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(Abstract) 

 
 
 The sensitivity of business capital formation to its user cost plays a key role 
in the analysis of many economic issues.  Although this elasticity has been the 
subject of an enormous number of studies, a consensus remains elusive.  We 
develop an estimation strategy that exploits panel data in an original way and 
avoids several pitfalls  -- difficult-to-specify dynamics, transitory time-series 
variation, and positively sloped supply schedules -- inherent in investment 
equations that can bias the estimated elasticity.  Results are based on an extensive 
panel containing 1,860 manufacturing and non-manufacturing firms.  Our model 
generates a precisely estimated user cost elasticity of approximately 0.40.  The 
method developed here may prove useful in estimating other structural parameters 
from panel datasets. 
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That Elusive Elasticity: 

A Long-Panel Approach To Estimating 

The Price Sensitivity Of Business Capital 

 

 Understanding the links between capital formation and price incentives has 

been a prominent topic on the quantitative research agenda for decades.  

Policymakers frequently alter price incentives to correct market failures and 

enhance economic performance.  Although the vast majority of academic research 

on capital formation utilizes the user cost of capital as the central price variable, 

elasticity estimates vary widely.   

The range of elasticity estimates corresponds to an equally wide range of 

policy implications from simulation models.  In a simplified version of the Ballard, 

Fullerton, Shoven, and Whalley (1985) computational general equilibrium (CGE) 

model, the change in welfare from equalizing capital tax rates across industries is 

70 percent larger when the user cost elasticity rises from 0.50 to 1.00.  Similarly, 

Engen, Gravelle, and Smetters (1997, Table 5) show that¸ when the income tax is 

replaced by a consumption tax, the increase in steady-state net output is 79 percent 

higher when the elasticity of 0.50 is replaced by a value of unity.  Results from the 

two-country model of Roeger, Veld, and Woehrmann (2000) are also sensitive to 

whether the elasticity is 0.50 or 1.00; a one percentage point cut in one country’s 

corporate tax rate leads to a 70 percent larger increase in combined consumption 

with the larger elasticity.  Fox and Fullerton (1991) find that, in CGE models, 

estimated welfare gains from tax initiatives depend much more on this elasticity 

than on the complex features and detailed disaggregation found in many simulation 

models.  Starting with the seminal analysis of Harberger (1959, 1962), the user cost 

elasticity, equivalent to the substitution elasticity between capital and other inputs, 
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is central to assessing policy impacts.1   

Despite the substantial research energies devoted to estimating the user cost 

elasticity, a consensus value remains elusive.2  For example, in the Joint 

Committee On Taxation's (1997, Table 6) study of nine different tax models, user 

cost elasticities range from 0.20 to 1.00.  The wide range of estimated elasticities 

reported in the literature may be attributed to a common source.  Most econometric 

studies rely on quarterly or annual time-series variation in investment data to 

identify the user cost elasticity.  Three biases may result that weigh more or less 

heavily in different studies.  First, the specification of an investment equation 

requires assumptions about dynamics.  While economic theory is highly 

informative about the determinants of the demand for the stock of capital, it is 

relatively silent about the demand for the flow of investment.  Misspecified 

dynamics can bias estimates of the user cost elasticity (Summers, 1988).  Of 

particular importance are the nature of adjustment costs and the role of financing 

constraints, which have received a great deal of attention in recent years and whose 

effects on investment spending remain controversial.3  Second, coefficient 

estimates from investment regressions may be biased if much of the variation in the 

                                           
1 This elasticity also plays a key role in the analysis of long-run growth.  In the Solow growth 
model, Klump and Preissler (2000) show that the user cost elasticity is positively related to the 
steady-state capital/labor ratio and negatively related to the speed of convergence toward the 
steady-state (in dynamically inefficient economies).  Furthermore, in the original article 
introducing the CES production function, Arrow, Chenery, Minhas, and Solow (1961) note that 
the impact of factor endowments on international trade and the variation of relative income 
shares depend on the value of this elasticity. 
2 See Chirinko (1993), Hassett and Hubbard (1997), and Mairesse, Hall, and Mulkay (1999) for 
surveys of the empirical literature. 
3 Regarding adjustment costs, see the surveys by Hamermesh and Pfann (1996) and Caballero 
(1999).  Regarding financing constraints, see the survey by Hubbard (1998) and the controversy 
in Kaplan and Zingales (1997, 2000) and the reply by Fazzari, Hubbard, and Petersen (2000).  
Chirinko, Fazzari, and Meyer (1999) show that excluding cash flow (a variable typically 
included to capture financing constraints) from an investment equation using annual data biases 
upward the estimated user cost elasticity.   
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data reflects transitory rather than permanent changes.  From an econometric 

perspective, a benefit of analyzing investment spending patterns is the substantial 

time-series variation in these data.  If this time-series variation at quarterly or 

annual frequencies, however, largely reflects adjustments to transitory shocks and 

firms respond less to transitory than permanent variation because of adjustment 

costs, an elasticity estimated with time-series data at these frequencies will tend to 

be lower than the "true" long-run elasticity.4  Third, if the supply curve of  

investment is upward sloping, as is more likely in the short to medium-run, studies 

incorrectly maintaining a perfectly elastic supply schedule will tend to understate 

demand elasticities (Goolsbee, 1998).5  While the misspecification of dynamics has 

an indeterminate effect, the estimated user cost elasticity will be biased toward zero 

by transitory time-series variation and positively sloped supply schedules.   

These potential problems all stem from a common source -- the use of 

investment data as the measure of capital formation.  We avoid these problems by 

developing an approach that relies directly on capital stock data and exploits in an 

original way the substantial information available from panel data.  We focus on 

the first-order condition relating the long-run desired capital stock (K*) to the long-

run desired values of output (Y*) and the user cost (C*).  This specification 

underlies virtually all investment studies since Jorgenson's (1963) path-breaking 

work on the neoclassical model of capital accumulation, and can be represented as 

follows: 

 

 (1) K*  =  G[Y*, C*].          
                         +     - 
 

                                           
4 This point has been noted by, among others, Eisner (1967), Lucas (1969). Berndt (1976), 
Shapiro (1986b), and Kiyotaki and West (1996).   
5 This conclusion has been challenged by Hassett and Hubbard (1998) and Whelan (1999).   
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The difficulty with estimating (1) is that the desired values are not readily 

observable.  We use panel data, long in the time dimension, to estimate the 

variables in (1) as time-averages within firms.  With empirical counterparts to K*, 

Y*, and C* defined, it is straightforward to estimate G[.] directly across firms.  

This relatively simple yet fully rigorous approach estimates technology parameters 

immune to the three biases discussed above.   

Our study proceeds as follows.  Section I introduces the estimation strategy.  

The econometric equation is derived from the firm’s profit-maximization problem, 

and long-run values of the variables entering the regression equation are defined as 

time-averages.  Our estimation strategy accounts for a variety of productivity 

shocks, omitted variables, and firm fixed effects, and uses panel data in a way that 

differs substantially from prior panel studies.  Section II discusses the panel dataset 

with 1860 firms for the period 1972 to 1991 and the construction of the variables.  

Section III presents our OLS and IV results.  Both techniques yield similar 

estimates of the user cost elasticity of approximately 0.40.  This estimate is higher 

than the elasticity of 0.25 reported by Chirinko, Fazzari, and Meyer (1999) based 

on the same dataset but using an investment model.  Thus, the three problems 

affecting investment equations -- difficult-to-specify dynamics, transitory time-

series variation, and positively sloped supply schedules -- impart a discernible bias 

toward zero.  Nonetheless, the user cost elasticity remains far from unity, the value 

defining the frequently used Cobb-Douglas production function and determining 

the cut-off at which tax incentives become cost effective (in a static sense).  

