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Abstract

In a “fixed-effect” panel data model with a nonparametric regression functionρ(x it),

the usual first-differencing yields a nonparametric regression functionµ(x it,xi,t+1) with

the restrictionµ(xit ,xi,t+1) = ρ(xi,t+1)−ρ(xit). Althoughµ(xit ,xi,t+1) can be easily esti-

mated nonparametrically with a kernel method, it is not clear that how to identify and esti-

mate∂ρ(xit)/∂xit (andρ(xit)) using a kernel method, and this task becomes more difficult

when a time-invariant variableci entersρ(xit). In this paper, we propose a kernel estima-

tor that is a linear combination of partial derivative estimators for∂ µ(x it ,xi,t+1,ci)/∂xi,t+1

and∂ µ(xit ,xi,t+1,ci)/∂xit, prove its consistency for∂ρ(xit)/∂xit and derive the asymp-

totic distribution. An extensive Monte Carlo study is presented. Also multiple periods

longer than two and mixed continuous/discrete regressor cases are considered to enhance

the applicability.

KEY WORDS: nonparametrics, partial derivatives, panel data, related-effect.
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1. Introduction

Consider a nonparametric “related-effect” panel data model:

yit = ρ0(xit ,ci)+αi +uit , i = 1, . . .,N, t = 1,2, (1.1)

whereyit is a response variable,xit is akx×1 time-variant regressor vector,ci is akc×1 time-

invariant regressor vector,ρ0(xit ,ci) is an unknown function ofxit andci, αi is an unobserved

time-invariant term possibly related toxit or ci, uit is a time-variant error term such that

E(uit |xi1,xi2,ci,αi ) = a time invariant function ofci andαi, t = 1,2, (1.2)

i indexes individuals andt indexes time periods; assume iid acrossi. (1.2) includes the usual

zero mean as a special case. The model (1.1) is relevant, e.g., for nonparametric growth curve

estimation (see M¨uller (1988) and references therein) whereα i can capture the genetic factors

which are unobservable and time-invariant.

The expression “related-effect” refers toα i being possibly related to regressors. In the

panel data literature, related-effect is often called “fixed-effect,” which is however also used

for cases whereαi is estimated (along with the model parameters) regardless of its relation-

ship with regressors. In (1.2), all period regressors are in the conditioning set (“strict exogene-

ity”), which is typically invoked in the panel related-effect literature (Manski (1987), Honor´e

(1992), Kyriazidou (1997) and Lee (1999)) with some exceptions in Holtz-Eakin et al. (1988),

Chamberlain (1992) and Wooldridge (1997).

A standard way to deal with the “unit-specific term”α i is first-differencing across the two

periods. For instance, ifkc andkx are both 1 withρ0(xit ,ci) specified as

ρ0(xit ,ci) = β1 +βxxit +βcci +βxcxitci +βxxx2
it , (1.3)

then first-differencing yields

yi2− yi1 = βx(xi2− xi1)+βxc(xi2− xi1)ci +βxx(x2
i2− x2

i1)+ui2−ui1. (1.4)
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From this, we can estimateβx, βxc andβxx, and effect ofxit onyit can be measured by, e.g.,

D1E(yit |xit,ci,αi ) = βx +βxcci +2βxxxit , (1.5)

or by its averaged version

E{D1E(yit |xit ,ci,αi )} = βx +βxcE(ci)+2βxxE(xit), (1.6)

whereD j is the partial differentiation operator with respect to (wrt) thejth argument.

While first-differencing is straightforward with a parameterized regression function as in

(1.3), a misspecified parametric function in general leads to inconsistent estimators. The

goal of this paper is to explore first-difference estimation for the nonparametric related-effect

model using kernel methods. (1.3) suggests that, if a series-approximation is used for the

nonparametric model, then we may not need a set-up fancier than the usual linear model to

handle the related-effect. But series approximation, as a global nonparametric method, has

properties different from kernel methods which are local. Some of the difficulties with se-

ries approximation are: (i) the convergence rate is not known, (ii) if the regression function

is high-dimensional only in a small area, then a series approximation will force this feature

into the whole support of the regression function, (iii) while choosing the order of series

approximation can be done automatically, say with cross validation (CV), the order taking

integers is too rough a measure for the degrees of smoothing, while the degree of smooth-

ing can be chosen as finely as desired in kernel methods, and (iv) most importantly, series-

approximatingρ0(xit ,ci) would not be the same as series-approximating the first differenced

versionρ0(xi2,ci)−ρ0(xi1,ci).

Write the first differenced model as

yi2− yi1 = µ0(xi1,xi2,ci)+ui2−ui1, (1.7)

where

µ0(xi1,xi2,ci) ≡ ρ0(xi2,ci)−ρ0(xi1,ci).

4



The regression function is an additive nonparametric function. We can obviously get an esti-

mator forDpρ0, for an integerp such that 1≤ p ≤ kx, using the fact thatDqµ0(x, ·, ·) = Dpρ0

for anyx with q = kx + p. Call this the “naive” estimator.

If ci is not present, we may follow Linton and Nielsen (1995) to estimateρ0 (and subse-

quentlyDpρ0) as follows. Observe

∫
µ0(ξ ,xi2)wx(ξ )dξ = ρ0(xi2)−

∫
ρ0(ξ )wx(ξ )dξ = ρ0(xi2)+a constant, (1.8)

wherewx(·) is a weighting function with
∫

wx(ξ )dξ = 1. We can obtain an estimator ofρ0

by estimatingµ0 with a kernel method and then integrating out the firstkx arguments. Note

thatρ0 is identified up to a constant, which however does not pose any problem for estimating

Dpρ0 by differentiating the integral estimator for (1.8).

A disadvantage of the above two estimators is that only the additive structure ofµ0 is

used. In other words, it is ignored thatρ0(xi2,ci) andρ0(xi1,ci) are values of thecommon

functionρ0. Observe the two restrictions: withq = kx + p,

Dqµ0(xi1,xi2,ci) = Dpρ0(xi2,ci) and −Dpµ0(xi1,xi2,ci) = Dpρ0(xi1,ci).

Thus, we can estimate the two partial derivatives, and linearly combine them to come up

with one estimator forDpρ0(xit ,ci) under xi1 = xi2; the estimator will be shown to be twice

as efficient as the naive estimator. This “differentiation-first” idea is opposite to Linton and

Nielsen’s (1995) “integration-first.”

In Section 2, we present our main result on estimating partial derivativesD pρ0(xit ,ci),

assuming that all regressors are absolutely continuous and only two waves are available. In

Section 3, we consider mixed cases with continuous and discrete regressors, and allow more

than two periods using minimum distance estimation; also discuss in this section is an as-

sumption that can simplify the estimator of Section 2. In Section 4, a simulation study is

provided. In Section 5, conclusions are drawn. Details of proofs are gathered in Appendix.

Throughout the paper, sometimes we will drop the indexi in view of the iid assumption, and
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a conditional mean, sayE(y | z = zo ), will be denoted simply asE(y | zo ); “=⇒” will be used

for convergence in law.

2. Estimator

Define

ρ(xit ,ci) ≡ ρ0(xit ,ci)−ρ0(0,ci)

to rewrite (1.1) as

yit = ρ(xit ,ci)+ρ0(0,ci)+αi +uit , (2.1)

which implies

ρ(0,ci) = 0 and Dpρ(xit ,ci) = Dpρ0(xit ,ci) for p = 1, . . .,kx. (2.2)

First differencing yields

∆yi = ρ(xi2,ci)−ρ(xi1,ci)+∆ui = µ(xi1,xi2,ci)+∆ui, (2.3)

where∆yi ≡ yi2− yi1, ∆ui ≡ ui2−ui1, and

µ(xi1,xi2,ci) ≡ ρ(xi2,ci)−ρ(xi1,ci).

Subtraction byρ0(0,ci) in ρ(xit ,ci) is a normalization, forρ0 is identified only up to a function

of ci.

Define

zi ≡ (x′i1,x′i2,c′i)
′ and k ≡ 2kx + kc.

