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Abstract 
We extend three existing cross-sectional limited dependent variable (LDV) estimators, that allow 

for endogenous regressors, to a panel data model. We focus on estimation of effects of time-

invariant endogenous regressors, since to our knowledge, besides joint maximum likelihood, no 

other alternative consistent parametric estimators than the ones suggested here exist. We compare 

their small sample performance of estimates of marginal effects to i.i.d. LDV estimators as well as 

to linear estimators by means of Monte Carlo Studies. Some notable differences in the performance 

of the LDV estimators appear. One estimator, the 2SIV, performs reasonably well in terms of bias, 

even with weak instruments. Another type, the AGLS estimators, have a large small sample bias 

when no endogeneity is present. The 2SCML estimators seem to perform reasonable in most 

scenarios even under some types of misspecification. In addition, 2SLS performed relatively well, 

but had a substantial MSE with weak instruments and substantial bias in misspecified scenarios. 

Although potentially important because of heterogeneity bias, our extension of LDV models to the 

panel case did not give improvements in small sample performance over the cross-sectional 

estimators. 
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1. INTRODUCTION 

The focus of this paper is estimation of limited dependent variable (LDV) panel data models with 

unobserved individual specific effects and endogenous explanatory variables. The paper contributes 

to this literature by extending three existing cross-sectional limited dependent variable (LDV) 

estimators, that allow for endogenous regressors, to a panel data model. Focus is on estimation of 

effects of time-invariant endogenous regressors, since, to our knowledge, besides doing joint 

maximum likelihood estimation (MLE), no alternative consistent parametric estimators than the 

ones suggested here exist. We conduct a Monte Carlo study in a probit model where we compare 

the performance of these estimators to a host of alternative estimators, focusing on estimation of the 

marginal effect on the probability of observing a one, since this statistic is often of largest interest 

from an applied point of view. 

In empirical studies the specification of a model where the outcome of interest depends on  

unobserved time invariant individual specific effects often comes directly from economic theory, 

e.g. as the marginal utility of wealth in life-cycle models in Heckman and Macurdy (1980). On a 

less structural level, the allowance for individual effects is a parsimonious way of specifying 

individual heterogeneity, when aiming at estimating the causal effect of a regressor on a given 

outcome, allowing for common unobserved determinants of both. The estimators considered in this 

paper reflect different aspects of empirical interests in this type of modelling.  

There is a large literature that struggles with the difficulties in estimating non-linear models with 

unobserved individual specific effects. When the correlation between individual specific effects and 

regressors is unrestricted, most existing estimators rely on time variation in the regressor of interest 

to remove the impact from the unobserved individual effect. Examples include the linear within 

(fixed effect) estimator, the conditional logit estimator (e.g. Andersen (1970)), the minimum 

distance probit estimator suggested by Chamberlain (1980), the maximum score estimator 

developed by Manski (1987), and the semiparametric estimators suggested by Honore (1992), 

Kyriazidou (1997) and Lee (1999). These estimators can not identify the effects of time-invariant 

variables. Therefore, the effects of variables (on relevant outcomes) such as education, gender, 

race, birthweight, height and any variable that is determined at a given point in time can not be 

identified using these methods. One could also imagine certain variables that vary over time for 

some reason are time-invariant in specific samples, e.g. number of children for elderly, minimum 

wages in given regions in given periods etc. In a linear regression model, this can be solved using 



the approach due to Hausman and Taylor (1981). We show that in LDV models, when the 

endogenous time-invariant variable is continuous, the problem of estimating their effects can be 

solved by extending different cross-sectional LDV estimators to the panel data case. The cross-

sectional estimators are the two-stage IV (2SIV) method suggested by Lee (1981), the two-stage 

conditional maximum likelihood (2SCML) estimator suggested by Rivers and Vuong (1988) and 

the two-stage estimator suggested by Amemiya (1978) (AGLS) and elaborated by Newey (1987). 

