect (e.g. O’Connell 1998). Thus, to allows for arbitrary

contemporaneous correlation among the errors, recent work employ simula-

tion techniques to mimic the cross-correlation pattern among the errors (e.g.

Chang 2001, Wu and Wu 2001).

Pedroni (1995, 2000) and Phillips and Moon (1999) suggest an asymp-

totically efficient estimation procedure that is based on the “fully-modified

OLS” (FM-OLS) approach suggested by Phillips and Hansen (1990). This

method employs kernel estimators of the nuisance parameters that affect the

asymptotic distribution of the OLS estimator. In order to achieve asymptotic

efficiency, the FM-OLS estimator accounts for a possible endogeneity of the

regressors and serial correlation of the errors. Although this nonparametric

approach is a very elegant way to deal with nuisance parameters, it may

be problematical especially in fairly small samples. Furthermore, it is well

known that nonparametric estimators may have poor properties in special

cases, for example if the process has a moving average polynomial with a
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root close to the unit circle (e.g. Schwert 1989, Perron and Ng 1996).

Another problem is that it is based on a single equation approach. There-

fore, it is assumed that there is only a single cointegration relationship. Fur-

thermore, the normalization of the cointegration vectors requires that the

dependent variable enters the cointegration relationship. This assumption is

however questionable if the cointegration vector is unknown (e.g. Boswijk

1996; Saikkonen, 1999).

For these reasons, a parametric approach may be a promising alternative,

in particular, for panels with a small number of time periods. In this paper a

vector error correction model (VECM) is employed to represent the dynamics

of the system. Our framework can be seen as a panel analog of Johansen’s

cointegrated vector autoregression, where the short-run parameters are al-

lowed to vary across countries and the long-run parameters are homogenous.

Unfortunately, in such a setup the ML estimator cannot be computed from

solving a simple eigenvalue problem as in Johansen (1988). Instead, in sec-

tion 2 we adopt a two-step estimation procedure that was suggested by Ahn

and Reinsel (1990) and Engle and Yoo (1991) for the usual time series model.

As in Levin and Lin (1993) the individual specific parameters are estimated

in a first step, whereas in a second step the common long-run parameters

are estimated from a pooled regression. The resulting estimator is asymp-

totically efficient and normally distributed. Furthermore, a number of test

procedures that are based on the two-step approach is considered in section

4 and extensions to more general models are addressed in section 5. The

results of a couple of Monte Carlo simulations presented in section 6 suggest

that the two-step estimator performs better than the FM-OLS estimator in

typical sample sizes. Some conclusions and suggestions for future work can

be found in section 7.

Finally, a word on the notational conventions applied in this paper. A

standard Brownian motion is written as Wi(a). Although there are different

Brownian motions for different cross section units i, we sometimes drop the

index i for convenience. This has no consequences for the final results since

they depend on the expectation of the stochastic functionals. Furthermore,

if there is no risk of misunderstanding, we drop the limits and the argument

a (or da). For example, the term
∫ 1

0
aWi(a)da will be economically written

as
∫

aW . As usual [b] is used to indicate the integer part of b.
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2 ML estimimation

For the ease of exposition we first consider a cointegrated VAR(1) model

with the VECM presentation

∆yit = αiβ
′yi,t−1 + εit , t = 0, 1, . . . , T ; i = 1, . . . , N , (1)

where εit is an k-dimensional white noise error vector with E(εit) = 0 and

positive definite covariance matrix Σi = E(εitε
′
it). Furthermore, it is assumed

that the number of time periods is the same for all cross section units (bal-

anced panel). Various extensions of this model will be considered in Section

5.

In this specification the cointegration vectors β are the same for all cross

section units, whereas the “loading matrix” αi is allowed to vary across i. A

similar setup is considered by Pesaran et al. (1999), Pedroni (1995, 2000)

and Phillips and Moon (1999). Assuming normally distributed errors, we can

concentrate the log-likelihood function with respect to the individual specific

parameters α1, . . . , αN and Σ1, . . . , ΣN yielding

Lc(β) = c0 −
N∑

i=1

T

2
log |Σ̂i(β)| , (2)

where c0 is some constant and

Σ̂i(β) = T−1

T∑
t=1

ε̃it(β)ε̃it(β)′

ε̃it(β) =


∆yit −

(
T∑

t=1

∆yity
′
i,t−1β

) (
T∑

t=1

β′yi,t−1y
′
i,t−1β

)−1

β′yi,t−1


 .

The problem with this criterion function is that it cannot be maximized by

solving a simple eigenvalue problem. In the pure time series case with N = 1,

the maximization of Lc(β) is equivalent to maximizing |Σ̂|, which leads to

a simple eigenvalue problem. For N > 1, however, we have to maximize

the expression
∏N

i=1 |Σ̂i(β)|, which cannot be solved by a simple eigenvalue

problem.

Nevertheless, it is possible to maximize Lc(β) in (2) by using numerical

techniques. It is well known that r2 restrictions are required to identify the

cointegration vectors. Following Johansen (1995, p. 72) the cointegration

3



vectors can be normalized as βc = β(c′β)−1. An important special case of

this normalization is obtained by letting c = [I, 0]′, so that β = [I,−B]′,

where B is a r × (k − r) parameter matrix. Such a normalization is used by

Ahn and Reinsel (1990) and Phillips (1991, 1995).