Let the density function forzi be f (zi). For ak-dimensional kernelM(·), a bandwidthh, and

an evaluation pointzo = (zo1, . . ., zok)
′ = (x′o1,x′o2,c′o)′, define

fN(zo) ≡ fN(xo1,xo2,co) ≡ (Nhk)−1
N

∑
i=1

M
(zi − zo

h

)
,

gN(zo) ≡ gN(xo1,xo2,co) ≡ (Nhk)−1
N

∑
i=1

M
(zi − zo

h

)
∆yi,

mN(zo) ≡ mN(xo1,xo2,co) ≡ gN(zo)/ fN(zo) when fN(zo) > 0.

(2.4)
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For an integerp with 1 ≤ p ≤ kx andq = p + kx, two “naive” estimators forDpρ(xo,co) is

defined as

DprN,1(xo,co) ≡−DpmN(zo) (2.5)

≡ {N fN(zo)hk+1}−1
N

∑
i=1

DpM
(zi − zo

h

)
{∆yi −mN(zo)}, (2.6)

DqrN,2(xo,co) ≡ DqmN(zo) (2.7)

≡−{N fN(zo)hk+1}−1
N

∑
i=1

DqM
(zi − zo

h

)
{∆yi −mN(zo)}. (2.8)

For a constantwo, an integerp with 1 ≤ p ≤ kx, and q = p + kx, our estimator for

Dpρ(xo,co) is: with xo1 = xo2 ≡ xo in zo,

DprN(xo,co) ≡ woDqmN(zo)− (1−wo)DpmN(zo)

= −wo{N fN(zo)hk+1}−1
N

∑
i=1

DqM
(zi − zo

h

)
{∆yi −mN(zo)}

+(1−wo){N fN(zo)hk+1}−1
N

∑
i=1

DpM
(zi − zo

h

)
{∆yi −mN(zo)}

= −{N fN(zo)hk+1}−1
N

∑
i=1

{
woDqM

(zi − zo

h

)

− (1−wo)DpM
(zi − zo

h

)}
{∆yi −mN(zo)}. (2.9)

This is a linear combination of two partial derivatives ofmN(zo) wrt zoq = xo2p andzop = xo1p.

Unless otherwise mentioned,zo includes the restrictionxo1 = xo2 in the rest of the paper.

Under some conditions specified below,DprN(xo,co) is consistent for

woDqµ(zo)− (1−wo)Dpµ(zo) = Dpρ(xo,co) (2.10)

owing toDqµ(zo) = Dpρ(xo,co) = −Dpµ(zo).

With “under-smoothing,” we get

(Nhk+2)1/2{DprN(xo,co)−Dpρ(xo,co)}
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− (Nhk+2)1/2{DprN(xo,co)−E(DprN(xo,co) )} = op(1); (2.11)

i.e., the asymptotic distribution forDprN(xo,co)−Dpρ(xo,co) can be obtained from that of

DprN(xo,co)−E(DprN(xo,co) ). Also, the multiplicative factorsfN(zo)−1 andmN(zo) appear-

ing in DprN(xo,co) can be replaced for the asymptotic distribution by their probability limits

f (zo)−1 andµ(zo), respectively, because they converge faster than the partial derivative esti-

mators. Hence the asymptotic distribution can be obtained by applying the Lindeberg CLT to

(Nhk+2)1/2 times

−{N f (zo)hk+1}−1
N

∑
i=1

[{
woDqM

(zi − zo

h

)

− (1−wo)DpM
(zi − zo

h

)}{
∆yi −µ(zo)

}

−E
({

woDqM
(zi − zo

h

)
− (1−wo)DpM

(zi − zo

h

)}{
∆yi −µ(zo)

})]
. (2.12)

The resulting asymptotic distribution is, again under some conditions given below including

DpM(zo) = DqM(zo),

(Nhk+2)1/2{DprN(xo,co)−Dpρ(xo,co)}

=⇒ N

(
0,{w2

o +(1−wo)2} f (zo)−1V (∆u |zo )
∫ {

DpM(ξ )
}2

dξ
)

. (2.13)

Choosingwo = 1/2 gives the smallest asymptotic variance

1
2

f (zo)−1V (∆u | zo )
∫ {

DpM(ξ )
}2

dξ ,

which is one half the asymptotic variance of the naive estimator; thusour estimator is twice

as efficient as the naive estimator. From now onwo = 1/2 unless otherwise noted.

If ui1 andui2 are iid, then the asymptotic variance becomes

f (zo)−1V (ui | zo )
∫ {

DpM(ξ )
}2

dξ , (2.14)

which is analogous to the single equation nonparametric derivative asymptotic variance in

Vinod and Ullah (1988). In the following we list our assumptions and state the consistency

and asymptotic distribution in a theorem.
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Assumption 1. The kernel M(z) is bounded and differentiable with bounded support, M(z) =

M(−z),
∫ {DpM(z)}dz = 0 for all p,

∫
zpDsM(z)dz = −1 for p = s and 0 otherwise, and∫

DpM(z)DsM(z)dz = 0 for p �= s.

Assumption 2. The bandwidth h is a function of N such that Nhk+2 → ∞ and Nhk+4 → 0 as

N → ∞.

Assumption 3. The density f (z) for z is twice continuously differentiable with bounded sec-

ond derivatives. ρ(xit ,ci) is twice continuously differentiable with bounded second deriva-

tives, and Eρ(xit ,ci)
2 < ∞ for t = 1,2.

Assumption 4. (1.2) holds, E(∆ui)
2 < ∞, and E{ (∆ui)

2 | z} is twice continuously differen-

tiable wrt z.

Assumption 5. (x′i1,x′i2,c′i,yi1,yi2)
′, i = 1, . . .,N, are observed, and iid across i.

For our simulation, we will use a product kernelM(z) = ∏k
j=1 K(z j) whereK is bounded

and differentiable with bounded support, andK(a) = K(−a); the product kernel satisfies As-

sumption 1. In Assumption 2, the rateNhk+2 → ∞ is to make the asymptotic variance of the

estimator go to zero, and the rateNhk+4 → 0 is to make the asymptotic bias go to zero, which

is under-smoothing. Although the latter is analogous to the usual kernel estimator zero-bias

rate, the former is slower byh2 due to the differentiation of the kernel regression estimator.

Theorem 1. Under Assumptions 1–5, DprN(xo,co)
P−→ Dpρ(xo,co), and the asymptotic nor-

mality (2.13)holds, where xo1 = xo2 = xo in zo (the proof is in Appendix).

The asymptotic variance can be estimated consistently by

1
2

fN(zo)−1VN(∆u | zo )
∫ {

DpM(ξ )
}2

dξ (2.15)

where

VN(∆u | zo ) ≡ {
Nhk fN(zo)

}−1
N

∑
i=1

M
(zi − zo

h

)
(∆yi)

2−mN(zo)2.
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3. Discussion on the estimator

In this section, we examine further aspects of the estimator. First, the so-called mixed

cases with continuous and discrete regressors are studied. Second, more than two waves are

allowed under the framework of minimum distance estimation (MDE). Third, a simplifying

assumption for the estimator is introduced. Fourth, other remaining issues are discussed.

3.1. Continuous/discrete regressors

It is helpful to start with the usual kernel regression for a cross-section nonparametric

modelyi = ρ(xi)+ui with E(ui |xi ) = 0. Supposexi consists of akxc ×1 continuous random

vectorxic and akxd ×1 discrete random vectorxid, andk ≡ kxc + kxd . Consider estimating

E(y |xo ) = E(y |xoc,xod ); let f (xc |xd ) denote the conditional density forxc |xd , andNod the

number of observations withxid = xod . A “cell-based” estimator forE(y |xo ) is

ρN(xo) ≡
N

∑
i=1

Kc

(xic − xoc

h

)
1[xid = xod ]yi

/ N

∑
i=1

Kc

(xic − xoc

h

)
1[xid = xod ]

=
{

Nodhkxc fN(xoc |xod )
}−1

N

∑
i=1

Kc

(xic − xoc

h

)
1[xid = xod ]yi,

whereKc is a kernel forxc, 1[A ] = 1 if A holds and 0 otherwise, and

fN(xoc |xod ) ≡ (Nodhkxc)−1
N

∑
i=1

Kc

(xic − xoc

h

)
1[xid = xod ].

Under some conditions analogous to those in the preceding section, we get

(Nodhkxc)1/2{ρN(xo)−ρ(xo)
}

=⇒ N

(
0, f (xoc |xod )−1V (u |xo )

∫
Kc(ξ )2dξ

)
.