Section IV assesses the importance of measurement error, examines the sensitivity 

of the estimates to various subsets of the sample, and compares our approach to 

related work with panel data.  Section V offers a summary and conclusions.  
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I.  Estimation Strategy 

   Our econometric model follows directly from the behavior of a firm that 

maximizes its discounted flow of profits over an infinite horizon.  We analyze the 

firm’s choices in long-run equilibrium, thus eliminating the need to model 

adjustment costs, delivery lags, and vintage effects.  Under these assumptions, the 

firm always produces its long-run desired level of output with its long-run desired 

mix of inputs.  The critical consequence is that the firm's dynamic optimization 

problem is transformed into a static problem.  To determine the firm's demand for 

capital, we need only calculate the marginal product of capital evaluated at the 

long-run levels of inputs and output.   

 We assume that production possibilities are described by the following CES 

technology, 

 

(2) Y*
f,t  =  {ω(K*

f,t
[(σ−1)/σ]) + (1-ω)(X*

f,t
[(σ−1)/σ])}[ησ/(σ−1)] Uf,t , 

 

where Y*
f,t is long-run desired real output for firm f at time t, K*

f,t is the long-run 

desired real capital stock, X*
f,t is the long-run desired level of all other factors of 

production, and Uf,t represents a stochastic productivity shock.6  An attractive 

feature of the CES technology is that it depends on only three parameters 

characterizing returns to scale (η), the distribution of factor returns (ω) and, of 

particular importance for this study, substitution possibilities between the factors of 

production (σ).  The CES function is strongly separable, and can be expanded to 

include many additional factors of production without affecting the estimating 

equation derived below.  This feature gives the CES specification an important

                                           
6 The limiting value of (2) as σ −> 1 is the Cobb-Douglas production function under the 
additional assumption that η=1. 
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advantage relative to other technologies that allow for a more general pattern of 

substitution possibilities (e.g., the translog, minflex-Laurent).  Our approach does 

not require price and quantity data on the other factors of production (whose 

availability and reliability are limited at the firm level) to recover the key 

parameter of interest.  

 Differentiating (2) with respect to capital, we obtain the following relation 

for the marginal product of capital (ΜY*
f,t / ΜK*

f,t), 

 

(3) ΜY*
f,t / ΜK*

f,t  =  (ηω) Y*
f,t

[1+(1−σ)/ση] K*
f,t

−[1/σ] Uf,t
[(σ−1)/ση] .   

 

As is well-known in the study of capital accumulation, profit-maximization implies 

that this marginal product of capital equals the Jorgensonian user cost of capital 

(C*
f,t), which combines interest, depreciation, and tax rates with relative prices (an 

exact specification of the user cost is deferred to section II).  Setting ΜY*
f,t / ΜK*

f,t  

equal to C*
f,t and rearranging (3), we obtain the following expression for the long-

run desired capital stock, 

 
(4) K*

f,t  =  Ψ C*
f,t

[α]  Y*
f,t

[β] Uf,t
[ζ]  , 

 
Ψ  =  (ηω)σ , 
α  =  −σ, 
β  =  (ση+1−σ) / η,    
ζ  =  (σ−1)/η. 

 
Note that, with a CES production function, the user cost elasticity of capital is 

equivalent to the substitution elasticity between capital and other inputs (multiplied 

by minus one). 

      The central difficulty with estimating (4) is the that the long-run values are not 

observed.  Most previous research addresses this problem by differencing the log 
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of (4) to obtain an equation for investment.  As discussed in the introduction, 

however, this approach relies on investment data, and may therefore generate 

biased estimates.  To avoid these potential problems, we measure the capital stock 

directly, and then estimate the long-run desired levels of capital, output, and the 

user cost as time averages over several years.  We refer to the years over which an 

average is computed as an interval.  As shown in Figure 1 for a representative 

variable Wf,t (Wf,t = {Kf,t, Yf,t, Cf,t}), we divide our sample into three intervals 

indexed by a τ subscript, τ = 0,1,2.  The intervals are 1974-1980 (τ=0), 1981-1986 

(τ=1), and 1987-1992 (τ=2).  We assume that W*
f,t equals Wf,τ, where the latter is 

estimated as the mean of Wf,t over an interval.  As we will discuss below, the 

τ=1 and τ=2 intervals are used for parameter estimation; the τ=0 interval is used 

only to form instruments and define classifications that split the sample.   

 With the variables in (4) defined in terms of the τ=1 and τ=2 intervals, we 

take logs, and obtain the following equation,  

 

(5) kf,τ  =  α cf,τ  +  β yf,τ  +  ψ  -  uf,τ,     τ = 1,2. 
 
  kf,τ  =  ln[Kf,τ] = ln[K*

f,t], 
  cf,τ  =  ln[Cf,τ] = ln[C*

f,t], 
  yf,τ  =  ln[Yf,τ] = ln[Y*

f,t], 
  ψ    =  ln[Ψ], 
 
 
where uf,τ is an error term that follows directly from the technology and represents 

productivity shocks.  We model productivity shocks as follows, 

 

(6) uf,τ =  ζ [vf  + vi + wτ + wi,τ + wf,τ]. 

 

The productivity shock is decomposed into firm-specific (vf) and industry-specific 
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(vi) components, as well as components that vary over the intervals, wτ, wi,τ and 

wf,τ.  With this error structure, estimates can be obtained by differencing (5) and (6) 

between the τ intervals, 

 

(7) ∆kf,τ  =  α ∆cf,τ  +  β ∆yf,τ  +  ∆ψ  -  ∆uf,τ, 

 
 ∆kf   =  -σ ∆cf   +  β ∆yf   -  γ  -  λi  -  ∆wf. 
 
  γ  =  ζ ∆wτ, 
  λi =  ζ ∆wi,τ, 
  η  = (1−σ) / (β−σ), 

σ  =  −α.   
 
Since there are only two intervals, first-differencing eliminates the temporal 

dimension to the model, and τ subscripts have been omitted in the final equation.  

Consequently, the parameters are estimated in a cross-section regression. 

 Equation (7) is our estimating equation relating growth in the capital stock to 

growth in the user cost and output.  Fixed firm and industry effects are eliminated 

by differencing, and fixed interval effects are captured by the constant (γ).  

Industry effects that vary across intervals are captured by industry dummies (λi).  

This framework allows us to estimate the parameter of central interest in this study, 

the elasticity of the capital stock with respect to its user costs (σ)  Additionally, we 

can recover the returns to scale elasticity, η, as a non-linear combination of the 

estimated σ and β parameters.  

Our estimation strategy exploits panel data in a way that differs substantially 

from prior panel studies.  By taking interval averages, we use low-frequency 

variation to estimate the long-run values of the regression variables.  This approach 

avoids the difficult specification problems that necessarily arise with investment 

regressions based on data at quarterly or annual frequencies.  Differencing equation 
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(7) across intervals controls for firm fixed effects, as well as productivity shocks 

and omitted variables that vary across intervals.  The remaining cross-section 

variation provides ample degrees of freedom for estimation.   

 Consistency of the OLS parameter estimates depends on the relation 

between the stochastic element, ∆wf, and the regressors, especially ∆yf. This 

correlation is not likely to be a problem for two reasons.  First, ∆wf is that part of 

the productivity shock that remains after accounting for all fixed and industry 

effects.  Major technological changes (e.g. telecommunications, computing, the 

internet) are likely to have their largest effects on all firms in an industry (captured 

by λi) with only a small residual impact that is firm specific.  Second, only part of 

the productivity shock enters the error term.  As noted by Shapiro (1986a), 

including output in a factor demand equation can completely absorb the 

productivity shock.  When the elasticity of substitution is unity, ζ equals zero, and 

ufτ vanishes (cf. equation (6)).  When σ deviates from unity, the impact of the 

productivity shock is nonetheless diminished by ζ.  Despite these arguments that 

OLS estimates will not be appreciably affected by ∆wf, we present two alternative 

estimates that are robust to simultaneity.  First, we impose constant returns to scale 

(η=1 implying β=1).  Thus, ∆yf, the variable most likely to be correlated with ∆wf 

no longer appears as a regressor.  Second, we present IV estimates and Hausman 

tests using the variables in the τ=0 interval as instruments.  