The ML estimator is obtained by maximizing the log-likelihood function

(2) subject to the normalization restrictions (cf. Pesaran et al. 1999). In

practice this approach may become computationally burdensome and for a

small number of time periods, problems with the convergence of the Gauss-

Newton algorithm may occur. In the following section a simple two-step

approach is suggested to obtain an estimator that is asymptotically equiva-

lent to the ML estimator.

3 The two-step estimator

Since the ML procedure is computationally burdensome it is preferable to

employ a simple two-step1 estimation procedure that has the same large sam-

ple properties as the ML procedure. Engle and Yoo (1991) have shown that

the information matrix of the Gaussian likelihood is asymptotically block

diagonal with respect to the “short-run parameters” (αi, Σi) and the ma-

trix of cointegration vectors β. Therefore, the matrix β can be estimated

conditional on some consistent initial estimator of αi and Σi (i = 1, . . . , N).

To motivate the two-step estimator, consider the transformed VECM

model

γ′i∆yit = γ′iαiβ
′yi,t−1 + γ′iεit

zit = β′yi,t−1 + vit , (3)

where zit = (γ′iαi)
−1γ′i∆yit, vit = (γ′iαi)

−1γ′iεit and γi is a k × r matrix with

rk(γ′iαi) = r. From

Σv = E(vitv
′
it) = (γ′iαi)

−1γ′iΣiγi(α
′
iγi)

−1 (4)

it follows that Σv − (α′iΣ
−1αi)

−1 is positive semi-definite and, therefore, the

optimal choice of the transformation is γ′i = α′iΣ
−1
i . The resulting estimator

is asymptotically equivalent to the Gaussian ML estimator (cf. Reinsel 1993,

p. 170).

1This estimator is called a “three-step estimator” by Engle and Yoo (1991). Here we
follow Reinsel (1993, p. 170f) and refer to it as the two-step estimation procedure.
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A consistent estimator (as T →∞) of αi can be obtained from estimating

separate models for all N cross sections. If r = 1, one may use the two-step

estimator suggested by Engle and Granger (1987), whereas for r > 1 the

ML estimator of Johansen (1988, 1991) can be used. However, in the latter

case it is important to re-normalize the cointegration vectors so that they

do not depend on individual specific parameters. Let β̂ML
i denote the ML

estimator of the cointegration matrix suggested by Johansen (1988, 1991).

The estimator is normalized such that β̂ML
i

′S11,iβ̂
ML
i = Ir, where S11,i =∑T

t=1 yi,t−1y
′
i,t−1. Since the distribution of S11,i depends on αi and Σi, the

ML estimator applies an individual specific normalization. To obtain the

same normalization for all cointegration matrices β̂ML
1 , . . . , β̂ML

N one may

apply the normalization β̂ML
c,i = β̂ML

i (β̂ML
i,1 )−1 = [I,−B̂ML

i ]′, where B̂ML
i

′ =

−β̂ML
i,2 (β̂ML

i,1 )−1 and β̂ML
i,1 (β̂ML

i,2 ) denotes the upper (lower) r × r (n − r × r)

block of β̂ML
i .

A problem with such a normalization is that βML
i,1 needs not to be in-

vertible and, thus, the normalization may be invalid (see Boswijk 1996 and

Saikkonen 1999). To avoid such problems an estimator can be used that is

based on an eigenvalue problem not depending on nuisance parameters. Such

an estimator is obtained by solving the eigenvalue problem |λiI − S11,i| = 0.

The eigenvectors corresponding to the r smallest eigenvalues are called the

Principal Component (PC) estimator of the cointegration vectors (e.g. Har-

ris, 1997). The estimated cointegration matrices β̂PC
i are normalized as

β̂PC
i

′β̂PC
i = Ir and, thus, the normalization does not depend on individual

specific parameters.

At the first estimation stage, the restriction that the cointegration vectors

are the same for all cross section units is ignored, but this does not affect

the asymptotic properties of the estimator. For the asymptotic properties of

the two-step estimator it is only required that the parameters are estimated

consistently as T →∞.

At the second stage, the system is transformed such that the cointegration

matrix β can be estimated by ordinary least-squares of the pooled regression

ẑit = β′yi,t−1 + v̂it i = 1, . . . , N ; t = 1, . . . , T, (5)

where ẑit = (α̂′iΣ̂
−1
i α̂i)

−1α̂′iΣ̂
−1
i ∆yit and v̂it is defined analogously.

If the cointegration vectors are normalized as β = [I,−B]′, then the
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regression is rewritten as

ẑ+
it = By

(2)
i,t−1 + v̂it , (6)

where ẑ+
it = y

(1)
i,t−1 − (α̂′iΣ̂

−1
i α̂i)

−1α̂′iΣ̂
−1
i ∆yit, yit = [y

(1)
it

′
, y

(2)
it

′
]′ and y

(1)
it (y

(2)
it )

are r×1 (k−r×1) subvectors of yit. It is interesting to note that ẑ+
it adopts an

endogeneity correction similar as the estimator of Phillips and Moon (1999).