An alternative estimator to the cell-based estimator is obtained by applying smoothing

indiscriminately with a kernel, e.g.,K(xo) = Kc(xoc)Kd(xod) whereKd(0) = 1 and|Kd| ≤ 1:

rN(xo) ≡
N

∑
i=1

K
(xi − xo

h

)
yi

/ N

∑
i=1

K
(xi − xo

h

)
.
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Doing analogously to Bierens (1987, p. 116), we get

(Nhkxc)1/2{ rN(xo)−ρ(xo)
}

=⇒ N

(
0,

{
f (xoc |xod )P(xd = xod )

}−1
V (u |xo )

∫
Kc(ξ )2 dξ

)
.

Multiplying both sides by(Nod/N)1/2 P−→ {P(xd = xod)}1/2, we get the same asymptotic

variance and the convergence rate(Nodhkxc)1/2 as in the cell-based estimator. In essence, this

shows that applying smoothing to all regressors, continuous or discrete, gives the same result

as the cell-based estimator. If we differentiaterN(xo) wrt a component, say thejth component

xo j, h−1 appears regardless of whether the component is continuous or discrete. Thus the

convergence rate is(Nhkxc+2)1/2 for D jrN(xo) (and(Nodhkxc+2)1/2 for D jρN(xo)); again, there

is no difference for the asymptotic inference whether we useD jrN(xo) or D jρN(xo).

Going back to our estimatorDprN(xo,co), supposezi consists of akn ×1 continuous ran-

dom vectorzin and akd ×1 discrete random vectorzid. It holds analogously that, applying

smoothing to all regressors,

(Nhkn+2)1/2{DprN(xo,co)−Dpρ(xo,co)
}

=⇒ N

(
0,

1
2

{
f ( zon | zod )P( zd = zod )

}−1
V (∆u | zo )

∫
{DpM(ξ )}2 dξ

)
.

3.2. More than two waves

Consider the three period case first; we will deal only with the equal numberN of observa-

tions across all periods. Using two pairs of period 1 and 2, and 2 and 3, we get two estimators,

respectively:

DprN1(xo,co) ≡−1
2

{
Nhk+1 fN1(zo)

}−1

×
N

∑
i=1

{
DqM

(zi − zo

h

)
−DpM

(zi − zo

h

)}{
∆yi1−mN1(zo)

}
,

DprN2(xo,co) ≡−1
2

{
Nhk+1 fN2(zo)

}−1
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×
N

∑
i=1

{
DqM

(zi − zo

h

)
−DpM

(zi − zo

h

)}{
∆yi2−mN2(zo)

}
,

where the subscripts 1 and 2 denote the first and the second pairs, respectively; recall thatzo

includes the restrictionxo1 = xo2 ≡ xo. Define 12 ≡ (1,1)′ and

DpRN(xo,co) ≡
(

DprN1(xo,co), DprN2(xo,co)
)′

.

For a weighting matrixW , an MDE is

DprN(xo,co) ≡ (1′2W−112)
−11′2W−1DpRN(xo,co),

which implies

(Nhk+2)1/2{DprN(xo,co)−Dpρ(xo,co)
}

≡ (1′2W−112)
−11′2W

−1× (Nhk+2)1/2{DpRN(xo,co)−Dpρ(xo,co)12}
= (1′2W−112)

−11′2W
−1× (Nhk+2)1/2{DpRN(xo,co)−E

{
DpRN(xo,co)

}}+op(1).

The (efficient) MDE is obtained by settingW equal to the asymptotic variance matrix

for (Nhk+2)1/2DpRN(xo,co). We already know the diagonal elements ofW (and how to esti-

mate them). The off-diagonal term ofW is the covariance betweenD prN1(xo,co) andDprN2(xo,co),

which is shown to be zero in the Appendix. Hence, the MDE can be written as a variance-

weighted average:

{v2/(v1 + v2)}DprN1(xo,co)+{v1/(v1 + v2)}DprN2(xo,co)

with W = diag(v1,v2). If V (∆ui1 | zo ) = V (∆ui2 | zo ), then

v2/(v1 + v2) = f1(zo)/{ f1(zo)+ f2(zo)}

where f1 is the density for(x′i1,x′i2,c′i)
′, and f2 is the density for(x′i2,x′i3,c′i)

′. Furthermore, if

f1(zo) = f2(zo) holds additionally, thenW = diag(1/2,1/2).
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In general, if there areT waves, there will beT − 1 pairs (1 and 2,. . . , T − 1 andT ).

Defining 1T−1 as(T −1)×1-vector of 1’s, the MDE is

DprN(xo,co) ≡ (1′T−1W−1
N 1T−1)

−11′T−1W−1
N DpRN(xo,co),

whereDpRN(xo,co) ≡ (DprN1(xo,co), . . .,DprN,T−1(xo,co))′, WN is a diagonal matrix of di-

mensionT −1 with its jth element being

1
2

fN j(zo)−1VN(∆uj | zo )
∫
{DpM(ζ )}2 dζ ,

which is (2.15) estimated using thejth pair. As for the asymptotic distribution,

(Nhk+2)1/2{DprN(xo,co)−Dpρ(xo,co)
}

=⇒ N(0, (1′T−1W−11T−1)
−1 ),

whereWN
P−→W .

3.3. A simplifying assumption

Going back to the two-wave case, suppose

Dp f (z) = Dq f (z); (3.1)

recall thatq = kx + p, i.e., Dp f andDq are the derivatives off wrt the pth components ofx1

andx2, respectively. Note thatDp f (z) = Dq f (z) is implied by

f (x1,x2 |c ) = f (x2,x1 |c ),

where f (x1,x2 |c ) denotes the conditional density for(x1,x2 |c ); this condition is the “ex-

changeability” ofxi1 andxi2 givenci. Under this condition, we may use only a half ofDprN(xo,co):

Dpr̂N(xo,co) ≡−1
2

{
N fN(zo)hk+1}−1

N

∑
i=1

{
DqM

(zi − zo

h

)
−DpM

(zi − zo

h

)}
∆yi,

which is a linear combination of two partial derivatives ofgN(zo) wrt zoq = xo2p andzop = xo1p

divided by fN(zo); recall (2.4). AsgN(zo)
P−→ g(zo) ≡ f (zo)µ(zo), Dpr̂N(xo,co) is consistent

for

1
2

{
Dqg(zo)−Dpg(zo)

}
/ f (zo)
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=
1
2

{
µ(zo)Dq f (zo)+ f (zo)Dqµ(zo)−µ(zo)Dp f (zo)− f (zo)Dpµ(zo)

}
/ f (zo)

=
1
2

{
Dqµ(zo)−Dpµ(zo)

}

= Dpρ(xo,co).

AlthoughDpr̂N(xo,co) is simpler thanDprN(xo,co), it is less efficient unlessE(∆y | zo) = 0,

for it can be shown that

(Nhk+2)1/2{Dpr̂N(xo,co)−Dpρ(xo,co)
}

=⇒ N

(
0,

1
2

f (zo)−1E
(
(∆y)2

∣∣ zo
)∫ {

DpM(ξ )
}2

dξ
)

;

note thatE
(
(∆y)2

∣∣ zo
) ≥V (∆y | zo ) = V (∆u | zo ).