  This econometric model is robust to four potentially important distortions.  

First, the parameter estimates are robust to trending variables.  See Appendix A for 

formal consideration of this issue and the role played by differencing in 

eliminating firm-specific trends.  Second, the estimates are unlikely to be 

influenced by additional factors that may affect the specification of the production 

function or the first-order conditions.  For example, the estimating equation is 

robust to including additional factors of production.  Markups that vary across 
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firms are captured by a firm-specific fixed effect eliminated by differencing.  

Moreover, the information processing revolution may have led to biased technical 

change over the past 20 years.  In terms of the CES technology, biased technical 

change is represented by temporal variation in ω and, like wτ, will be reflected in 

the constant.  Third, studies implementing the Jorgensonian framework have often 

been criticized for failing to distinguish between desired output and actual output 

(e.g., Coen, 1969; Hall, 1995).  By using time-averages in the econometric 

equation, we recognize this important distinction.  Fourth, the estimates are 

unlikely to be affected by measurement error in the capital stock.  Classic 

measurement error will be part of the error term, and hence innocuous.  A plausible 

situation where measurement error may be systematic arises when an increase in 

the pace of technological change effectively increases the depreciation of fixed 

capital through obsolescence, an effect not captured in our fixed depreciation rate 

assumption.  However, an increase in depreciation rates would lead to a systematic 

overstatement of capital in τ=2, and would be captured by the constant.  If omitted 

variables or measurement error are both firm-specific and interval-varying, 

consistent estimation becomes an issue.  In this case, the IV estimates provide a 

useful safeguard to check the parameter estimates.  

In sum, the estimation strategy developed here collapses the time dimension 

of firm panel data by defining three intervals and then time-averaging the data 

within an interval.  The first interval is used to form instruments or sort variables 

into contrasting classes. The second and third intervals are used for estimation.  A 

variety of productivity shocks, omitted variables, and fixed firm effects are 

accounted for by estimated parameters or differencing.  Production function 

parameters are thus estimated in a cross-section of time-averaged, differenced firm 

data.  This econometric model does not solve the estimation problems inherent with 

investment models -- difficult-to-specify dynamics, transitory time-series variation, 
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and positively sloped supply schedules -- that may bias estimates of the user cost 

elasticity.  Instead, our approach avoids these problems by exploiting panel data 

and estimating directly the first-order condition for capital. 
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II.  The Panel Dataset 

 Our estimation method requires a panel dataset that is long in both the cross-

section and time-series dimensions and that contains cross-section variation in the 

user cost.  We link data sources from the Compustat Industrial Database 

maintained by Standard and Poors (containing financial statement data) and Data 

Resources, Inc. (DRI, containing user cost and industry data).  In this section, we 

discuss the construction of the variables used for regression estimates of equation 

(7), for instruments, and for sorting firms into contrasting classes.  

 The user costs (C) are constructed from industry-level information.  We 

have data for 26 different capital assets (24 types of equipment and two types of 

structures).  The basis for these user costs, from Hall and Jorgenson (1967) and 

modified by DRI, is: 

 

(8) Ci,j,t  =  [pI
j,t / pY

i,t] [(1 - mj,t - zj,t) / (1-txt)] [rt + δj] 

 

where pI
j,t is the asset-specific purchase price for asset j at time t, pY

i,t is the 

industry i output price at time t, δj is the asset-specific economic depreciation rate, 

and txt is the income tax rate.  The investment tax credit (mj,t) and the discounted 

value of tax depreciation allowances (zj,t) also vary across assets.  The financial 

cost of capital (rt) is a weighted average of the cost of equity (the dividend-price 

ratio for Standard & Poor’s Composite Stock Price Index plus an expected long-

run growth rate of 2.4 percent, with a weight of 0.67) and the cost of debt (average 

yield on new issues of high-grade corporate bonds adjusted to a AAA basis, with a 

weight of 0.33).  The nominal cost of debt is reduced by its tax deductibility and 

the expected inflation rate, defined as a weighted average of past GDP deflator 

growth rates.  Industry-specific user costs are a weighted average of the asset user 

costs.  The weights are the proportion of total capital in an industry accounted for 
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by each of the 26 assets.7  This industry information is then merged with the 

firm-level Compustat data using each firm’s S.I.C. code.8   

 Measurement of the capital stock (K) is critical to our study.  Compustat 

does not provide an acceptable measure of the capital stock because book values of 

net plant and equipment likely understate current replacement values in periods of 

inflation.  In addition, accounting depreciation rules may not accurately reflect 

economic depreciation.  

 We measure the current replacement value of capital with a three-step, 

iterative algorithm.9  First, choose a seed value.  We use the book value of net plant 

and equipment from the firm's first observation in Compustat.  The nominal seed 

value is deflated by a weighted average of investment goods price deflators, where 

the weights are determined by the specific capital asset mix of each industry.10  

                                           
7 Note that these weights are from the Bureau of Economic Analysis capital flow tables and 
reflect asset usage by establishment.  The Compustat data reflect ownership by company.  The 
combination of industry aggregate data for the user cost and firm data for investment and other 
items may induce measurement error because some firms operate in a variety of industries.  To 
the extent that such measurement error is constant within firms, however, it will be captured in 
firm fixed effects.   
8 We average the quarterly DRI user cost data at the firm level to obtain an annual user cost that 
corresponds to the Compustat data.  The averages account for differences in firms' fiscal years, 
and therefore introduces some firm-level heterogeneity into the user cost data.  
9 This conceptual approach has been used for firm-level panel data at least since Salinger and 
Summers (1983). 
10 Because the book value of net plant will usually be less than the replacement cost when there 
is inflation, the use of net plant as a seed in 1974 distorts the measurement of the replacement 
cost of capital.  This distortion, however, is unlikely to affect the estimated parameters for three 
reasons.  First, the distortion will disappear as new investment is added to the capital stock at 
current replacement value and old capital is depreciated.  The early part (τ=0) of our sample is 
used only for instruments.  The effect of the seed value on the regression data, therefore, is 
attenuated because the capital series consist largely of new investment expenditures by  the τ=1 
and τ=2 periods.  Based on the average depreciation rate of 14.8 percent, only 32.6 percent of the 
1974 seed value will remain at the beginning of the estimation period in 1981.  Second, a 
proportionate distortion of the seed value relative to the “true” replacement cost across firms is 
eliminated by our econometric procedure that takes logs and then first differences the capital 
stock data that enter the regressions.  Third, any remaining random measurement error in the 
capital stock affects the dependent variable only and, therefore, it does not bias coefficient 
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These are the same weights employed in the user cost computation described 

above.  Second, subtract capital lost to (geometric) depreciation.  The firm’s 

depreciation rate is the weighted average of the rates for individual assets from 

DRI, again using industry-asset proportions as weights.  Thus, there is a 

consistency between the depreciation rates used in constructing the capital stock 

and user cost data.  Third, add in new investment.  In most cases, this step simply 

adds the deflated value of the Compustat capital expenditures variable.  The 

deflator is the weighted average of each industry's investment goods price 

deflators.  At the micro level, however, we must take into account that a firm's 

capital stock may rise or decline due to acquisitions or divestitures that are not 

included in the capital expenditure variable.  If the data indicate a significant 

acquisition or divestiture, we use accounting identities to calculate the impact of 

this activity on the capital stock.  Details of the capital stock calculation appear in 

appendix B.  

 Output (Y) is gross sales during the year reduced by cash discounts, trade 

discounts, and returned sales or allowances to customers.  Sales will differ from 

output by the change in finished goods inventories.  While this difference may be 

non-trivial in the short-run, it will have very little impact on the long-run averages 

used in our estimation.  Nominal sales figures from Compustat are deflated by 

industry-specific output price indexes from DRI. 