The important difference is, however, that the latter approach employs a

nonparametric estimate of the endogeneity effect, whereas ẑ+
it is based on a

parametric endogeneity correction based on a VAR(p) model.

Based on a sequential limit theory, the following theorem states that the

two-step estimator has a normal limiting distribution.

Theorem 1: Let yit be generated as in (1) and B̂2S denotes the least-squares

estimator of B in the regression (6). Furthermore εit and εjt are independent

for i 6= j. If T →∞ is followed by N →∞ we have

T
√

Nvec(B̂2S −B)
d−→ N(0, Ω−1

2 ⊗ Σv) ,

where Σv is defined in (4),

Ω2 = lim
N→∞

1

N

N∑
i=1

β⊥,2(α
′
i,⊥β⊥)−1α′i,⊥Σiαi,⊥(β′⊥αi,⊥)−1β′⊥,2 ,

αi,⊥ and β⊥ are orthogonal complements of αi and β and β⊥,2 is the lower

(n− r)× r block of β⊥.

From this theorem it follows that the long-run parameters are asymptotically

normally distributed and, therefore, the usual tests on the cointegration pa-

rameters involve the usual limiting distributions. In particular, the second-

step regression (6) can be treated as an ordinary regression equation, that

is, the nonstationarity of the regressors and the fact that ẑ+
it is estimated

can be ignored. Furthermore, it is interesting to note that for finite N and

T →∞, the estimator are mixed normal, that is, normally distributed with

a stochastic covariance matrix. Therefore, the normal limiting distribution

is expected to yield a reliable approximation even if N is small.
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4 Inference

In practice, the number of cointegration relationships is often unknown. It is

therefore interesting to test hypotheses on the cointegration rank. Larsson,

Lyhagen and Lothgren (2001) suggest a “LR-bar” statistic that is based on

the standardized mean of the cross section LR statistics for the hypothesis

H0 : r = r0 against the alternative HA : r > r0. This test statistic assumes

that the cointegration vectors are different across i (heterogenous cointegra-

tion), whereas our framework assumes that the cointegration vectors are the

same for all cross section units (homogenous cointegration). To improve the

power of the test in the case βi = β for all i, the homogeneity assumption

can be imposed.

Following Saikkonen (1999) a simple test procedure is constructed, where

the restriction of a homogeneous cointegration relationship can easily be

imposed. To nest the null and the alternative hypotheses we write

∆yit = αiβ
′yi,t−1 + γiβ

′
⊥yi,t−1 + ε∗it , (7)

where γi is a k × (k − r) matrix with full column rank. Under the null hy-

pothesis it is assumed that γi = 0 yielding (1), whereas under the alternative

γi is unrestricted so that the matrix

Πi = [αiβ
′, γiβ

′
⊥]

has full rank for at least one i ∈ {1, . . . , N}. Pre-multiplying (7) with the

orthogonal complement α′i,⊥ yields

uit = δiwi,t−1 + eit , (8)

where uit = α′i,⊥∆yit, δi = α′i,⊥γi, wit = β′⊥yit, and eit = α′i,⊥ε∗it. To test the

hypothesis r = r0 the equation (8) is estimated by ordinary least-squares and

a LR, Wald or LM statistic can be constructed to test the hypothesis δi = 0

for all i.

In practice the matrices αi,⊥ and β⊥ are unknown and must be replaced

by consistent estimators. This can be done by computing orthogonal com-

plements of the estimates of αi from the first step and the estimate of β from

the second step of the estimation procedure proposed in section 3. The fol-

lowing theorem states, that the limiting null distribution of the test statistic

is similar to the one derived by Lyhagen et al. (2001).
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Theorem 2: Let yt be generated by a VAR(1) process with EC representation

(1) and 0 ≤ r < k−1. Furthermore εit and εjt are independent for i 6= j. Let

α̂i,⊥ and β̂⊥ be
√

T -consistent estimates for some orthogonal complements of

αi,⊥ and β⊥, respectively. If T →∞ is followed by N →∞ we have

√
N(λr − µr)

σr

d−→ N(0, 1) ,

where

µr = E[λi(r)]

= E tr

[∫
dWk−rW

′
k−r

(∫
Wk−rW

′
k−r

)−1 ∫
Wk−rdW ′

k−r

]

σ2
r = Etr[λi(r)− µr]

2

= var

{
tr

[∫
dWk−rW

′
k−r

(∫
Wk−rW

′
k−r

)−1 ∫
Wk−rdW ′

k−r

]}
,

λ(r) = N−1
∑N

i=1 λi(r) and λi(r) denotes the LR, Wald or LM statistic of

the hypothesis δi = 0 in the regression

ûit = δ′iŵi,t−1 + eit , t = 1, . . . , T , (9)

where ûit = α̂′i,⊥∆yit and ŵit = β̂′⊥yit.