3.4. Averaging

As is the “integration” idea proposed by Linton and Nielsen (1995) and Porter (1997,

unpublished paper), averagingmN(xi1,xo,co) over all i results in an estimator forρ(xo,co)+

C1, whereC1 is an unknown constant. Similarly, averaging−mN(xo,xi2,co) results in an

estimator forρ(xo,co)+C2, whereC2 is an unknown constant. Note that unknown constants

C1 andC2 disappear if these estimators forρ(xo,co) are differentiated wrtxo. That is, we can

obtain other estimators forDpρ(xo,co) as

Dq

{
N−1

N

∑
i=1

mN(xi1,xo,co)
}

= N−1
N

∑
i=1

DqmN(xi1,xo,co)

= N−1
N

∑
i=1

[
−{N fN(xi1,xo,co)hk+1}−1

×
N

∑
j=1

DqM
(z j − (x′i1,x′o,c′o)′

h

)
{∆y j −mN(xi1,xo,co)}

]

= −N−2
N

∑
i=1

{ fN(xi1,xo,co)hk+1}−1

14



×
N

∑
j=1

DqM
(z j − (x′i1,x′o,c′o)′

h

)
{∆y j −mN(xi1,xo,co)}

Dp

{
−N−1

N

∑
i=1

mN(xo,xi2,co)
}

= −N−1
N

∑
i=1

DpmN(xo,xi2,co)

= −N−1
N

∑
i=1

[
−{N fN(xo,xi2,co)hk+1}−1

×
N

∑
j=1

DpM
(z j − (x′o,x′i2,c′o)′

h

)
{∆y j −mN(xo,xi2,co)}

]

= N−2
N

∑
i=1

{ fN(xo,xi2,co)hk+1}−1

×
N

∑
j=1

DpM
(z j − (x′o,x′i2,c′o)′

h

)
{∆y j −mN(xo,xi2,co)}

3.5. Other issues

Instead ofDpρ(xo,co), one may wish to estimate the average derivativeE(Dpρ(xo,co)),

hoping to achieve the usual
√

N-rate. But the restrictionxo1 = xo2 = xo in zo makes designing

an averaged version forDprN(xo,co) and then deriving the asymptotic distribution far from

straightforward. Even if this is done, the convergence rate does not seem to be
√

N, but

(Nhkx)1/2 because the restrictionxo1 = xo2 makes the averaging only(kx + kc)-dimensional;

the intuition for this conjecture may be gained in the proof in Appendix for the above MDE.

Instead ofDpρ(xo,co), one may wish to recoverρ(xo,co) by integratingDprN(xo,co)

for xo. But this will run into the problem of integrating back a partial derivative, with functions

of non-differentiated components lost.

In practice, choosing the bandwidthh is a critical problem. For derivative estimation, there

is no automatic selection rule as CV, because there is no “prediction target” which would be

the dependent variable in the usual CV for kernel regression function estimation. A suggestion

15



is to get the naive estimator CV bandwidth, and use the bandwidth as an upper bound.

The three issues mentioned ahead are important, but studying them in this paper to some

degree of satisfaction will take us too far apart as well as being technically challenging to say

the least. We leave these for future research.

4. A simulation study

In order to investigate the small sample properties of our estimator, we perform Monte

Carlo experiments. In our DGP for the experiments,xit j’s independently follow a chi-square

distribution with 3 degrees of freedom,χ 2
3 , centered at zero,

ci =
1

2T

T

∑
t=1

(xit1 + xit2)+ v1i and αi =
1

2T

T

∑
t=1

(xit1 + xit3)+ v2i

with v1i andv2i being also independentχ2
3-variables centered at zero, anduit is an indepen-

dent N(0,1)-variable. The unit-specific termα i is correlated withxit , that is, our model is a

related-effect model; the time-invariant regressorci is also correlated withxit . All data are

independently generated acrossi andt. Defining

sit = s(xit ,ci) =
kx

∑
j=1

xit j + ci,

we investigate the following DGPs: Response variablesyit are generated as in (1.1) with

DGP1 ρ0(xit ,ci) = 10sit and

DGP2 ρ0(xit ,ci) = sit/4+φ(sit),

whereφ is the standard normal density. Thus, the parameters to estimate are

DGP1 Dpρ(xo,co) = 10 and

DGP2 Dpρ(xo,co) = 1/4− soφ(so),

respectively, whereso = s(xo,co). Throughout our experiments, we concentrate on estimat-

ing Dpρ(xo,co) with p = 1: xo1 is −2,−1, 0 or+1, whilexo j = E(xit j) = 0 for j = 2, . . .,kx,

andco = E(ci) = 0; the number of evaluation points is 4.
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In our Monte Carlo designs, we try 3 smple sizesN = 200, 500 and 1000, 3 different

numbers of time-variant regressorskx = 1, 2 and 3 whereaskc = 1 is fixed, and 3 different

numbers of time periodsT = 2, 3 and 4; that is, 27 cases in total. We also consider how

sensitive our estimator is to bandwidth choice: bandwidths are chosen ash = h0N−1/(k+3)

with h0 = 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 and 4.0 andk = 2kx +kc. Note that the bandwidths satisfy

Assumption 2. We compare our estimatorD1rN(xo,co) to the naive estimatorDqmN(zo) with

q = kx +1. The number of Monte Carlo replications is 1000. All calculations were done with

MATLAB version 5.3.

The results are shown in Tables 1–7. Tables 1–3 are for DGP1 withT = 2: Tables 1, 2

and 3 show, respectively, mean squared error (MSE), bias and standard deviation (SD). Tables

4–6 are for DGP2 withT = 2: Tables 4, 5 and 6 show, respectively, MSE, bias and SD. The

details for cases withT = 3 or 4 are not provided (available from the second author upon

request); instead, some summary measures are shown in Table 7 along withT = 2 cases. Out

of the seven bandwidths we tried, only three of them are reported: the smallest (h0 = 1.0), the

optimal one (h0 = 2.0, 2.5 or 3.0) minimizing the sum of MSE’s at the four evaluation points,

and the largest (h0 = 4.0). In a given table, AVG is of our estimator (e.g., AVG in Table 1

is our estimator’s MSE) whereas A/N denotes 100 times the ratio of our estimator’s and the

naive estimator’s. AVG in the last column “SUM” shows the sum of the four MSE’s in Tables

1 and 4, the sum of the four squared biases in Tables 2 and 5, and the square root of the sum

of the four variances (squared SD’s) in Tables 3 and 6. A/N in the SUM column is similarly

100 times the ratio of our estimator’s and the naive estimator’s.

In the first panel forkx = 1 in Table 1, A/N ranges from 58.4 to 99.6, and the smallest

bandwidth gives the smallest A/N. This can be understood looking at the corresponding parts

of Tables 2 and 3: ash goes up, bias dominates SD (recall that our and the naive estimators

have the same order of bias), leading to no advantage of ours over the naive estimator. This

pattern persists for the whole Monte Carlo designs. In the second panel forkx = 2, A/N ranges

over 29.7 to 242.9, but the numbers greater than 100 occurred only twice when the smallest
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bandwidth were too small. Judging from the SUM column, the outcome underkx = 2 is

similar to that underkx = 1, except that there is a notable improvement in A/N nearing 50

with the smallest bandwidth; undersmoothing seems to matter much indeed. This point is

further corroborated by the third panel withkx = 3 where A/N of the SUM column ranges

over 38.5 to 48.5 with the smallest bandwidth.

Turning to Table 2, the theory predicted basically the same magnitude of bias for our

estimator and the naive one. A/N of the SUM column supports this finding except two cases

with numbers 55.9 and 39.1. Askx goes up from one to two and then three, one can see that

the smallest bandwidth becomes too small, resulting in bias being the smallest for the middle

optimal bandwidth. Except two entries, all A/N are positive, indicating that the sign of bias of

the naive estimator and ours agrees most of times, which was also expected.

In Table 3, the theory predics A/N to be about 70.7= 100×√
1/2. In the first panel with

kx = 1, A/N ranges over 74.9 to 89.6, bigger than the predicted 70.7. But in the third panel,

as the estimation problem gets harder with more regressors, the range of A/N widens, and

smaller numbers, in the range of 59.1 to 75.8, appear in A/N in the SUM column, confirming

the prediction around 70.7.

Tables 4–6 show more or less the same points made for Tables 1–3, although there are

some differences due to the nonlinear DGP and different densities around the evaluation

points.

Turning to Table 7 for the summary of A/N, there is not much change for bias acrossN, kx

andT . As N goes up, both MSE and SD become smaller, where as they become larger asT

goes up. This is odd, for a higherN or T means more data. We found that the MDE with the

optimal weighting did not work well. But it is well known that small sample behavior of the

so-called optimally weighted estimators in MDE and generalized methods of moments does

not match well its asymptotic distribution; see Hansen et al. (1996), Koenker et al. (1994) and

the references therein. In practice, it may be a good idea to use the equally-weighted version

with the identity weighting matrix along with the optimal version.

18



5. Conclusion

We have studied nonparametric derivative estimation for related-effect panel data models.

The estimator proposed in this paper is a weighted average of the two naive kernel derivative

estimators. Its consistency and asymptotic normality was shown. The estimator is twice as

efficient as the naive estimator and the order of bias is the same. These theoretical findings

were supported by Monte Carlo experiments. We leave the problem of bandwidth choice for

future research, which is practically important but hard to find satisfactory answers for.