 For some of the results that follow, we sort the data into contrasting sub-

samples depending on whether a classifying variable averaged over the τ=0 pre-

estimation period (1974-1980) is above or below its median.  Three variables are 

used as classifiers:  the cash flow-capital ratio (CF/K), the size of the capital stock 

(K), and the Brainard-Tobin Q.  Cash flow is income after taxes plus non-cash 

expenses, primarily depreciation and amortization.  The numerator of Q is the 

                                                                                                                                        
estimates, although it would raise standard errors. 
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market value of equity plus the book value of debt less the book value of 

inventories.  The denominator is the replacement value of the capital stock measure 

discussed above.     

 To protect against results driven by a small number of extreme observations, 

we exclude observations in the one-percent upper and lower tails from the 

distributions of the firm-specific variables.11  Firms included in the data set must 

have some observations for each variable in all three of the τ intervals.  Our final 

data set contains 1,860 firms from all sectors of the economy.  

 Table 1 presents summary statistics for the firms in our final data set.  The 

mean firm size is $320.8 million in the τ=0 period and grows to $529.2 million by 

τ=2 (in 1987 dollars).  This growth corresponds to a 3.5 percent annualized growth 

rate from the midpoint of τ=0 to the midpoint of τ=2.  Mean real output grows at 

an annualized rate of 2.7 percent.  The firm data are highly skewed rightward; 

mean capital and output both far exceed the median values.  The faster growth rate 

for capital than for output implies a growing capital-output ratio, which is 

consistent with the declining value of the user cost in the sample.  The primary 

reason for the decline in the user cost is the declining relative price of capital goods 

to industry output (the first bracketed term in equation (8) above) which falls, on 

average, 16 percent between τ=0 and τ=2.12  

 Statistics for the growth in firm variables between the τ=1 and τ=2 intervals 

are presented in the final three columns of table 1.  These growth rates enter 

                                           
11 We checked the robustness of our results when we deleted both the one-half-percent and two-
percent tails.  The effect on the results was negligible.  Because the user cost is computed from 
stable industry and aggregate data, we did not delete data in the tails of the user cost variable 
distribution. 
12 Because the base year for the price deflators is 1987, the relative price term is substantially 
greater than one early in the sample.  The tax term is also larger than unity, averaging 1.15 over 
the sample.  Because of these components, the mean and median values of the user cost are well 
above the sum of the depreciation rate (which averages 14.8 percent) and the real financial cost 
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directly into the econometric model, and hence are key for estimating the model 

parameters.  It is important to contrast change-heterogeneity -- variation across 

firms in growth between intervals -- from level-heterogeneity -- variation across 

firms in levels over the entire sample -- discussed in most panel studies.  These two 

types of heterogeneity are fundamentally different.  For example, assume that 

level-heterogeneity is important and the data for a given variable is widely 

dispersed across firms within an interval.  It might nonetheless be the case that this 

variable moves together across intervals based on aggregate factors.  In this case, 

change-heterogeneity would be completely absent.  The standard deviations in the 

final column of table 1, however, strongly indicate that this case does not apply to 

our data.  There is considerable change-heterogeneity in the growth of capital, 

output, and user cost with coefficients of variation of 2.25, 2.41, and 2.71, 

respectively.  This is the variation that we exploit in our estimates of equation (7).  

While this equation is estimated as a cross-section of firms, the value of each firm 

observation is based on temporal variation between intervals.   

 

 

                                                                                                                                        
of capital (which averages 4.1 percent).   
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III.  Empirical Results 

A.  OLS Estimates 

 Ordinary least squares estimates of the structural parameters from equation 

(7) appear in table 2.  The focus of our study is on the user cost elasticity of capital, 

σ, which is also the substitution elasticity between capital and other factors of 

production.  In column 1, our benchmark estimate of σ is 0.367 with a standard 

error of 0.067.  The null hypothesis that the user cost elasticity is zero can be 

strongly rejected at any conventional level of significance.  It is also clear, 

however, that our estimate of σ is much smaller than unity, the value implied by 

the Cobb-Douglas production function and often assumed in applied work.   

As shown by equation (7), the estimated returns to scale elasticity (η) is a 

function of the regression coefficients on the growth in both output (β) and the user 

cost (-σ).  The OLS estimate of the returns to scale elasticity, η, is 1.135 also with 

a small standard error.13  With our estimated parameter values, the primary reason 

that the estimated returns to scale elasticity modestly exceeds one is that the 

coefficient of output growth in our capital growth regression is somewhat less than 

unity (β=0.925). As shown in equation (7), an estimated β in the neighborhood of 

unity generates results for η close to constant returns for any admissible value of σ.  

It is interesting to note that the effect of output is much stronger here than in panel 

data studies using investment data (cf. Chirinko, Fazzari, and Meyer, 1999).  We 

believe the reason for these more plausible results is that, unlike typical investment 

equations, our estimation method captures long-run, permanent changes in output, 

                                           
13 The returns to scale elasticity is recovered from the estimated coefficients with the following 
formula:  η = (1−σ) / (β−σ) when β > σ.  The variance of η depends in a complicated way on the 
variances and covariances of the estimated σ and β.  We use an approximate formula based on a 
second-order Taylor series expansion of η about the estimated values of σ and β:  V[η] =  
{V[σ] (1−β)2 + V[β] (1−σ)2 - 2 C[σ,β] (1−β) (1−σ)} / (β−σ)4, where V[.] and C[.] are the 
variance and covariance operators, respectively.   
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and is not affected by the transitory variation that may unduly influence 

investment regressions with annual or quarterly data.  

The second column of table 2 presents results from including two-digit 

industry dummies in the benchmark regression (the λi terms in equation 7).  These 

dummies control for industry-level productivity shocks between intervals τ=1 and 

τ=2 or, more generally, any industry-specific effects.  The structural parameter 

estimates do not change much when the dummies are included.  The σ estimate 

rises from 0.367 to 0.440, and η is virtually identical.  The standard error of σ, 

however, rises by a factor of more than four.  With the two-digit dummies in the 

model, σ is estimated very imprecisely.  The structure of our user cost data 

accounts for this increase in the standard error of σ.  While there is some firm-

specific variation in the user cost within industries, the most important differences 

in the user cost occur across industries.  The σ estimate is therefore much less 

precise with industry dummies in the model.  For this reason and given the modest 

change in σ, the remaining regressions in table 2 exclude the industry dummies. 

As discussed in section I, the most likely source of correlation between the 

error term and the independent variables in these OLS regressions comes from the 

correlation between firm-specific productivity shocks embedded in the error term 

and firm output growth.  This potential simultaneity problem can be avoided by 

imposing constant returns to scale (η=1 which implies β=1), an assumption that 

removes output growth as a regressor.  The third column of table 2 presents a 

regression with the output growth coefficient constrained to unity.  The σ estimate 

changes only trivially when constant returns to scale are imposed (from 0.367 to 

0.372).14  These result supports our contention that the user cost elasticity is 

                                           
14 While the R2 decreases trivially from 0.564 (column 1) to 0.560 (column 3), the constraint of 
constant returns to scale is rejected at the 1 percent level, a result driven by the large number of 
observations used in estimation.  
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consistently estimated by OLS in our framework.    

The final column of table 2 presents estimates based on the assumption of a 

Cobb-Douglas production function, which is defined by a unitary elasticity of sub-

stitution (σ=1) and constant returns to scale (η=1).  Not surprisingly given the 

prior results for σ and η, the restrictions associated with the Cobb-Douglas are 

easily rejected at the 1 percent level relative to the unconstrained model in column 

1.   

 

B.  Measurement Error 

 What role might measurement error play in biasing the estimated σ 

downward and away from a unitary elasticity (as emphasized recently for 

investment models by Goolsbee, 2000)?  Measurement error introduced in the 

construction of the capital stock will have a modest effect on the estimates because 

the capital stock enters as the dependent variable.  In situations where measurement 

error takes the classic form or is fixed for a given firm, industry, or interval, the 

elasticity estimates will be unaffected. 