A convenient (Wald type) test statistic of the null hypothesis is

λW
i (r) = T tr




T∑
t=1

vitw
′
i,t−1

(
T∑

t=1

wi,t−1w
′
i,t−1

)−1 T∑
t=1

wi,t−1v
′
it

(
T∑

t=1

vitv
′
it

)−1

 .

The values µr and σ2
r are computed by Lyhagen et al. (2001) for the model

without deterministic terms.

Hypotheses on the cointegration parameters can be tested by using a LR

statistic. Following Johansen and Juselius (1994) we consider the following

class of linear hypotheses on the cointegration vectors:

H0 : β = [β1, . . . , βr] = [Φ1θ1, . . . , Φrθr] , (10)

where Φj is a known k × qj matrix with 1 ≤ qj ≤ k − r and θj is a qj × 1

vector for j = 1, . . . , r. Note that for the identification of the cointegration

vectors r normalization restrictions are required so that the maximal number
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of free parameters is k− r for all cointegration vectors. As demonstrated by

Johansen (1995, p. 75), any linear hypothesis of the form Rjβj = rj can be

rewritten as in (10). Inserting the hypothesis in (5) yields a set of r equations

ẑj,it = θ′j(Φ
′
jyi,t−1) + v∗j,it , (11)

where ẑj,it is the j’th element of ẑit. Accordingly, under the alternative

the parameter vector θj can be estimated by a least squares regressions of

ẑj,it on (Φ′
jyi,t−1). Since the system equations for j = 1, . . . , r do no longer

involve the same set of regressors, the SUR system should be estimated by

GLS in order to achieve asymptotic efficiency. It is interesting to note that

no “switching-algorithm” needs to be applied as in Johansen and Juselius

(1994).

Let ṽit and ṽ∗it = [ṽ∗1,it, . . . , ṽ
∗
r,it]

′ denote the residual vectors of the unre-

stricted regression (5) and the restricted regression (11), respectively. A test

statistic that is asymptotically equivalent to the ML statistic is

ξLR = NT

(
log

∣∣∣∣∣
N∑

i=1

T∑
t=1

ṽitṽ
′
it

∣∣∣∣∣− log

∣∣∣∣∣
N∑

i=1

T∑
t=1

ṽ∗itṽ
∗
it
′
∣∣∣∣∣ .

)
(12)

The asymptotic properties of such a test are considered in the following

theorem.

Theorem 3: Let yit be generated as in (1). Furthermore εit and εjt are

independent for i 6= j. Under the null hypothesis (10) the test statistic ξLR

defined in (10) is asymptotically χ2 distributed with r(k−r)−∑r
j=1 qj degrees

of freedom.

Alternatively, a Wald test procedure can be applied that is based on the

results of Theorem 1.

5 Extensions

So far we have considered the cointegrated VAR(1) model with E(εit) = 0

for all i and t. Although such a limitation is convenient for expositional

purposes, it is of course too restrictive for practical applications. A more

realistic model is the cointegrated VAR(p) model with individual specific
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short-run dynamics and deterministic terms:

∆yit = Ψidt + αiβ
′yi,t−1 +

p−1∑
j=1

Γi,j∆yi,t−j + εit ,

where dt is a vector of deterministic variables (such as a constant, trend or

dummy variables) and Ψi is a k × k matrix of coefficients.

If Ψi, Γi,1, . . . , Γi,p−1 are unrestricted matrices, they can be “partialled

out” from the likelihood function (cf. Johansen 1988). Let ∆ỹit (ỹi,t−1)

denote the residual vectors from a least squares regression of ∆yit (yi,t−1)

on ∆yi,t−1, . . . , ∆yi,t−p+1 and dt. The two-step estimator of the long-run

parameters is obtained from the regression

z̃+
it = Bỹ

(2)
i,t−1 + ṽit i = 1, . . . , N ; t = 1, . . . , T, (13)

where z̃+
it = ỹ

(1)
i,t−1−(α̂′iΣ̂

−1
i α̂i)

−1α̂′iΣ̂
−1
i ∆ỹit and vit is defined analogously. The

asymptotic distribution of the two-step estimator B̂2S resulting from (13) is

the same as in Theorem 1.

As in the usual time series case with N = 1 the asymptotic distri-

bution of the cointegration rank statistic are affected by the determinis-

tic terms. For example, if dt is a constant so that (8) includes a con-

stant, then the Brownian motions Wk−r(a) in Theorem 2 are replaced by

W k−r(a) = Wk−r(a) − ∫ 1

0
Wk−r(a)da. If dt represents a polynomial in time,

then the asymptotic expressions can be derived by using the results of Ou-

liaris et al. (1989). Appendix B contains the respective values of µr and σ2
r

for a model with a constant and a linear trend.