Appendix

Proof of Theorem 1.

Before we get into derivative estimation, we quickly review the usual kernel estimation

because the proofs for derivatives are analogous; the line of review follows Vinod and Ullah

(1988). Recall notations in (2.4). Observe, using change-of-variables, Taylor’s expansion of

second order tof (z), and
∫

ζ M(ζ )dζ = 0,

E fN(zo) = h−k
∫

M
(ξ − zo

h

)
f (ξ )dξ =

∫
M(ζ ) f (zo +hζ )dζ = f (zo)+O(h2),

V fN(zo) = N−1
[

E
{

h−2kM
(zi − zo

h

)2}
−{

E fN(zo)
}2

]

= (Nhk)−1 f (zo)
∫

M(ζ )2 dζ +o
(
(Nhk)−1)

.

Doing analogously,

EgN(zo) = h−k
∫

M
(ξ − zo

h

)
µ(ζ ) f (ξ )dξ = µ(zo) f (zo)+O(h2),

VgN(zo) = (Nhk)−1µ(zo) f (zo)
∫

M(ζ )2 dζ +o
(
(Nhk)−1)

;

note thatEρ(xit ,ci)
2 < ∞ andE(∆ui)

2 < ∞ assure

E(∆yi)
2 = E

{
ρ(xi2,ci)−ρ(xi1,ci)+∆ui

}2
< ∞.
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UnderNhk+4 → 0,

(Nhk)1/2{ fN(zo)− f (zo)
}− (Nhk)1/2{ fN(zo)−E fN(zo)

}
= op(1),

and using the Lindeberg CLT,

(Nhk)1/2{ fN(zo)−E fN(zo)
}

= N−1/2
N

∑
i=1

[
h−k/2M

(zi − zo

h

)
−h−k/2E

{
M

(zi − zo

h

)}]

=⇒ N

(
0, f (zo)

∫
M(ζ )2 dζ

)
;

h−k/2E
{

M
(
(zi−zo)/h

)}
is negligible for the asymptotic variance, because it is of orderO(hk/2).

Analogously, withg(zo) = µ(zo) f (zo),

(Nhk)1/2{gN(zo)−g(zo)
}

= (Nhk)1/2{gN(zo)−EgN(zo)
}

+op(1)

=⇒ N

(
0, f (zo)E{ (∆y)2 | zo}

∫
M(ζ )2 dζ

)
.

These lead to the asymptotic distribution for(Nhk)1/2{mN(zo)−µ(zo)} as follows:

(Nhk)1/2{mN(zo)−g(zo)/ f (zo)
}

= (Nhk)1/2{mN(zo)−g(zo)/ fN(zo)+g(zo)/ fN(zo)−g(zo)/ f (zo)
}

= (Nhk)1/2[ fN(zo)−1{gN(zo)−g(zo)
}−g(zo)

{
fN(zo) f (zo)

}−1{
fN(zo)− f (zo)

}]
= (Nhk)1/2[ f (zo)−1{gN(zo)−EgN(zo)

}−µ(zo) f (zo)−1{ fN(zo)−E fN(zo)
}]

+op(1)

= (Nhk)1/2
N

∑
i=1

[
f (zo)−1

{
h−k/2M

(zi − zo

h

)
∆yi −h−k/2E

(
M

(zi − zo

h

)
∆yi

)}

−µ(zo) f (zo)−1
{

h−k/2M
(zi − zo

h

)
−h−k/2E

(
M

(zi − zo

h

))}]
.

Applying the CLT to this, the first and second term in the sum yield the variance, respectively,

E{ (∆yi)
2 | zo} f (zo)−1

∫
M(ζ )2 dζ and µ(zo)2 f (zo)−1

∫
M(ζ )2 dζ ,
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while the covariance isµ(zo)2 f (zo)−1∫
M(ζ )2 dζ . Putting these variances and covariance

together renders

(Nhk)1/2{mN(zo)−µ(zo)} =⇒ N

(
0,E{ (∆u)2 | zo} f (zo)−1

∫
M(ζ )2 dζ

)
.

Turning to derivatives, observe, for somez∗o,

E{Dq fN(zo)} = h−k−1
∫

DqM
(ξ − zo

h

)
f (ξ )dξ

= −h−1
∫

DqM(ζ )
{

f (zo)+hD f (zo)ζ +
h2

2
ζ ′D2 f (z∗o)ζ

}
dζ

= −Dq f (zo)
∫

DqM(ζ )ζq dζ +O(h)

= Dq f (zo)+O(h),

whereD f andD2 f are the (row) gradient vector and the Hessian matrix off , respectively,

and Assumption 1 is used. Doing analogously,

V{Dq fN(zo)} = N−1
[

E
{
−h−k−1DqM

(zi − zo

h

)}2−
{

E
(

Dq fN(zo)
)}2]

= (Nhk+2)−1 f (zo)
∫
{DqM(ζ )}2dζ +o((Nhk+2)−1).

As for DqgN(zo), notingDqg(zo) = f (zo)Dqµ(zo)+ µ(zo)Dq f (zo),

E{DqgN(zo)} = Dqg(zo)+O(h),

V{DqgN(zo)} = (Nhk+2)−1 f (zo)E{ (∆y)2 | zo}
∫
{DqM(ζ )}2 dζ +o((Nhk+2)−1).

UnderNhk+4 → 0,

(Nhk+2)1/2{Dq fN(zo)−Dq f (zo)}− (Nhk+2)1/2{Dq fN(zo)−EDq fN(zo)} = op(1).

The same rateNhk+4 → 0 appeared for the regression function estimation, because the or-

der of the bias for the derivative estimation isO(h), and we get the same asymptotic bias

rate(Nhk+4)1/2 whenh is multiplied into the convergence rate(Nhk+2)1/2. Now

(Nhk+2)1/2{Dq fN(zo)−EDq fN(zo)}
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= (Nhk+2)1/2×N−1
N

∑
i=1

[
−h−k−1DqM

(zi − zo

h

)
−E

{
−h−k−1DqM

(zi − zo

h

)}]

= N−1/2
N

∑
i=1

[
−h−k/2DqM

(zi − zo

h

)
+h−k/2E

{
DqM

(zi − zo

h

)}]
.

Hence

(Nhk+2)1/2{Dq fN(zo)−Dq f (zo)} =⇒ N

(
0, f (zo)

∫
{DqM(ζ )}2 dζ

)
.

Likewise, we get

(Nhk+2)1/2{DqgN(zo)−Dqg(zo)}=⇒ N

(
0,E{ (∆y)2 | zo} f (zo)

∫
{DqM(ζ )}2dζ

)
.

Analogously to the steps deriving the asymptotic distribution for the regression function

estimator,

(Nhk+2)1/2{DprN(xo,co)−Dpρ(xo,co)}

= N−1/2
N

∑
i=1

[
wo

{
−h−k/2DqM

(zi − zo

h

){
∆yi f (zo)−1−µ(zo) f (zo)−1}

+h−k/2E
(

DqM
(zi − zo

h

){
∆yi f (zo)−1−µ(zo) f (zo)−1})}

− (1−wo)
{
−h−k/2DqM

(zi − zo

h

){
∆yi f (zo)−1−µ(zo) f (zo)−1}

+h−k/2E
(

DqM
(zi − zo

h

){
∆yi f (zo)−1−µ(zo) f (zo)−1})}]

+op(1).

Applying the CLT, the asymptotic variance of the first (second) term isw2
o ((1−wo)2) times

E{ (∆u)2 | zo} f (zo)−1
∫
{DqM(ζ )}2 dζ .

The leading-order term in the asymptotic covariance is

−2wo(1−wo)h−k f (zo)−2 E
[

DqM
(zi − zo

h

)
DpM

(zi − zo

h

){
∆y−µ(zo)

}2
]
.

Applying change-of-variables and Taylor’s expansion, the expectation becomes

∫ [
DqM(ζ )DpM(ζ )

{
E( (∆y)2 | zo )+hDE( (∆y)2 | zo )ζ +

h2

2
ζ ′D2E( (∆y)2 | z∗o )ζ

}
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−2µ(zo)
{

µ(zo)+hDµ(zo)ζ +
h2

2
ζ ′D2µ(z∗∗o )ζ

}]

×
{

f (zo)+hD f (zo)ζ +
h2

2
ζ ′D2 f (z∗∗∗o )ζ

}
dζ for somez∗o, z∗∗o , andz∗∗∗o .