 Measurement error in the regressors may arise for other reasons, and can 

have direct and indirect effects on the estimated σ.  To assess the direct effects, 

assume that the true value of this elasticity is unity.  If the OLS estimate is 

inconsistent because ∆cf is afflicted with classic measurement error, the variance of 

this measurement error would have to account for at least 60 percent of the 

variance in the observed ∆cf.15  This seems highly implausible, especially since the 

estimator accounts for measurement error arising from fixed firm, industry, and 

interval effects by differencing.  An indirect effect could result from measurement 

                                           
15 The asymptotic bias on the estimated σ is given by the following formula:  (σ#-σ’) = 
(VAR[ξf]/VAR[∆cf]) σ#, where σ’ and σ# are the estimated and true values of σ, respectively, 
and ξf is the measurement error.  If σ# =1, then the variance ratio must be at least equal to 0.60 
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error in the other independent variable.  If ∆yf is measured with error, we can 

use the formula 

                                                                                                                                        
given an OLS estimate of σ’=0.40.   
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proposed by Rao (1973) and an auxiliary regression of ∆yf on ∆cf to assess the 

extent of bias on the user cost elasticity.  Making the rather extreme assumption 

that one-half of the variance of ∆yf is measurement error, we obtain the somewhat 

surprising result that the estimated σ is biased upward toward unity.  However, the 

bias is a trivial 0.043.16  Measurement error can adversely affect the reported 

results but, with this estimation strategy, it does not appear to play a large role.     

 

C. IV Estimates 

 The OLS estimates of equation (7) are consistent under the assumption that 

the error term is independent of both output and user cost growth.  As discussed in 

section I and suggested by the constant returns model in section II.A,  these are 

reasonable assumptions with our estimation method.  Nonetheless, we present 

instrumental variables estimates in table 3 to explore the robustness of our OLS 

results.  The instruments are constructed from data in the τ=0 interval.  Effectively, 

we employ data from 1974-1980 to predict growth in the user cost and output 

between the 1981-1986 and the 1987-1992 intervals.  The instrument list includes 

the user cost (Ci,τ=0), capital stock (Ki,τ=0), the output-capital ratio ((Y/K)i,τ=0), and 

the cash flow-capital ratio ((CF/K)i,τ=0).  In addition, we included the annualized 

growth rates of capital, output, cash flow, accounts receivable, and cash and cash 

equivalents defined over the τ=0 interval.  

The benchmark IV estimate of σ in the first column of table 3, 0.390 is 

                                           
16 The bias on the estimated σ is given by the following formula, (σ#-σ’) = -((β b∆y,∆c)/(1-
R2

∆y,∆c)) 
(VAR[ξf]/VAR[∆yf]), where σ’ and σ# are the estimated and true values of σ, respectively, β is 
from equation (7), b∆y,∆c is the coefficient on ∆cf and R2 the correlation coefficient from the 
auxiliary regression of ∆yf on ∆cf and a constant, and ξf is the measurement error.  We assume 
that one-half of the variance in the output variable is measurement error; hence, 
VAR[ξf]/VAR[∆yf] = 0.50.  We further assume that β equals its estimated value under IV of 
1.402.  From the auxiliary regression, b∆y,∆c = 0.061 and R2

∆y,∆c = 0.0003; hence, (σ#-σ’) = -
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almost identical to the benchmark OLS estimate from table 2 of 0.367.  Not 

surprisingly, the standard error rises with IV, but we can still strongly reject both 

the hypotheses that σ equals zero or σ equals unity.  Unfortunately, the IV 

estimates of η are not as reasonable.  Because of the large coefficient on output 

growth (β), the point estimate of the returns to scale elasticity (η) is 0.603.  The 

standard error of η is much larger with IV than with OLS, but the IV estimate still 

rejects constant returns to scale in favor of decreasing returns.  However, we do not 

consider this result reliable because of our inability to find good instruments for 

output growth.  Firm data in the τ=0 interval are not too useful in predicting firm 

output growth between the τ=1 and the τ=2 intervals. 

The partial R2 statistic developed by Shea (1997) provides quantitative 

confirmation of this interpretation.  This statistic measures the relevance of 

instruments for each estimated coefficient after removing the explanatory power 

used in instrumenting other regressors.  The partial R2 for β is 0.040, dramatically 

lower than the partial R2 of 0.515 for σ.17 

To pursue this issue one step further, we re-estimate the model with IV 

imposing constant returns to scale (η=1).  Under this assumption, β=1, and we no 

longer need to instrument output growth.  The results appear in the third column of 

table 2.  The IV estimate of σ is only modestly affected by imposing constant 

returns.  The user cost elasticity estimate rises to 0.434 from 0.390 a change well 

less than one standard error.  This result demonstrates that, even if the IV estimate 

of returns to scale is unreliable due to the lack of relevant instruments for output 

growth, this difficulty does not “contaminate” conclusions about σ, which is the 

primary focus of our study. 

                                                                                                                                        
0.043.   
17 The partial R2 statistic is preferable to the more commonly used first-stage R2 for reasons 
discussed by Shea (1997).   
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The second column of table 3 presents IV estimates with two-digit 

industry dummies.  This specification accounts for industry-level productivity 

shocks between the τ=1 and τ=2 periods (cf. equation (7)).  The point estimate of σ 

hardly changes from the benchmark value (0.373 versus 0.390).  As was the case 

for the OLS estimates with industry dummies, however, the standard error of σ 

rises dramatically, almost by a factor of three; we cannot reject the hypothesis that 

σ equals zero in this regression.  The problem here is again that most of the 

variation in the user cost is across industries, with much less firm heterogeneity 

within industries.  The resulting collinearity between the industry dummies and 

user cost growth compromises the precision of the estimated σ.18  

As a final test of the validity of the OLS estimates, we performed Hausman tests 

on the σ parameters.  The Hausman statistics are asymptotically distributed χ2(1) 

under the null hypothesis that the OLS estimates are consistent.  For the benchmark 

model, the test statistic is 0.07 and for the constant returns to scale model it is 

0.92.19 Both test statistics are far below the 90 percent critical value for the χ2(1) 

distribution of 2.71.  These tests support the validity of the OLS estimates of σ.  

Taken together, the unconstrained OLS and IV estimates strongly suggest that σ is 

approximately 0.40.   

 

D. Sub-Sample Estimates 

Table 4 explores our results further by considering how the structural parameter 

estimates change in several sub-samples chosen to address issues that have arisen 

with empirical investment models.  All estimates are with the benchmark model.  

                                           
18 Because of collinearity, it was not useful to include industry dummies in the model as both 
regressors and instruments.  In the second column of table 2, the instrument set for output and 
user cost growth is the same as for the other IV regressions; the industry dummies are 
instrumented by themselves. 
19 The Hausman test is not defined for the model that includes industry dummies because the 
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The first panel presents results with the sample split by the ratio of cash flow to 

the capital stock.  In investment regressions using annual data, Chirinko, Fazzari, 

and Meyer (1999) found that including cash flow had a significant effect on the 

estimated σ.  We interpreted that finding in the context of the extensive literature 

on financial constraints and firms' investment spending.  The approach here, 

however, emphasizes the long-run impact of the user cost on the capital stock.  We 

therefore expect financial constraints to be less important.  The first panel of table 