Our extentions essentially boil down to doing a random effects estimation in the second stage rather 

than a cross-sectional LDV estimation. This is potentially very important in LDV models, since 

heteroscedasticity bias may be severe (see e.g. Horowitz (1993)) and is transmitted to all estimated 

parameters.  

In contrast to this literature, it has been argued that if the aim is to estimate causal marginal effects 

on the outcome of interest, rather than structural parameters, the focus on structural LDV models 

unnecessarily complicates estimation. In relation to this, we ask a simple question. Given that with 

a LDV model at hand, many applied researchers focus on the marginal effects, e.g. on the  

probability of observing a one in a probit model, rather than on the probit parameter per se, how 

well does simpler linear models approximate this marginal effect? Linear models might be superior 

as they rely less on distributional assumptions. The question is related to issues raised by Angrist 

(2001) and the accompanying discussion in a recent issue of Journal of Business and Economic 

Statistics (JBES). The answer to the question may support applied researchers, especially when 

doing exploratory studies, but, from how we read the discussion in JBES, should not guide the 

choice of estimator and model. The latter choice depends more crucially on what the analysis is 

developed to answer, whether there is a need for extrapolation and in the end beliefs about 

credibility of extrapolation from structural models as opposed to e.g. local average treatment effects 

based on a natural experiment. To look at how the suggested estimators perform in small samples, 

and to try to answer the question raised above, we conduct a Monte Carlo study.  

Although we present the panel models in a general LDV framework, we confine attention to a 

probit model in the Monte Carlo studies, where we focus on the estimated marginal effects, for 

reasons mentioned above. There has been some prior Monte Carlo studies in the cross-sectional 

model on the structural parameters, but no studies on marginal effects. Using a probit model with 

individual unobserved effects as data generating process, we compare the properties of the cross-

section and the panel versions of the 2SIV, the 2SCML and the AGLS estimators with the simple 

probit, the random effects (RE) probit and the following linear estimators: OLS, 2SLS, Fixed 



Effects, and Hausman and Taylors (1981) 2SLS estimator. The Monte Carlo results suggest the 

expected that with weak instruments, most two-stage  estimators perform bad and the worse the 

endogeneity problem, the larger advantage of two-stage estimators. The results suggest that the 

two-stage linear estimators produce the worst results in case of weak instruments. Regarding the 

two-stage LDV models, the AGLS estimators have a large small sample bias when no endogeneity 

is present, and in general the 2SCML and 2SIV estimators seem to be preferable for small samples. 

Linear estimators do not perform better than LDV  estimators and often perform worse, particular 

for the types of misspecification considered here. The results suggest that, at least with respect to 

the designs and sample sizes considered in this paper, our extentions to panel models do not 

improve small sample properties.  

The paper is outlined as follows. In the next section we specify the panel LDV model and present 

the panel estimators. In section 3 we write up alternative linear model estimators, in section 4 the 

Monte Carlo designs are described, in section 5 the results are presented and section 6 concludes. 

 

2. THE MODEL 

The LDV model we consider is given by the equations:  

(1), (2)   

*
1

*( , )
1,...,  t=1,...T

it it i it

it it

y X z

y y
i n

β γ ε

τ ψ

= + +

=
=

 

where X1it are regressors of individual i in period t, yit
* is an unobserved latent variable, zi is a 

continuous time-invariant regressor, and eit is an error term. We observe yit according to some 

known function of yit
*, τ, which may depend on nuisance parameters, ψ. This general model 

includes e.g. censored regression models, some duration models, some transformation models and 

quantal response models. 