The leading term with noh is zero, for
∫

DqM(ζ )DpM(ζ )dζ = 0 for p �= q, while the other

terms areo(1). Hence the asymptotic covariance is zero.

Minimum distance estimation zero covariance

Consider the product of the following two terms:

− 1
2
( f (zo)hk/2)−1N−1/2

×
N

∑
i=1

[
DqM

(zi1− zo

h

)
{∆yi1−µ(zo)}−DpM

(zi1− zo

h

)
{∆yi1−µ(zo)}

]
, and

− 1
2
( f (zo)hk/2)−1N−1/2

×
N

∑
i=1

[
DqM

(zi2− zo

h

)
{∆yi2−µ(zo)}−DpM

(zi2− zo

h

)
{∆yi2−µ(zo)}

]
.

Taking the expectation of the product, all cross-product terms involving different individuals

disappear, leaving only

1
4

f (zo)−2h−k

×E

([
DqM

(zi1− zo

h

)
{∆yi1−µ(zo)}−DpM

(zi1− zo

h

)
{∆yi1−µ(zo)}

]

×
[

DqM
(zi2− zo

h

)
{∆yi2−µ(zo)}−DpM

(zi2− zo

h

)
{∆yi2−µ(zo)}

])
.

The variables involved in the smoothing arexi1, xi2, xi3, andci. Thus, change-of-variables

takes the form of

(xit − xo)/h = ζt , for t = 1,2,3, and (ci − co)/h = ζc,

which yieldshk+kx, cancelingh−k and making the covariance termo(1).
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Table 1: DGP1, MSE,T = 2

xo1 = −2 xo1 = −1 xo1 = 0 xo1 = 1 SUM

N h0 AVG A/N AVG A/N AVG A/N AVG A/N AVG A/N

kx = 1

200 1.0 33.00 71.7 50.99 78.7 128.79 79.7 166.33 62.9 379.10 70.6

2.0 20.65 94.0 5.09 74.9 5.56 70.0 11.25 76.4 42.54 82.7

4.0 39.03 99.4 29.05 99.2 14.28 96.8 3.56 84.7 85.92 98.2

500 1.0 19.31 73.8 22.36 77.4 43.89 58.4 133.33 68.4 218.88 67.3

2.0 15.12 95.5 2.63 70.7 3.27 66.1 6.61 68.1 27.63 80.8

4.0 34.28 99.6 21.52 99.1 6.25 96.0 1.35 79.7 63.39 98.5

1000 1.0 13.12 70.2 14.14 64.9 28.83 68.4 65.41 79.7 121.50 73.7

2.0 11.35 96.1 1.65 70.1 2.18 68.5 4.22 65.1 19.39 81.4

4.0 30.68 99.6 15.82 99.6 2.50 95.2 0.79 80.9 49.78 99.0

kx = 2

200 1.0 1131.86 242.9 2096.55 29.7 344.60 54.3 289.61 72.5 3862.62 45.1

2.5 32.91 95.1 18.48 93.3 6.25 69.9 7.13 61.1 64.77 86.4

4.0 46.39 99.9 39.75 99.7 28.86 98.6 14.44 93.8 129.45 98.8

500 1.0 405.01 137.0 446.11 61.6 640.08 99.1 4460.42 85.0 5951.62 86.1

2.5 28.79 96.3 12.65 92.6 3.58 71.7 4.55 60.0 49.57 88.3

4.0 41.98 99.8 33.86 99.8 20.97 99.2 6.86 93.8 103.68 99.2

1000 1.0 201.61 58.6 737.14 38.6 1712.31 45.3 495.70 46.0 3146.76 44.3

2.5 26.03 96.9 8.79 92.8 2.36 67.2 3.49 62.2 40.66 89.5

4.0 39.14 99.8 29.47 99.6 15.04 98.4 3.05 91.2 86.70 99.2

kx = 3

200 1.0 213.93 57.4 590.10 46.4 1002.05 30.2 152.14 123.1 1958.22 38.5

2.5 38.39 94.8 25.95 93.6 11.68 79.1 8.74 57.4 84.75 86.3

4.0 50.88 99.9 45.95 99.6 37.54 99.1 24.85 97.1 159.22 99.2

500 1.0 181.66 87.1 515.42 108.3 269.72 54.8 1010.14 30.0 1976.94 43.5

2.5 33.29 95.1 19.52 92.9 6.29 75.2 5.40 58.2 64.50 87.5

4.0 47.12 99.5 41.24 99.4 31.31 99.5 17.19 98.6 136.86 99.4

1000 1.0 328.47 93.1 676.98 37.9 531.66 45.1 199.69 75.7 1736.80 48.5

2.5 30.97 97.0 15.95 94.5 3.91 70.8 4.29 63.0 55.12 90.2

4.0 44.78 99.7 37.90 99.7 26.47 99.3 11.60 97.9 120.74 99.5
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Table 2: DGP1, Bias,T = 2

xo1 = −2 xo1 = −1 xo1 = 0 xo1 = 1 SUM

N h0 AVG A/N AVG A/N AVG A/N AVG A/N AVG A/N

kx = 1

200 1.0 −1.478 100.9 −0.230 56.4 0.220 −161.1 −2.010 108.2 6.326 109.5

2.0 −4.295 99.3 −1.313 98.9 −0.442 115.3 −0.134 47.8 20.387 98.5

4.0 −6.228 99.9 −5.361 100.0 −3.701 99.9 −1.581 98.8 83.720 99.8

500 1.0 −0.803 74.2 −0.187 54.7 −0.255 154.6 −0.300 71.2 0.835 55.9

2.0 −3.730 99.2 −0.799 101.4 −0.261 96.7 −0.138 69.3 14.637 98.5

4.0 −5.843 99.9 −4.618 99.8 −2.420 99.8 −0.852 99.9 62.045 99.7

1000 1.0 −0.492 92.3 −0.141 93.5 −0.107 −120.4 −0.425 46.3 0.455 39.1

2.0 −3.229 100.3 −0.576 94.4 −0.168 104.7 −0.239 86.8 10.843 100.1

4.0 −5.529 99.9 −3.960 100.1 −1.504 100.2 −0.600 97.7 48.873 99.9

kx = 2

200 1.0 −4.803 81.9 −2.577 317.7 −5.127 103.2 −7.266 105.3 108.782 101.4

2.5 −5.579 99.5 −4.071 100.6 −1.690 101.8 −0.713 100.4 51.062 100.0

4.0 −6.791 100.2 −6.280 100.2 −5.326 100.0 −3.667 99.4 127.361 100.1

500 1.0 −3.354 92.5 −0.744 62.6 −3.221 87.0 −3.969 104.9 37.929 89.1

2.5 −5.259 99.5 −3.342 99.5 −1.092 99.8 −0.570 97.2 40.345 98.9

4.0 −6.466 100.0 −5.803 100.1 −4.545 100.0 −2.505 99.5 102.418 100.0

1000 1.0 −2.774 100.8 −0.919 55.3 0.642 100.6 −4.440 119.7 28.663 117.0

2.5 −5.015 99.6 −2.782 100.1 −0.789 101.0 −0.381 88.4 33.660 99.3

4.0 −6.248 100.0 −5.418 99.9 −3.853 99.7 −1.641 99.5 85.935 99.8

kx = 3

200 1.0 −8.533 101.6 −7.562 91.4 −7.930 107.5 −9.477 96.5 282.689 97.5

2.5 −6.008 100.0 −4.823 99.8 −2.712 100.6 −0.958 104.1 67.627 100.1

4.0 −7.111 100.2 −6.754 100.1 −6.089 100.0 −4.904 99.8 157.307 100.1

500 1.0 −9.012 101.9 −6.350 80.7 −8.510 103.6 −7.768 108.7 254.307 98.3

2.5 −5.625 99.6 −4.222 98.7 −1.873 95.9 −0.646 118.5 53.390 98.3

4.0 −6.852 99.9 −6.407 99.9 −5.573 100.0 −4.091 100.3 135.799 100.0

1000 1.0 −7.131 93.6 −5.705 118.1 −6.215 119.9 −9.221 99.4 207.053 106.6

2.5 −5.471 100.2 −3.843 100.3 −1.342 100.8 −0.447 96.2 46.698 100.5

4.0 −6.684 100.0 −6.147 99.9 −5.129 99.9 −3.362 99.9 120.083 99.9
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Table 3: DGP1, Standard Deviation,T = 2