3 presents results from data split according to the pre-sample median cash flow-

capital ratio.  If financial constraints were important at the horizon relevant for our 

estimation, we would expect the estimated σ to be significantly different for high 

and low cash flow firms that differ by their inadequate access to finance.  There is 

little evidence of such an effect in our data.  The OLS point estimate of σ is 

somewhat larger for the high cash flow firms than for low cash flow firms, but the 

difference is less than two standard errors.  Similar results hold for the IV 

regressions except that σ is relatively larger for the low cash flow firms.  The 

formal test statistics (θ’s) have p-values that are greater than 0.35, easily sustaining 

the null hypothesis of equal σ’s.20  

Our second sort is by size, defined by the median average capital stock in the 

pre-sample period (τ=0).  The technologies utilized by firms may vary 

systematically by size, and the technology parameters estimated here may change 

accordingly.  Moreover, size is frequently used to identify firms that may be 

                                                                                                                                        
standard error of the IV estimate is slightly smaller than the standard error of the OLS estimate. 
20 The null hypothesis that σ’ = σ” (where the ’ and ” refer to estimates based on the low and 
high sub-samples, respectively) is evaluated by θ in the following auxiliary equation based on 
equation (7):  ∆kf   =  -σ ∆cf  - θ ∆cf * If +  β’ ∆yf * If  + β” ∆yf  * (1-If) - γ’ * If  - γ” * (1-If) - 
∆wf.,  where If is an indicator variable equal to 1 for the low sub-sample and 0 for the high sub-
sample and θ  =  
σ’ - σ” and is distributed asymptotic t under the null hypothesis that σ’ = σ”.  In the IV 
regressions, each individual instrument, zf, appears twice in the instrument list as follows, zf * If  
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finance constrained.  External finance may be relatively costly for smaller firms 

because they are not be able to bear the substantial fixed costs of obtaining external 

funding or they lack visibility in external capital markets.  Relative to the results in 

table 2, the OLS point estimates of σ are higher for small firms and lower for large 

firms. With IV, the point estimates have the reverse pattern, and both are lower 

than the comparable estimate of 0.390 based on the full sample (table 3).  None of 

these differences are statistically significant.  The results for returns to scale are 

also largely consistent with our findings from the full-sample estimation.   

Finally, we split the data at the median value of the Brainard-Tobin Q 

variable.  Firms with high values of Q are presumably further from their long-run 

equilibrium capital stock.  Therefore, if our estimation method did not adequately 

account for investment dynamics, we might expect a difference in the estimated 

σ’s across the high-Q and low-Q sub-samples.  In table 4, the user cost elasticities 

are virtually identical in the OLS results across the Q sub-samples.  The low-Q 

firms have a modestly higher user cost elasticity than the high-Q firms in the IV 

regression, but the difference is not statistically significant.  This result provides 

additional support for the way our estimation method addresses the problems with 

complicated investment dynamics, avoiding these difficult specification issues by 

focusing directly on the long-run growth of the capital stock.  

 

E.  Comparison To Related Approaches 

 Prior studies estimating the user cost elasticity can be set into three 

categories.  Most prior research has been based on time-series data at the aggregate 

or industry levels.  A prominent example of this work is the exchanges between 

Hall and Jorgenson (1967, 1969, 1971) and Eisner and Nadiri (1968, 1970), Eisner 

(1969, 1970), and Coen (1969).  Hall and Jorgenson’s initial work was based on a 

                                                                                                                                        
and  zf * (1-If). 
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Cobb-Douglas production function, and hence σ equals 1.00 by assumption.  

Eisner and Nadiri estimated σ freely, and reported that the responsiveness of 

capital to its user cost was 0.16.  This gap has not been closed by subsequent 

research.  Several important concerns, however, have been raised about elasticities 

estimated from aggregate data suggesting that such estimates may be biased 

downward due to problems with firm heterogeneity, simultaneity, measurement 

error, and capital market frictions.   

 These issues were difficult to address with aggregate data because of the 

limited amount of variation, and a more recent set of studies has exploited the 

substantial information in panel data.  While some of these concerns can be 

addressed, these studies usually remove firm effects by differencing; thus, 

transitory time-series variation heavily influences the estimated user cost elasticity.  

A recent example is Chirinko, Fazzari, and Meyer (1999), who find a user cost 

elasticity of 0.25 for a panel of firms.  A similar elasticity is reported by Goolsbee 

(2000), who analyzes a panel of equipment assets.  Cummins and Hassett (1992) 

and Cummins, Hassett, and Hubbard (1994, 1996) develop a novel approach, 

focusing on those years in which there are sizeable tax policy changes to mitigate 

concerns about endogeneity and measurement error.  In these studies, cross-section 

variation is key.  Nonetheless, based on some auxiliary assumptions, the implied 

user cost elasticity for U.S. firm data in Cummins, Hassett, and Hubbard (1994) is 

somewhat lower than that obtained by Chirinko, Fazzari, and Meyer.21  These 

studies use investment data, and the biases associated with investment models 

mentioned above may be important.    

 A third class of studies focuses on long-run relations between the capital 

stock and its determinants.  To mitigate the distorting effects of complex dynamics, 

Caballero (1994) exploits the innovative idea that the user costs elasticity can be 
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estimated in a cointegrating equation that includes the capital/output ratio and 

the user cost.  Because cointegration is an asymptotic property, this estimate can be 

biased downward in finite samples.  Using aggregate quarterly data for equipment 

spending and the Stock-Watson (1993) correction to adjust the estimates for the 

effects of transitory variation, Caballero obtains a range of elasticity estimates, 

from 0.40 to 0.93, depending on the number of lags used in the correction.  Also 

exploiting cointegration properties, Mairesse, Hall, and Mulkay (1999) and 

Harhoff and Ramb (2000) estimate error correction models (ECM) containing the 

long-run relation between the capital stock and its determinants and the percentage 

changes in these variables to capture short-run dynamics.  Firm-level data and 

fixed effects are used in both studies.  The parameter estimates prove somewhat 

unstable, a result that may be due to estimating both long-run and short-run 

parameters in the ECM with transitory time-series variation.  Kiyotaki and West 

(1996) specify a model that includes deviations of the desired from the actual 

capital stock, and estimate desired capital in terms of a future projection from a 

two-step VAR procedure.  With quarterly aggregate data for Japan, they find that 

the short-run and long-run user cost elasticities are 0.05 and 0.07, respectively.  

The authors attribute these very small responses to transitory variation in the user 

cost series as represented by a pronounced tendency for mean reversion.  

Caballero, Engel, and Haltiwanger (1995) estimate a model similar to Caballero 

(1994) with plant-level equipment spending.  They obtain a range of elasticities 

across two-digit industries from 0.01 to 2.00, with an unweighted average of 

approximately unity.  If we assume that the structures elasticity is one-third as 

large as that for equipment (per the results of Cummins and Hassett, 1992), then 

the overall user cost elasticity is approximately 0.70. 

  The elasticity estimates of Caballero, Engel, and Haltiwanger and those 

                                                                                                                                        
21 See Chirinko, Fazzari, and Meyer (1999, section 5) for further details. 
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presented in this paper are both based on a panel, but are not directly comparable 

for a variety of reasons, including the use of plant-level vs. firm-level data, the 

specification of the long-run determinants of the capital stock, and the manner in 

which the problem of capital stock dynamics is addressed.  The Caballero, Engel, 

and Haltiwanger estimates are based on a cointegrating relation that emphasizes the 

time dimension of the panel, and deviations from long-run values are accounted for 

with the Stock-Watson correction.  By contrast, our approach uses the time 

dimension of panel data to measure long-run variables in each interval, and then 

estimates the user cost elasticity from the cross-section dimension of the panel.  

Given these differences, it is not surprising that we obtain different results.   
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IV.  Summary And Conclusions 
The elasticity of business capital to its user cost has been the focus of much 

research attention over the past 40 years.  Among other issues, this parameter is 

central in translating the effects of tax policy into real outcomes, and has been the 

subject of numerous econometric investigations.  Prior work has relied in almost 

all cases on time-series variation in investment data at the aggregate, industry, or 

firm level to estimate this elasticity.  This paper offers a different approach.  The 

estimation strategy developed here classifies the time periods into three intervals, 

and then averages the firm-level panel data within each interval.  The data are 

differenced across intervals, and production function parameters are estimated in a 

cross-section of time-averaged, differenced firm data.  Our approach accounts for a 

variety of productivity shocks, omitted variables, and firm effects.  This 

econometric model does not solve the estimation problems inherent with 

investment models -- difficult-to-specify dynamics, transitory time-series variation, 

and positively sloped supply schedules -- that may bias estimates of the user cost 

elasticity.  Instead, our approach avoids these problems by exploiting panel data in 

an original way and estimating directly the first-order condition for capital.  