The focus of our attention is how to estimate γ when zi and εit are correlated. We focus on the 

reduced form model where zi is determined as:  

(3)  i i iz X V= Π +  

where X may include X1 and errors and regressors fulfil:  

(4)  1| , ~ . . (0, ),  ( | ) 0it i it iX X N I D E V Xε Σ =  



that is, the latent variable errors are jointly normal distributed for a given individual and errors in 

(1) and (3) have mean zero conditional on the covariates, X. The covariance between Vi and εit is 

thus left unrestricted and zi is endogenous if this covariance is non-zero1. With linear index 

specifications of y* and zi, we need at least one variable in X that is excluded from the y-equation to 

identify γ. Let X2 be such excluded variables. Given the panel  structure of the model we can 

specify an error component structure:  

(5)  it i itε α ν= +  

where αi is a time-invariant individual effect and νit is a random error. We restrict attention to the 

case where endogeneity of zi arises through correlation between Vi and αi. A variety of estimators 

have been suggested in the mentioned papers considering the cross-sectional model. We focus on 

three of these, which are all based on a first stage linear estimation of (3). The estimators can be 

applied in our panel model, basically by applying a random effects estimator in a second stage 

estimation, as we will show now. 

A two-stage procedure suggested by Lee, summarized in Lee (1981), replaces zi by its predicted 

value from the first stage linear estimation. We can do the same in the panel model, yielding the 

following second stage equation:  

(6)  
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where a ‘^’ denotes estimates from the first stage. The difference to the cross-sectional model is 

that after inserting fitted values to take care of endogeneity of zi, the individual specific effect is 

                                                 
1 Removing time subscripts, this is the cross-sectional model considered by Newey (1987), which 

is closely related to models considered in Lee (1981) and Blundell and Smith (1989). A more 

general system is considered by Blundell and Smith (1994) and, for the probit model, by Heckman 

(1978) and Amemiya (1978), where feedback from the latent variable to the endogenous regressor 

is allowed (structural shifts). The probit version of the system consisting of (1), (2) and (3) was 

considered by Rivers and Vuong (1988) and the special case of the Tobit model was considered by 

Nelson and Olsen (1978), Amemiya (1979) and Blundell and Smith (1986). None of these consider 

extensions to panel models. 

 



still present but is now uncorrelated with regressors, i.e. it is a random effect. The cross-sectional 

estimator is often referred to as the two-stage instrumental variable probit (2SIV). We therefore 

refer to this as the 2SIVR estimator, where R stands for random effects. 

Rivers and Vuong (1988) suggested a control function estimator, using an estimate of E(εit|Vi) to 

correct for endogeneity. Their estimator is called the two-stage conditional maximum likelihood 

estimator (2SCML). We assume, as they do, that the conditional mean is linear in V, implying the 

following2: 

(7)  
V
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where η is the population regression parameter of regressing αi on Vi. Therefore wi is orthogonal to 

zi by construction. Using (7) to replace αi by Vi and wi, and replacing Vi by its estimate from the 

first stage estimation, the equation for y* becomes:  

(8)  
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Again, the presence of wi makes this second stage a random effects model, hence we refer to this 

estimator as the 2SCMLR estimator3. 

                                                 
2 Note that even though this can be justified by a joint normality assumption on (αi,Vi), this is not 

required. In general, the two-stage conditional maximum likelihood procedure is based on the 

conditional likelihood:  f(yi|X1i,zi,θ1,θ2)f(zi|Xi,θ2)and first maximizes f(zi|Xi,θ2) and then, given the 

estimate θ∗
2, maximizes f(yi|X1i,zi,θ1,θ∗

2). Vuong (1984) shows that this procedure yields an 

asymptotic normal distributed estimate of θ1 given standard regularity conditions. It is required that 

the distribution of zi does not depend on  θ1, that a consistent estimate of  θ2 can be obtained and 

that the conditional distribution of y|z is correctly specified. In particular, when the first stage is a 

linear regression, the distribution of z can be left unspecified. 