An important problem of multi-country panel data sets is the apparent

contemporaneous correlation among the errors (e.g. O’Connell 1998, Wu

and Wu 2001). For panel unit root tests simulation techniques are applied

to control for such correlation among the errors. For the FM-OLS approach,

however, cross-section correlation imply more fundamental problems that

have not been resolved yet.2 Since the second step of the parametric ap-

proach is based on an ordinary least-square regression, it is straightforward

to account for possible contemporaneous correlation. First, one may use a

feasible GLS procedure to estimate the set of seemingly unrelated regression

2Phillips and Moon (1999, p. 1092) state that “... when there are strong correlations
in a cross section (as there will be in the face of global shocks) we can expect failures in
the strong laws and central limit theory arising from the nonergodicity.”
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(SUR) equations. Such a procedure requires that the number of time series

observations (T ) is substantially larger than the number of cross section units

(N). In typical country studies, however, N and T are of the same order of

magnitude. In such cases the inverse of the estimated covariance matrix may

behave poorly and, therefore, a robust estimator in the spirit of Newey and

West (1987) is preferable. Let b = vec(B′) and

X̃it = (Ir ⊗ ỹ
(2)
i,t−1

′) ,

so that the second step regression model can be written as

z̃+
it = X̃itb + ṽit .

Furthermore, we stack the cross section observations and define

z̃+
t =




z̃+
1t
...

z̃+
Nt


 , X̃t =




X̃1t
...

X̃Nt


 , ṽt =




ṽ1t
...

ṽNt




so that the regression can be written as

z̃+
t = X̃tb + ṽt . (14)

In this regression the error vector ṽt is assumed to be (asymptotically) un-

correlated with ṽs for t 6= s. The asymptotic covariance matrix of the least

squares estimator of b = vec(B) is given by

lim
T,N→∞

[
T∑

t=1

E(X̃ ′
tX̃t)

]−1 [
T∑

t=1

E(X̃ ′
tvtv

′
tX̃t)

][
T∑

t=1

E(X̃ ′
tX̃t)

]−1

.

Therefore, a consistent estimator for the covariance matrix of the least squares

estimator of b can be constructed as

Ṽb =

[
T∑

t=1

X̃ ′
tX̃t

]−1 [
T∑

t=1

X̃ ′
tv̂tv̂

′
tX̃t

][
T∑

t=1

X̃ ′
tX̃t

]−1

, (15)

where v̂t denotes the residual vector from the regression (14). This approach

is similar to the robust estimator of the covariance matrix suggest by Arellano

(1987). However Arellano’s estimator assumes that the errors are contem-

poraneously but not serially uncorrelated. Our robust estimator therefore

results from interchanging the role of i and t. Since the cointegration tests

suggested in Theorems 2 and 3 are based on similar least-squares regressions,

analog procedures can be used for the Wald test of the cointegration rank.
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6 Small Sample Properties

In this section, the small sample properties of alternative estimators are

studied by means of Monte Carlo simulations. The data are generated by

the two-dimensional cointegrated VAR(1) model with error correction repre-

sentation

∆yit = µi −
[

φ
φ

]
[ 1 b ] yi,t−1 + εit ,

where εit ∼ i.i.N.(0, I) and the individual effects are generated as µi ∼
i.i.U(0, 1). If φ > 0 then yt is cointegrated with cointegration rank r = 0. To

save space, only the results for b = 1 and φ = 0.1 are presented. The results

for other values of the parameters are qualitatively similar.3

The comparison includes the FM-OLS estimator with individual specific

constant and short-run dynamics proposed by Pedroni (1995, 2000) and

Phillips and Moon (1999), the dynamic OLS (DOLS) estimator suggested

by Kao and Chiang (2000), where the length of the lags and leads is two, the

(inefficient) OLS estimator and the two-step estimator suggested in Section

3. The FM-OLS and DOLS estimators are computed by using the GAUSS

library NPT 1.1 developed by Chiang and Kao (2000). The bias and root

mean-square errors (RMSE) for various sample sizes that are typical for em-

pirical work using country studies are reported in Table 1.

It is well known that the bias in the OLS estimator of the cointegration

parameters is O(T−1). As can be seen from the results reported in Table

1, the bias of the OLS estimator is severe if the number of time periods is

small. The nonparametric bias correction of the FM-OLS estimator seems to

be insufficient in short time series as it reduces the bias only marginally. For

T = 100 the bias reduction is more effective. The DOLS estimator removes

the bias by including future and past values of ∆y
(2)
it . The results displayed in

Table 1 suggest that this approach performs slightly worse than the FM-OLS

estimator.

The bias of the two-stage estimator is much smaller in absolute value.

For T = 30 the two-step estimator is nearly unbiased, whereas the FM-OLS

and the DOLS estimator still possess a severe negative bias. For the root

mean square error (RMSE) the conclusions are similar. If T is small, then

3Additional simulation results and the GAUSS codes can be found on the homepage of
the authors (http://ise.wiwi.hu-berlin.de/∼joerg/pancoint.html).
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the RMSE of the two-stage estimator is less than half of the RMSE for the

FM-OLS or DOLS estimator.

Next, we compare the small sample properties of the tests of the cointe-

gration rank. The LR-bar test suggested by Lyhagen et al. (2001) is denoted

by “LLL” and the regression based test for the cointegration rank based on

(8) is labelled as “REG”. The asymptotic values for T, N → ∞ as reported

in Appendix B are used. From the simulation results displayed in Table

2(a) it turns out that for small values of T , the LLL test tends to be very

conservative, whereas the REG test performs much better in small samples.