 We find that the user cost elasticity can be consistently and precisely 

estimated by OLS, and is approximately 0.40.  Relative to a comparable investment 

study (Chirinko, Fazzari, and Meyer, 1999), the results here suggest that 

investment models impart a discernible bias toward zero in estimates of the user 

cost elasticity.  To the central question of whether the Cobb-Douglas assumption is 

valid, our results offer a strikingly negative answer.  This robust finding raises 

questions about the frequent use of the Cobb-Douglas production function in 

theoretical and empirical models and about the cost-effectiveness of various tax 

proposals for stimulating capital formation.   

Apart from our immediate objective, the method developed here may prove 
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useful in estimating other structural parameters from long-panel datasets.  Our 

method of using interval averages to estimate long-run desired values of regression 

variables could be applied to other problems where short-run dynamics may 

obscure long-run structural relations.  There are likely to be a number of 

applications in, for example, labor and industrial organization, where the 

availability of long-panels and interest in structural parameters may make the 

method developed here feasible and informative. 
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Appendix A:  Trending Variables 
 
 This appendix considers the effects of trending variables on the specification 

of the model.  To evaluate the effects of trending variables, we begin with the 

following decomposition for variable Xf,τ,t into non-growth (ng) and growth (g) 

components, where X corresponds to any of the model variables, K, Y, or C.  Note 

that, unlike in the text, we explicitly include an index for the τ interval even when 

it is redundant: 

 
(A-1)  Xf,τ,t  /  X

ng
f,τ,t  +   Xg

f,τ,t , 
 
(A-2)  Xng

f,τ,t  / µ
ng

f,τ + νng
f,τ,t, 

 
   µng

f,τ   =  Σ  Xng
 f,τ,t / Tτ,  

                                           τ0Ττ 
 
    Σ  νng

f,τ,t / Tτ  =  0, 
                              τ0Ττ 
 
 
 (A-3)  Xg

f,τ,t  /  µ
ng

f,τ [(1+gf)t – 1].  
 
In (A-2), the non-growth component equals the mean over the τ interval (µng

f,τ) and 

a deviation from the mean value (νng
f,τ,t) that averages to zero.  These summations 

are over all Tτ time periods that are in the τ interval.  In (A-3), the growth 

component is proportional to the mean, and increases at a firm–specific rate of gf. 

 As in Section I, we measure the long-run value of X as a time-average over a 

τ interval, 
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(A-4)  Xf,τ   /   Σ Xf,τ,t / Tτ                
         t0Ττ   
     
  =   Σ Xng

f,τ,t / Tτ   +   Σ Xg
f,τ,t / Tτ , 

                                    t0Ττ                                t0Ττ   
 
 
                 =  µng

f,τ   +   Σ νng
f,τ,t / Tτ  +   Σ µng

f,τ [(1+gf)t – 1] / Tτ , 
                                       t0Ττ                    t0Ττ 

 
 
                     =  µng

f,τ   +  0  +  µng
f,τ  Σ [(1+gf)t – 1] / Tτ , 

                                                       t0Ττ 

 

                     =  µng
f,τ  *  H[gf], 

 
 
   H[gf]  /  1  +  Σ [(1+gf)t – 1] / Tτ . 
                                                    t0Ττ 
 
 The estimator uses the difference between the τ=2 and τ=1 intervals in the  
 
logarithms of Xf,τ, 
 
(A-5)  ∆xfτ  /  Ln{ Xf,τ=2} - Ln{ Xf,τ=1},     
 
                   =  Ln{µng

f,τ=2}  +  Ln{H[gf]}  -  Ln{µng
f,τ=1}  -  Ln{H[gf]}, 

 
                   =  Ln{µng

f,τ=2 / µ
ng

f,τ=1}, 
 
which is the percentage change in the non-growth component of X.  Thus, the 
model  
 
variables are not distorted by firm-specific growth. 
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Appendix B:  The Replacement Value of Capital 

The capital stock is a key variable in this study, and this appendix provides 

details about how we overcome several significant problems in measuring the 

capital stock from accounting data.  The obvious proxies for the capital stock in the 

Compustat data, book values of gross or net property, plant, and equipment, are not 

acceptable measures of the economic value of the capital stock for two reasons.  

First, they value assets at the historical cost prevailing when the assets were 

acquired and therefore contain a mix of historical price levels that cannot be easily 

adjusted for inflation.  Second, accounting depreciation rules likely do not capture 

economic depreciation correctly.  The iterative "perpetual inventory" algorithm 

described here addresses these problems.  

 The first step in our procedure is to choose a seed value for the iteration.   

We use the nominal book value of net property, plant, and equipment for firm f 

from its first observation in the data set (NPLANTf,0).  To convert this value to real 

terms we employ data on the share of different kinds of capital assets (indexed by 

j) in the firm's two-digit SIC industry i.  Denote this share as αi,j.  The amount of 

capital (αi,j NPLANTf,0) should be deflated by the asset-specific price index pj,0. 

Then the real seed value of the capital stock (Kf,0) is defined as: 

(B1) ∑=
j j

fji
f p

NPLANT
K

0,

0,,
0,

α
. 

         Starting from this seed value, the remainder of the capital stock for firm k is 
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constructed iteratively from: 

(B2) ∑
−

∑ +−=+
j tj

jji

j
tfjjitftf p

KCHGKK
,

,
,,,1,

)1(
)1(

δα
δα . 

The first term in equation (B2) is the depreciated value of the period t capital stock 

that remains in period t+1.  The depreciation rate δj for each asset j is determined 

by DRI from the “double declining balance” formula: 

(B3) jLIFE
j e /21 −−=δ , 

where LIFEj represents the estimated average service life for capital asset j.  The 

second term in equation (B2) represents the addition (or deletion) to the period t+1 

capital stock accounted for by new investment, acquisitions, or divestitures in 

period t.  The variable KCHGf,t (discussed in detail below) represents the nominal 

addition (or subtraction) of new capital goods for firm f in period t prices.  The 

deflation method for KCHGf,t is the same as for the seed value in equation (B1).  

We assume that new capital is acquired at the beginning of period t and depreciates 

one full year before entering the period t+1 capital stock.  (We also constructed 

capital stock series using a half year’s depreciation for KCHG and found that it had 

only a trivial impact on the results.)  If a firm adds to its capital stock in period t 

only through conventional capital spending, the KCHGf,t variable in equation (B2) 

would equal the firm’s investment (If,t), that we obtain from Compustat’s capital 

expenditure data in the sources and uses of funds statement.  In practice, 
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acquisitions and divestitures can augment and deplete the capital stock 

independent of reported investment.  Many panel studies delete firms with 

substantial acquisitions or divestitures.  However, there are a large number of 

observations with acquisitions and divestitures in the Compustat data.  Deleting 

these observations reduces the sample size and could induce a selection bias.  We 

therefore develop a method to account for acquisitions and divestitures when 

constructing the capital stock data.  (To the extent that acquisitions or divestitures 

create outliers in the data, these should be captured by our outlier detection 

algorithm described in section II.) 