 
3 This is related to the panel model suggested by Vella and Verbeek (1999), section 3, but they 

focus on time-varying endogenous regressors without the linear index assumption. They explicitly 



Finally, an estimator suggested by Newey (1987) replaces zi in (8) by the reduced form equation 

(3). In the panel version the second stage equation then becomes:  

(9)  
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where λ = γ + η and the α parameters are related to the structural parameters β and γ in the 

following way:  

(10)  1 1 2 2,  α β γ α γ= + Π = Π  

with Π is splitted into Π 1 and Π 2 according to the division of X into X1 and X2. Therefore, if there 

are more than one variable in X2, γ  is overidentified and γ and β  can be estimated as suggested by 

Amemiya (1978), using GLS on the latter equations, yielding:  

(11)  1( ´ ) ´A D W D D Wδ α−=  

where δ  =(β ,γ), D =[Π,J], with J defined as the matrix s.t. X1 = XJ and W is a weighting matrix4. 

Again, the difference to the cross-sectional estimator is to add random effects, wi, to the second 

stage where α1 and α2 are estimated. We refer to this as Amemiyas GLS estimator with random 

effects (henceforth AGLSR). In the following, when referring to any of these estimators in plural 

we mean both the cross-sectional and the panel version, i.e. the 2SIV estimators refer to the 2SIVR 

and the 2SIV estimator.  

From an applied point of view, we note that all the panel estimators require estimation of a random 

effects LDV model in the second stage. With normal distributed individual effects this can be done 

for instance by using Gaussian quadrature, see Butler and Moffitt (1982). Note also that the AGLS 

estimators require one additional estimation compared to the 2SIV and 2SCML estimators. An 

attractive feature of the 2SCML estimators is that they provide an estimate of η, which often is of 

theoretical interest, and the t-test that η is zero is an easy accessible test for exogeneity of  zi. We 

                                                                                                                                                                  
mention that with their procedure they can not test for endogeneity of time-invariant variables like 

education in their empirical application.  

 
4 In the just identified case, δ can be obtained as D-1α. 

 



also note that our panel specification allows the use of instrumental variables (X2 variables) 

generated from X1 as suggested by Hausman and Taylor (1981)5. 

Asymptotic normality holds for all the estimators, as seen e.g. by applying the proof in Newey 

(1987) or in Vuong (1984), replacing individual likelihood contributions with joint likelihoods over 

time for each individual. Newey shows that under joint normality of the error terms, when W is a 

consistent estimator of the asymptotic covariance matrix of the estimate of (α – Dδ), the AGLS 

estimator is asymptotically efficient in the class of GLS estimators which includes the 2SIV 

estimator and the 2SCML estimator. Rivers and Vuong (1988) note that in the just-identified case, 

under joint  normality, 2SCML is identical to joint MLE, and thus efficient. This is also the case for 

our panel estimator. 

The small sample behavior of the structural cross-sectional LDV estimates has been investigated in 

a few number of studies. Rivers and Vuong (1988) conduct a small Monte Carlo study based on 

100 observations, where they compare the performance of 2SIV, 2SCML and G2SP cross-sectional 

estimates in the probit model, where G2SP stands for Generalized Two-stage Simultaneous Probit, 

which is Amemiyas estimator that inspired Newey (1987) to suggest the AGLS6. They conclude 

that the G2SP and the 2SIV never outperform the 2SCML estimator, and the 2SCML performs 

better in most simulations. Alvarez and Glasgow (2000) conduct Monte Carlo studies comparing 

simple probit with 2SIV and 2SCML estimates. They find that simple probit estimators may be 

substantially biased when endogeneity is present and ignored. Both two-stage estimators perform 

better and, in samples of size 10.000, the 2SCML performs much better than the 2SIV, but in 

samples of size 300, the reverse holds7. Evaluating changes in predicted probabilities, the 2SCML 

                                                 
5 I.e. using individual means over time and deviation from means as instruments. See also 

extensions by Breusch, Mizon and Schmidt (1989). 

 
6 The difference between G2SP and AGLS is that G2SP does not include the  residual from 

equation (3) as regressor, and thus is unconditional on V. This implies that it is not always at least 

as efficient than 2SCML as AGLS is, as shown by Rivers and Vuong (1988). 