To investigate the power of the test statistics we compute the rejection

rates under the local alternative

Π = αβ′ = −0.1

[
1 1
1 (1−∇NT )

]
(16)

where ∇NT = 10/(T
√

N). Note that if ∇NT 6= 0, then rk(Π) = 2 and,

therefore, the system is stationary. Such sequence of local alternatives is

considered in order to make the power comparable for varying N and T .

Furthermore, such alternatives allow the study of the power against alterna-

tives that comes close to the null hypothesis of interest (“near-stationary”

alternatives), which seems to be a relevant situation in empirical practice.

Table 2(b) presents the size adjusted local power of the the LLL and the REG

test. It turns out that in small samples the REG test is much more pow-

erful against local alternatives even if the size bias of the tests is accounted

for. Furthermore it is interesting to note that both tests seem to converge to

roughly the same limiting power. For small T , however, the local power of

the REG test is much higher than the respective power of the LLL test.

Finally, we study the performance of the robust estimator of the standard

errors of the parameters. To this end we compute the rejection frequencies of

a t-test for the hypothesis that β = [1, 1]′ in (16). Since the robust estimator

(15) is consistent under contemporaneous correlation and heteroskedastic er-

rors, the empirical size of a t-test based on the robust standard errors should

approach the nominal size for sufficient sample sizes. The respective esti-

mator is called “2S-HAC”. To generate contemporaneously correlated errors,

the matrix of contemporaneous errors Et = [εi1, . . . , εiT ]′ is multiplied by

the k × k matrix Q such that transformed errors ε̃it result from the rows of

the matrix Ẽt = QEt. In our simulations, the elements of the matrix Q are

generated by independent draws of U(0, 10) distributed random variable.

13



First we consider the case of uncorrelated errors, that is, Q = I. It turns

out that for small T all tests have a tendency to reject the null hypothesis

b = 1 too often.4 The size bias is most severe for the DOLS procedure. If

the errors are generated with a contemporaneous correlation using Q 6= I,

then the usual t-statistics based on the assumption of i.i.d. errors (2S-OLS)

rejects the null hypothesis much too often. The use of robust standard errors

as in (15) reduces the size bias of the test drastically although a moderate

tendency to over-reject the null hypothesis remains if T is small. In contrast,

the standard errors of the DOLS procedure are seriously over-estimated if

the errors are contemporaneously correlated. Consequently, the test based

on the DOLS procedure has a severe (negative) size bias.

7 Conclusions

In this paper, a parametric approach for estimation and inference in coin-

tegrated panel data models is suggested. Following Ahn and Reinsel (1990)

and Engle and Yoo (1991), an asymptotically efficient estimator is proposed,

where all individual specific short-run parameters are estimated in the first

step and the long-run parameters are estimated from a pooled regression in

a second step. A test procedure is suggested that allows to test the number

of cointegrating relationships and a likelihood ratio statistic is proposed that

allows to test hypotheses on the long-run parameters. Monte Carlo simu-

lations demonstrate that the parametric approach is much more effective in

reducing the small sample bias than the FM-OLS of Pedroni (1995, 2000)

and Phillips and Moon (1999) or the DOLS estimator suggested by Kao and

Chiang (2000). Furthermore, the estimated standard errors of the two-step

estimator can easily be adjusted to account for heteroskedasticity and con-

temporaneous correlation of the errors, a feature that is often encountered

in cross-country studies.

4The standard errors of the FM-OLS estimators computed by the NPT 1.1 program
produces implausibly small values yielding an empirical size close to one.
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Appendix A

Proof of Theorem 1

First assume that αi and Σi are known so that zit = (α′iΣ
−1
i αi)

−1α′iΣ
−1
i ∆yit

and z+
it = zit − y

(1)
i,t−1.

From Johansen (1991) it is known that in a cointegrated VAR(1) model

we have

yit = β⊥(α′i,⊥β⊥)−1α′i,⊥

t∑
s=1

εis + uit ,

where uit is (asymptotically) stationary. From T−1/2
∑t

s=1 εis = T−1/2
∑[aT ]

t=1 εit ⇒
Bi(a), where Bi(a) ≡ Bi is a Brownian motion with covariance matrix Σi. It

follows that

T−2

T∑
t=1

yity
′
it ⇒ β⊥(α′i,⊥β⊥)−1α′i,⊥

(∫
BiB

′
i

)
αi,⊥(β′⊥αi,⊥)−1β′⊥ .

Using E(
∫

BiB
′
i) = (1/2)Σi we obtain

1

NT 2

N∑
i=1

T∑
t=1

y
(2)
i,t−1y

(2)
i,t−1

′ p−→ 1

2
Ω2 .