xo1 = −2 xo1 = −1 xo1 = 0 xo1 = 1 SUM

N h0 AVG A/N AVG A/N AVG A/N AVG A/N AVG A/N

kx = 1

200 1.0 5.554 83.8 7.140 88.8 11.352 89.2 12.745 78.9 19.317 83.8

2.0 1.482 82.1 1.835 81.7 2.317 83.0 3.353 87.5 4.710 84.9

4.0 0.493 79.7 0.558 76.5 0.767 74.9 1.028 80.4 1.483 78.2

500 1.0 4.322 86.4 4.727 88.1 6.623 76.4 11.549 82.7 14.774 82.1

2.0 1.100 84.2 1.413 80.2 1.790 81.1 2.569 82.5 3.607 81.9

4.0 0.372 81.5 0.442 79.0 0.627 79.0 0.788 80.3 1.161 79.8

1000 1.0 3.591 83.6 3.759 80.5 5.371 82.7 8.081 89.6 11.008 86.0

2.0 0.961 79.6 1.148 81.6 1.468 82.6 2.040 80.6 2.925 81.1

4.0 0.325 83.0 0.373 78.8 0.491 79.7 0.653 84.7 0.955 82.2

kx = 2

200 1.0 33.315 160.3 45.738 54.4 17.850 72.2 15.397 82.0 61.299 66.6

2.5 1.336 75.3 1.381 74.5 1.843 74.0 2.575 77.0 3.704 75.7

4.0 0.524 73.9 0.567 74.3 0.707 74.6 0.997 74.5 1.445 74.4

500 1.0 19.853 118.0 21.119 78.5 25.106 99.8 66.702 92.1 76.939 92.8

2.5 1.066 76.1 1.216 79.0 1.545 79.3 2.056 76.4 3.038 77.5

4.0 0.411 75.8 0.439 79.1 0.557 80.1 0.767 77.4 1.123 78.1

1000 1.0 13.932 75.9 27.148 62.1 41.396 67.3 21.828 66.9 55.868 66.3

2.5 0.937 76.8 1.024 77.5 1.319 77.4 1.829 78.5 2.648 77.9

4.0 0.314 72.7 0.335 75.3 0.439 75.5 0.602 75.9 0.875 75.3

kx = 3

200 1.0 11.885 68.4 23.097 66.6 30.661 53.7 7.899 151.4 40.954 59.1

2.5 1.517 72.2 1.639 78.6 2.080 75.9 2.798 73.8 4.141 74.8

4.0 0.567 74.8 0.582 75.2 0.676 75.6 0.890 74.7 1.382 75.0

500 1.0 10.027 87.8 21.808 107.1 14.053 68.2 30.834 53.5 41.525 63.4

2.5 1.284 72.7 1.304 79.1 1.669 78.2 2.233 74.5 3.335 75.8

4.0 0.420 73.2 0.431 76.0 0.497 76.7 0.674 75.6 1.031 75.5

1000 1.0 16.670 97.1 25.398 60.4 22.215 65.4 10.714 80.3 39.132 67.2

2.5 1.020 69.9 1.087 73.4 1.454 75.0 2.023 78.8 2.903 75.8

4.0 0.317 72.3 0.329 75.0 0.397 76.1 0.539 74.3 0.810 74.5
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Table 4: DGP2, MSE,T = 2

xo1 = −2 xo1 = −1 xo1 = 0 xo1 = 1 SUM

N h0 AVG A/N AVG A/N AVG A/N AVG A/N AVG A/N

kx = 1

200 1.0 1.072 42.9 1.096 50.2 1.695 47.4 6.189 42.4 10.052 44.0

3.0 0.052 93.4 0.099 97.3 0.007 56.1 0.060 88.1 0.218 91.6

4.0 0.063 98.6 0.132 99.0 0.008 82.5 0.044 97.8 0.247 98.0

500 1.0 0.734 61.1 0.859 53.1 1.513 57.1 2.911 50.5 6.016 53.5

2.5 0.035 80.5 0.049 88.0 0.014 51.7 0.059 68.6 0.158 74.0

4.0 0.053 98.7 0.111 99.6 0.003 70.9 0.050 94.1 0.218 97.5

1000 1.0 0.597 50.4 0.672 48.3 1.306 44.6 2.433 49.4 5.007 48.0

2.5 0.028 78.2 0.037 82.0 0.012 53.6 0.048 69.0 0.125 72.5

4.0 0.047 97.6 0.095 98.6 0.001 53.3 0.049 96.1 0.193 97.1

kx = 2

200 1.0 1.657 93.2 4.054 74.4 7.088 220.5 2.858 141.7 15.657 125.7

3.0 0.063 95.3 0.126 97.3 0.008 63.7 0.059 89.5 0.256 93.5

4.0 0.074 98.6 0.154 99.2 0.017 93.4 0.026 94.3 0.271 98.2

500 1.0 2.082 41.6 5.351 105.0 2.265 54.7 26.110 254.1 35.808 146.0

2.5 0.052 86.2 0.092 93.4 0.009 49.6 0.071 82.0 0.225 85.0

4.0 0.068 98.8 0.143 99.6 0.011 95.6 0.037 96.1 0.259 98.7

1000 1.0 3.368 49.2 12.179 116.0 16.456 38.1 52.927 655.4 84.930 123.8

2.5 0.047 85.2 0.077 89.4 0.009 51.5 0.071 79.0 0.205 82.0

4.0 0.064 98.5 0.133 99.4 0.007 92.5 0.046 98.2 0.250 98.7

kx = 3

200 1.0 0.507 50.0 6.379 42.4 1.070 36.9 7.539 23.6 15.493 30.4

3.0 0.068 95.8 0.141 98.7 0.012 83.0 0.047 86.1 0.268 94.8

4.0 0.079 99.2 0.165 100.0 0.022 98.7 0.017 91.8 0.283 99.1

500 1.0 2.987 376.3 46.651 32.7 15.945 27.7 0.741 41.4 66.325 32.7

2.5 0.059 90.4 0.114 96.9 0.008 52.1 0.071 81.5 0.253 88.3

4.0 0.076 99.7 0.158 100.0 0.018 98.7 0.022 95.9 0.274 99.5

1000 1.0 1.218 41.6 9.058 109.7 4.423 72.3 0.432 52.5 15.131 83.5

2.5 0.056 92.2 0.104 96.5 0.007 51.2 0.069 87.9 0.235 90.6

4.0 0.072 99.5 0.152 99.9 0.015 98.4 0.027 98.4 0.266 99.5
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Table 5: DGP2, Bias,T = 2