The capital change variable (KCHGf,t) in equation (B2) is defined in a way 

that accounts for large acquisitions and divestitures.  We appeal to the following 

accounting identities to derive a formula for KCHGf,t,: 

(B4) tftftftf RETIREACQUISIGPLANT ,,,, −+=∆  

(B5) tftftftf DEPRACQUISINPLANT ,,,, −+=∆  

tfGPLANT ,∆  = the change in gross plant and equipment from  
  the end of year t-1 to the end of year t; 

tfNPLANT ,∆  =  the change in net plant and equipment from 
            the end of year t-1 to the end of year t; 

 tfACQUIS ,  =  acquisitions in year t; 
 tfRETIRE ,  =  retirements in year t,22 and 

                                           
22 Compustat defines retirements as “a deduction from a company’s property, plant, and 
equipment account resulting from the retirement of obsolete or damaged goods and/or physical 
structures.”  
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 tfDEPR ,   =  accounting depreciation in year t. 
In the event of an acquisition, KCHGf,t equals If,t + ACQUISf,t.  Because 

Compustat does not have reliable figures for ACQUISf,t, we rearrange equation 

(B4) to obtain: 

(B6) I ACQUIS GPLANT RETIREt t t t+ = +∆  or 

 KCHG GPLANT RETIREt t t= +∆  

In the event of a divestiture, we want to decrease the capital stock by the 

depreciated value of the capital sold.  In this case: 

(B7) KCHG NPLANTt t= ∆  

If there is no major acquisition or divestiture, then we retain the basic formula: 

(B8) KCHG It t=  

 We now need an empirical test to determine whether a firm has undergone 

an acquisition or divestiture in a given year.  There are two rules of thumb that aid 

us in this search.  First, ∆GPLANTf,t is normally less than If,t because of 

retirements.  Therefore, if ∆GPLANTf,t > If,t by a substantial amount, it signals an 

acquisition with a high probability.  Second, ∆GPLANTf,t is normally greater than 

RETIREf,t because retirements are the only way to reduce gross plant and 

equipment in the absence of a divestiture.  Therefore, if ∆GPLANTf,t < RETIREf,t 

by a substantial amount it signals a divestiture. 

 We define a "substantial" amount as a discrepancy of ten percent or more.  
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The point of imposing the ten percent limit is to make acquisition and divestiture 

adjustments conservative.  That is, we only deviate from the standard formula 

when there is clear evidence that this formula is misleading.  In this case, if 

(B9) ,1.0
1,

,, >
−∆

−tf

tftf
GPLANT

IGPLANT
 

then we assume an acquisition and define KCHGf,t from equation (B6).  In 

contrast, if 

(B10) ,1.0
1,

,, −<
+∆

−tf

tftf
GPLANT

RETIREGPLANT
 

then we assume a divestiture and define KCHGf,t from equation (B7).  If neither 

rule holds, we simply define KCHGf,t as investment spending, as in equation (B8). 

 

 

 



Table 1 – Summary Statistics 
 
 
 

Variable τ = 0 (1974-1980) τ = 1 (1981-1986) τ = 2 (1987-1992) Percentage Change  
τ = 1 to τ = 2 

 Mean Med. S.D. Mean Med. S.D. Mean Med. S.D. Mean Med. S.D. 
Capital (K) 320.8 33.1 848.7 434.2 50.7 1141.3 529.2 62.3 1410.1 36.4 16.9 81.9 

Output (Y) 948.1 161.7 2562.0 1169.5 211.9 3180.5 1404.2 253.7 4237.4 27.5 14.6 66.2 

User Cost (C) 0.282 0.291 0.056 0.242 0.246 0.046 0.219 0.218 0.028 -6.9 -11.8 18.7 

 
 
Note:  The mean, median (Med.), and standard deviations (S.D.) are derived from a sample of 1,860 firms constructed from 
Compustat and DRI sources as described in section II of the text.  The standard deviations represent cross-sectional differences arising 
from firm heterogeneity in levels within an interval (in the first three panels) and from firm heterogeneity in percentage changes across 
the τ=1 and τ=2 intervals (in the fourth panel). 
 



Table 2 – Ordinary Least Squares Estimates 
 
 

 Unconstrained Regressions Constrained Regressions 

 Benchmark  
Model 

Model with Two-
Digit SIC Dummies η = 1 σ = 1 and η = 1 

σ 0.367 
(0.067) 

0.440 
(0.293) 

0.372 
(0.067) 1.0 

η 1.135 
(0.042) 

1.152 
(0.102) 1.0 1.0 

β 0.925 
(0.019) 

0.926 
(0.019) 1.0 1.0 

γ 0.084 
(0.014) 

-0.055 
(0.114) 

0.063 
(0.013) 

0.020 
(0.013) 

R2 0.564 0.593 0.560 0.540 

 
 
Note:  Estimates of equation (7) with firm-level panel data as described in section II..  Standard errors appear in parentheses.  The 
parameters are σ (the user cost elasticity), η (the returns to scale elasticity), β (the regression coefficient on output growth) and γ (the 
intercept).  See section III.A for the formula used to compute η and its standard error. 
 



Table 3 – Instrumental Variables Estimates 
 
 

 Unconstrained Regressions Constrained Regressions 

 Benchmark  
Model 

Model with Two-
Digit SIC Dummies η = 1 σ = 1 and η = 1 

σ 0.390 
(0.108) 

0.373 
(0.286) 

0.434 
(0.093) 1.0 

η 0.603 
(0.074) 

0.633 
(0.120) 1.0 1.0 

β 1.402 
(0.110) 

1.364 
(0.118) 1.0 1.0 

γ -0.049 
(0.034) 

-0.324 
(0.134) 

0.059 
(0.014) 

0.020 
(0.013) 

 
 
Note:  Estimates of equation (7) with firm-level panel data as described in section II.  Standard errors appear in parentheses.  The 
parameters are σ (the user cost elasticity), η (the returns to scale elasticity), β (the regression coefficient on output growth), and γ (the 
intercept). The instrument list is defined in section III.C.  In the second column, the industry dummies are instrumented by themselves.  
See section III.A for the formula used to compute η and its standard error. 



Table 4 – Ordinary Least Squares And Instrumental Variable Estimates: 
                 Various Sample Splits 
 

 Split by Cash Flow-Capital Ratio Split by Capital Stock Size Split by Tobin-Brainard Q 

 OLS IV OLS IV OLS IV 

 Low 
CF/K 

High 
CF/K 

Low 
CF/Kl 

High 
CF/K 

Low 
Capital 

High 
Capital 

Low 
Capital 

High 
Capital 

Low 
Q 

High  
Q 

Low 
Q 

High 
Q 

σ 0.278 
(0.075) 

0.407 
(0.127) 

0.364 
(0.102) 

0.317 
(0.198) 

0.435 
(0.139) 

0.294 
(0.066) 

0.226 
(0.226) 

0.363 
(0.094)

0.320 
(0.076) 

0.349 
(0.114) 

0.448 
(0.110) 

0.290 
(0.163) 

η 1.308 
(0.071) 

1.019 
(0.049) 

0.989 
(0.197) 

0.673 
(0.128) 

1.042 
(0.056) 

1.284 
(0.064) 

0.646 
(0.104) 

0.782 
(0.120)

1.214 
(0.061) 

1.046 
(0.054) 

0.736 
(0.169) 

0.688 
(0.162) 

β 0.830 
(0.025) 

0.989 
(0.028) 

1.007 
(0.128) 

1.331 
(0.178) 

0.977 
(0.029) 

0.844 
(0.024) 

1.424 
(0.172) 

1.177 
(0.120)

0.880 
(0.025) 

0.972 
(0.032) 

1.198 
(0.168) 

1.322 
(0.234) 

γ 0.040 
(0.017) 

0.125 
(0.024) 

 0.000 
(0.031) 

 0.014  
(0.066) 

0.105 
(0.026) 

0.064 
(0.016) 

-0.016 
(0.058) 

-0.019 
(0.033)

0.057 
(0.016) 

0.107 
(0.027) 

-0.006 
(0.034) 

-0.018
(0.090) 

θ -0.129 
(0.144) 

0.047 
(0.214) 

0.141 
(0.144) 

-0.137 
(0.226) 

-0.029 
(0.137) 

0.158 
(0.197) 

R2 0.541 0.575   0.556 0.582   0.631 0.562   

 
 



Note:  Estimates of equation (7) with firm-level panel data as described in section II.  Standard errors appear in parentheses.  The 
parameters are σ (the user cost elasticity), η (the returns to scale elasticity), β (the regression coefficient on output growth), and γ (the 
intercept). The instrument list is defined in section III.C.  See section III.A for the formula used to compute ηand its standard error.  
Sample splits are based on the median value of the classifying variable in the τ=0 (1974-1980) interval.  θ is the coefficient measuring 
the difference between the σ’s for the contrasting classes, and is distributed asymptotic t under the null hypothesis of equality.  See 
section III.D for further details about this statistic.      
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