Furthermore,

y
(2)
i,t−1v

′
it = β2,⊥(α′i,⊥β⊥)−1α′i,⊥

(
t−1∑
s=1

εisv
′
it

)
,

where v′it = (α′iΣ
−1
i αi)

−1α′iΣ
−1
i εit. Since εi,t−j is independent of vit for j ≥ 1

we have

lim
T,N→∞

1

NT 2
E

[
N∑

i=1

T∑
t=1

vec(y
(2)
i,t−1v

′
it)vec(y

(2)
i,t−1v

′
it)
′
]

= lim
T,N→∞

E

[
1

NT 2

N∑
i=1

T∑
t=1

y
(2)
i,t−1y

(2)
i,t−1

′
]
⊗

[
1

NT

N∑
i=1

T∑
t=1

vitv
′
it

]

= (1/2)Ω2 ⊗ Σv

and, therefore,

1

T
√

N

N∑
i=1

T∑
t=1

vec(y
(2)
i,t−1v

′
it) ⇒ N(0,

1

2
Ω2 ⊗ Σv) .
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It follows that

T
√

Nvec(B̂ −B) = T
√

Nvec





[
N∑

i=1

T∑
t=1

y
(2)
i,t−1y

(2)
i,t−1

′
]−1 [

N∑
i=1

T∑
t=1

y
(2)
i,t−1v

′
it

]



d−→ N(0, Ω−1
2 ⊗ Σv) .

Finally, it is easy to verify that if α̂i−αi = Op(T
−1/2) and Σ̂i−Σi = Op(T

−1/2)

we have

1

T
√

N

N∑
i=1

T∑
t=1

y
(2)
i,t−1v̂

′
it =

1

T
√

N

N∑
i=1

T∑
t=1

y
(2)
i,t−1v

′
it + op(1)

and, thus, replacing αi and Σi by a consistent estimator does not affect the

asymptotic distribution.

Proof of Theorem 2

First, assume that αi and β (and therefore αi,⊥ and β⊥) are known. The

vector of regressors results as

wit = β′⊥yi,t−1 = β′⊥β⊥(α′i,⊥β⊥)−1αi,⊥
t−1∑
s=1

εis + op(T
1/2)

= ΓSi,t−1 + op(T
1/2) ,

where Sit =
∑t

s=1 α′i,⊥εis and Γ = β′⊥β⊥(α′i,⊥β⊥)−1. Accordingly, under the

null hypothesis α′i,⊥∆yit = α′i,⊥εit the respective Wald statistic can be written

as

λw
i (r) = tr

{(
Σ̃−1/2

T∑
t=1

∆SitS
′
i,t−1Γ

′
)(

T∑
t=1

ΓSi,t−1S
′
i,t−1Γ

′
)−1

×
(

T∑
t=1

ΓSi,t−1∆S ′it

)
Σ̃−1/2

}
+ op(1)

= tr

{
Σ̃−1/2

(
T∑

t=1

∆SitS
′
i,t−1

)(
T∑

t=1

Si,t−1S
′
i,t−1

)−1

×
(

T∑
t=1

Si,t−1∆S ′it

)
Σ̃−1/2

}
+ op(1) ,

where Σ̃−1/2 is a symmetric matrix with the property Σ̃−1/2Σ̃−1/2 = α′i,⊥Σαi,⊥.

It remains to show that the limiting distribution is not affected if β⊥ and
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αi,⊥ are replaced by estimates with β̂⊥ = β⊥ + Op(T
−1/2) and α̂i,⊥ = αi,⊥ +

Op(T
−1/2). It follows that β̂′⊥yi,t−1 = ΓSi,t−1 + Op(T

1/2) and

T−1

T∑
t=1

α̂′i,⊥∆yity
′
i,t−1β̂⊥ = T−1

T∑
t=1

α′i,⊥∆yity
′
i,t−1β⊥ + op(1) .

Consequently, replacing β⊥ and αi,⊥ by consistent estimates does not change

the asymptotic distribution.

Proof of Theorem 3

Since the null distributions of the LR and the Wald statistics are asymptot-

ically identical (e.g. Engle 1984), we first consider the Wald statistic of the

null hypothesis. To this end we write the second step regression as

ẑj,it = θ′j(Φ
′
jyi,t−1) + ϕ′j(Ψ

′
jyi,t−1) + v∗it j = 1, . . . , r ,

where Ψj is a k×(k−r−qj) dimensional matrix such that the matrix [Φj, Ψj]

has full column rank. The null hypothesis is equivalent to ϕj = 0. The set

of equations can be written as

ẑit =




(y′i,t−1Φ1) 0 . 0 (y′i,t−1Ψ1) 0 . 0
. . . . . . .
0 0 . (y′i,t−1Φr) 0 0 . (y′i,t−1Ψr)







θ1

.
θr

ϕ1

.
ϕr




+v∗it

From Theorem 1 it follows that the vector [θ′1, . . . , θ
′
r, ϕ

′
1, . . . , ϕ

′
r]
′ is asymp-

totically normal and, therefore, Wϕ = ϕ̂′V ar(ϕ̂)−1ϕ̂ is asymptotically χ2

distributed with r(n− r)−∑r
j=1 qj degrees of freedom, where ϕ̂ is the least-

squares estimate of ϕ = [ϕ′1, . . . , ϕ
′
r]
′.