xo1 = −2 xo1 = −1 xo1 = 0 xo1 = 1 SUM

N h0 AVG A/N AVG A/N AVG A/N AVG A/N AVG A/N

kx = 1

200 1.0 −0.054 −1717.1 −0.111 84.5 −0.031 96.5 0.189 80.4 0.052 70.5

3.0 −0.218 100.7 −0.307 100.3 −0.011 79.4 0.219 104.5 0.190 102.8

4.0 −0.248 100.2 −0.361 99.9 −0.081 97.5 0.203 102.5 0.240 100.7

500 1.0 −0.047 97.7 −0.060 86.2 0.007 −10.4 0.078 68.7 0.012 49.5

2.5 −0.164 100.4 −0.202 101.0 0.028 95.5 0.188 98.6 0.103 99.9

4.0 −0.228 100.3 −0.332 100.2 −0.040 103.2 0.218 99.7 0.212 100.2

1000 1.0 0.002 −10.2 −0.083 123.4 −0.044 111.1 0.049 41.9 0.011 55.6

2.5 −0.147 99.9 −0.174 98.5 0.026 105.9 0.170 97.5 0.081 97.1

4.0 −0.215 99.7 −0.307 99.7 −0.010 86.3 0.218 100.0 0.188 99.5

kx = 2

200 1.0 −0.288 92.4 −0.315 89.1 −0.022 23.9 0.002 19.8 0.183 79.2

3.0 −0.245 100.4 −0.351 99.8 −0.060 96.8 0.226 101.3 0.238 100.5

4.0 −0.270 99.9 −0.391 99.9 −0.126 99.4 0.157 100.5 0.266 99.8

500 1.0 −0.191 182.8 −0.151 56.6 −0.049 43.7 −0.067 −95.8 0.066 66.6

2.5 −0.212 100.0 −0.293 100.0 0.003 134.4 0.232 102.4 0.185 101.3

4.0 −0.260 99.7 −0.377 99.9 −0.103 100.3 0.188 99.5 0.256 99.7

1000 1.0 −0.057 −78.0 −0.186 44.9 −0.123 35.3 0.374 982.0 0.193 64.4

2.5 −0.202 98.5 −0.267 98.0 0.018 101.1 0.236 97.9 0.168 96.3

4.0 −0.251 99.6 −0.364 99.8 −0.083 99.5 0.212 100.1 0.248 99.6

kx = 3

200 1.0 −0.307 90.7 −0.292 99.9 −0.191 99.1 −0.054 79.3 0.219 90.6

3.0 −0.257 100.1 −0.372 100.2 −0.094 102.8 0.201 97.4 0.254 99.6

4.0 −0.280 100.0 −0.406 100.2 −0.148 100.8 0.124 98.5 0.280 100.1

500 1.0 −0.218 79.2 −0.151 109.4 −0.046 −88.5 0.017 58.6 0.073 73.9

2.5 −0.233 99.8 −0.331 100.7 −0.027 119.6 0.242 100.1 0.223 100.7

4.0 −0.275 100.1 −0.397 100.1 −0.134 100.5 0.146 99.5 0.272 100.1

1000 1.0 −0.255 116.4 −0.373 89.4 −0.138 97.5 0.018 −53.8 0.224 91.8

2.5 −0.227 99.8 −0.316 100.0 −0.011 106.9 0.238 101.4 0.208 100.7

4.0 −0.268 99.9 −0.389 100.0 −0.122 100.1 0.164 100.0 0.265 100.0
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Table 6: DGP2, Standard Deviation,T = 2

xo1 = −2 xo1 = −1 xo1 = 0 xo1 = 1 SUM

N h0 AVG A/N AVG A/N AVG A/N AVG A/N AVG A/N

kx = 1

200 1.0 1.035 65.4 1.041 70.7 1.302 68.8 2.482 65.1 3.164 66.3

3.0 0.068 71.6 0.068 76.5 0.083 74.8 0.110 70.5 0.168 72.6

4.0 0.036 72.1 0.036 75.7 0.042 74.5 0.056 71.4 0.086 72.9

500 1.0 0.856 78.1 0.925 72.8 1.231 75.6 1.705 71.1 2.452 73.2

2.5 0.092 69.9 0.093 73.1 0.116 71.0 0.154 69.0 0.233 70.3

4.0 0.031 70.6 0.032 74.1 0.039 72.5 0.051 69.4 0.078 71.0

1000 1.0 0.773 71.0 0.816 69.2 1.143 66.7 1.560 70.4 2.236 69.3

2.5 0.081 67.7 0.086 70.8 0.104 72.1 0.137 69.6 0.209 70.1

4.0 0.029 69.5 0.029 72.3 0.035 72.1 0.045 70.4 0.070 71.0

kx = 2

200 1.0 1.255 96.8 1.990 86.2 2.664 148.7 1.692 119.0 3.936 112.5

3.0 0.055 67.6 0.054 69.9 0.066 70.9 0.088 69.6 0.134 69.6

4.0 0.028 67.4 0.028 70.4 0.032 71.3 0.042 70.1 0.066 69.9

500 1.0 1.431 64.0 2.309 102.9 1.505 74.0 5.112 159.4 5.981 121.0

2.5 0.085 68.0 0.080 70.2 0.096 70.4 0.133 70.1 0.201 69.8

4.0 0.022 69.8 0.021 72.5 0.025 71.6 0.033 69.5 0.052 70.6

1000 1.0 1.835 70.1 3.487 108.5 4.057 61.8 7.269 255.7 9.210 111.4

2.5 0.076 67.8 0.077 69.7 0.096 71.1 0.126 69.9 0.192 69.8

4.0 0.019 68.4 0.019 70.1 0.023 71.0 0.031 70.1 0.047 70.0

kx = 3

200 1.0 0.643 67.7 2.510 64.8 1.017 60.1 2.747 48.6 3.910 54.9

3.0 0.050 66.4 0.049 69.9 0.058 72.7 0.078 73.0 0.119 71.1

4.0 0.025 68.7 0.025 71.6 0.027 73.9 0.035 73.7 0.056 72.3

500 1.0 1.715 202.4 6.832 57.1 3.995 52.6 0.861 64.4 8.144 57.1

2.5 0.071 67.4 0.070 70.0 0.085 70.0 0.113 66.4 0.173 68.0

4.0 0.018 68.0 0.018 70.2 0.021 71.8 0.027 70.3 0.043 70.2

1000 1.0 1.074 63.3 2.988 105.0 2.099 85.0 0.657 72.5 3.863 91.3

2.5 0.068 70.9 0.065 72.4 0.081 71.2 0.108 71.6 0.165 71.5

4.0 0.015 69.9 0.016 72.0 0.018 73.3 0.023 73.1 0.036 72.3
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Table 7: Summary of Relative Performance (A/N)

DGP1 DGP2

xo1 −2 −1 0 1 SUM −2 −1 0 1 SUM

MSE

N = 200 97.0 91.4 81.2 72.2 90.4 93.6 96.4 66.7 87.2 91.4

500 97.4 88.8 77.3 69.5 89.7 89.3 92.6 56.7 81.1 85.2

1000 96.3 86.0 73.2 68.6 87.0 88.2 91.1 53.5 81.1 83.7

kx = 1 96.0 80.7 75.6 74.9 86.2 85.4 88.9 57.3 76.6 80.1

2 97.2 89.8 74.3 68.5 89.0 90.6 93.9 55.2 83.1 87.2

3 97.4 95.7 81.8 66.9 91.9 95.1 97.2 64.5 89.7 93.1

T = 2 95.6 86.2 70.9 63.5 85.9 88.6 93.3 56.9 81.3 85.8

3 97.5 89.2 79.5 71.3 90.0 93.9 96.2 61.2 89.2 91.5

4 97.5 90.8 81.3 75.5 91.2 88.6 90.6 58.8 78.9 83.1

Bias

N = 200 99.8 99.1 100.7 95.8 99.5 100.0 99.9 94.0 100.7 100.2

500 99.8 99.2 99.4 98.0 99.3 100.0 99.8 102.1 100.1 99.9

1000 99.8 99.7 103.5 97.4 100.1 99.8 99.7 94.8 100.3 99.7

kx = 1 99.5 98.9 102.1 90.3 99.2 100.0 99.9 100.6 100.9 100.4

2 100.0 99.2 101.1 98.5 99.8 99.7 99.6 89.5 100.0 99.4

3 99.9 99.9 100.5 102.4 99.9 100.2 99.9 100.8 100.3 100.1

T = 2 99.7 99.3 101.8 89.9 99.4 100.0 99.8 104.7 100.1 99.9

3 100.0 99.2 100.1 100.3 99.9 100.1 99.9 89.7 101.3 100.6

4 99.7 99.5 101.8 101.0 99.6 99.8 99.7 96.5 99.8 99.5

Standard Deviation

N = 200 80.0 83.3 82.9 81.6 82.0 72.4 75.8 75.8 74.0 74.4

500 80.0 82.6 82.4 80.9 81.4 72.2 74.3 73.9 71.6 72.7

1000 79.3 81.5 80.5 80.9 80.7 71.6 73.8 72.5 72.8 72.7

kx = 1 85.4 86.1 85.6 85.2 85.5 72.9 76.0 74.8 73.1 73.9

2 78.3 81.2 81.1 80.3 80.4 71.4 73.5 72.8 71.7 72.2

3 75.6 80.2 79.1 77.9 78.2 72.0 74.4 74.6 73.7 73.7

T = 2 76.5 78.4 78.5 78.8 78.4 68.6 71.4 71.6 70.0 70.3

3 81.1 83.8 82.9 81.9 82.3 73.5 76.4 75.8 74.4 74.9

4 81.7 85.3 84.4 82.7 83.4 74.2 76.1 74.9 74.0 74.6
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