Appendix B

For the model with a constant or a linear time trend, the Brownian motions

in Theorem 2 are replaced by the expressions

W k−r = Wk−r −
∫

Wk−r
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for the model with a constant and

W̃k−r = Wk−r −
∫

Wk−r − 12a

∫
aWk−r

for the model with a time trend. To estimate µr and σ2
r used in Theorem

2 for the model with a constant term and a linear time trend, the Brown-

ian motions Wk−r are replaced by a (k − r) dimensional vector of Gaussian

random walks with T = 500. The mean and variances are computed from

20,000 replications of the stochastic expressions.

Table B.1: Asymptotic values of µr and σ2
r

constant linear trend
sig. lev. µr σ2

r µr σ2
r

k − r = 1 3.051 6.826 5.301 10.94
k − r = 2 9.990 18.46 14.35 26.02
k − r = 3 20.88 35.03 27.31 45.79
k − r = 4 35.67 57.49 44.13 70.82
k − r = 5 54.33 86.00 64.71 101.9
k − r = 6 76.94 119.7 89.16 136.9
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Table 1: Estimation bias of various cointegration estimators

Bias
two-stage FM-OLS DOLS OLS

T = N = 10
15 –0.1363 –0.4280 –0.4294 –0.4824
15 –0.1304 –0.6487 –0.6487 –0.7476
20 –0.0900 –0.5675 –0.5675 –0.6811
30 –0.0300 –0.4578 –0.4578 –0.5759
50 0.0124 –0.3233 –0.3233 –0.4390
100 0.0233 –0.1842 –0.1842 –0.2732
T = N = 20
15 –0.1316 –0.6439 –0.6439 –0.7524
20 –0.0884 –0.5654 –0.5654 –0.6832
30 –0.0327 –0.4515 –0.4515 –0.5752
50 0.0091 –0.3158 –0.3158 –0.4362
100 0.0198 –0.1766 –0.1766 –0.2688

RMSE
two-stage FM-OLS DOLS OLS

T = N = 10
15 0.2100 0.6806 0.6806 0.7651
20 0.1723 0.5999 0.5999 0.6983
30 0.1227 0.4874 0.4874 0.5926
50 0.0883 0.3485 0.3485 0.4541
100 0.0650 0.2016 0.2016 0.2849
T = N = 20
15 0.1746 0.6604 0.6604 0.7611
20 0.1355 0.5813 0.5813 0.6921
30 0.0909 0.4664 0.4664 0.5840
50 0.0633 0.3284 0.3284 0.4438
100 0.0461 0.1851 0.1851 0.2749

Note: The entries of the Table report the estimated bias and root mean
squared error (RMSE) of the cointegration parameter b based on 5000 replica-
tion of the model (16). “two-step” indicates the two-step estimator suggested
in Section 3, “FM-OLS” denotes the Fully-modified panel cointegration esti-
mator suggested by Pedroni (1996), “DOLS” is the dynamic OLS estimator of
Kao and Chiang (2000), and “OLS” indicates the ordinary least-squares esti-
mator of the pooled model, where the first variable is regressed on the second
variable.
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Table 2: Sizes and local powers of tests of the cointegration rank

(a) Empirical sizes
N = 10 N = 20

T REG LLL REG LLL
20 0.012 0.000 0.010 0.000
30 0.033 0.000 0.033 0.000
50 0.053 0.004 0.050 0.002
100 0.056 0.030 0.068 0.033

(b) Local powers (size adjusted)
N = 10 N = 20

T REG LLL REG LLL
20 0.242 0.150 0.240 0.143
30 0.221 0.150 0.227 0.148
50 0.186 0.141 0.206 0.153
100 0.164 0.146 0.169 0.166

Note: Rejection frequency for tests of the null hypothesis r = 1. “REG” indi-
cates the regression based test suggested in Theorem 2 and “LLL” denotes the
LR-bar statistic suggested by Lyhagen et al. (2001). The local power is com-
puted by simulating the data under the local alternative ∇NT = −10/(T

√
N).

The critical values are used that yield tests with an exact size of 0.05 under the
null hypothesis (size adjusted power). 5000 replications are used to compute
the rejection frequencies.
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Table 3: Sizes of the t-test

N = 10 N = 20
2S-OLS 2S-HAC DOLS 2S-OLS 2S-HAC DOLS

Uncorrelated errors
20 0.098 0.097 0.157 0.140 0.115 0.162
30 0.057 0.052 0.124 0.057 0.046 0.115
50 0.044 0.041 0.081 0.039 0.036 0.078
100 0.058 0.064 0.045 0.072 0.069 0.045

Contemporaneously correlated errors
20 0.292 0.085 0.010 0.403 0.083 0.008
30 0.274 0.069 0.009 0.397 0.070 0.005
50 0.308 0.070 0.006 0.420 0.069 0.004
100 0.355 0.073 0.003 0.479 0.066 0.002

Note: Rejection frequency for tests of the null hypothesis b = 0 in model
(16). “2S-OLS” indicates rejection frequencies of a t-test where the errors
are assumed to be i.i.d., whereas “2S-HAC” indicates a t-test based on ro-
bust standard errors computed from (15). The column “DOLS” reports
rejection frequencies of the DOLS estimator assuming contemporaneously
uncorrelated errors. The nominal size is of the tests is 0.05 and 5000 repli-
cations are used to compute the rejection frequencies.
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