 
7 The latter seemingly contradicts the result found by Rivers and Vuong (1988). This must be due 

to a minor difference in the designs, Alvarez and Glasgow using two instruments independent of 



and the 2SIV estimator perform equally well with a low bias compared to simple probits. Mroz and 

Guilkey (1992) conduct a Monte Carlo study, where they among others compare the 2SIV 

estimator with joint normal MLE8.  The bias of the 2SIV estimator relative to the joint normal ML 

estimator is only eight percent with 1000 observations under normality, whereas the bias of the 

joint ML is more than twice the size of the bias of the 2SIV estimator when the error in the first 

stage is skewed. Finally, Bollen et al. (1995) cite the results of a large Monte Carlo Study, 

comparing simple probit, 2SCML, joint MLE and a GMM estimator. They stress the intuitively 

appealing result that the behavior of the 2SCML estimator depends crucially on the explanatory 

power in the first stage estimation. We note that for all three panel estimators, to obtain consistent 

standard errors corrections are needed to account for the first-stage estimation. Newey describes 

how to do this for the AGLS estimator, and a similar approach is feasible here. For the 2SCMLR 

estimator, the expressions in Vuong (1984) can be used, but the presence of random effects 

complicates the correct asymptotic variance considerably. 

 

3. ALTERNATIVE LINEAR ESTIMATORS 

Estimation of LDV models requires a lot of technical knowledge and, as they are not yet standard 

in statistical packages, some computational work. A relevant question is to what extent it pays off? 

In answering this question, one may like to know e.g. how well-behaved the LDV estimators are in 

finite samples, how robust they are to misspecification, and whether simpler alternatives exist. The 

latter has been pursued by Angrist (2001), where he argues that much of the difficulties arising in 

limited dependent variable models can be avoided, if the aim is to estimate causal marginal effects, 

rather than a specific structural form. Following this thought we line up alternative linear models 

that could be of interest in relation to our specific model. Before doing this, we stress that in many 

                                                                                                                                                                  
the single exogenous regressor in the main equation, whereas Rivers and Vuong use two exogenous 

regressors and one or two instruments, all variables drawn from a joint normal distribution. 

 
8 Mroz and Guilkey go a step further and compare the performance of the estimators when joint 

normality does not hold, using discrete factor approximization to estimate the joint distribution of 

error terms. 

 



cases, the LDV parameters are the main aim. This is e.g. the case if only the sign of the effect is 

needed (then, in some models, the LDV parameter is sufficient), if a structural model is specified 

and the parameter has theoretical content or the estimate may be needed in other estimations. 

A linear panel model with fixed effects of the LDV outcome is given by the following:  

(12)   l l l l
it it i i ity X z vβ γ α= + + +  

where the superscript l indicates that the parameters and errors are different in this model than in 

the LDV model. As is well-known, the parameters in this model describe the marginal effects on 

the mean of observed outcomes if covariates are conditionally mean independent of the error term. 

This marginal effect is often what the researcher is after in the first place rather than a structural 

LDV coefficient. Note, however, that consistency of these estimates requires correct model 

specification, i.e. linearity of effects of observed and unobserved variables, which is clearly 

unrealistic in many cases exactly because of the LDV nature of y. In some cases this may be a 

correct way to model y, e.g. when all regressors are dummy variables. It could be that even when 

this is not the case, linear estimates may provide a reasonable approximation to mean marginal 

effects or, as is common in LDV models, marginal effects evaluated at means of explanatory 

variables.  

When zi is correlated with individual effects αl
i, 2SLS estimation, where zi is instrumented, may 

give consistent estimates of unknown parameters in (12) 9. As noted by Hausman (1978), 2SLS 

estimation is algebraically equivalent to OLS on either one of the following equations:   

(13), (14)  1
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9 In the case of a dummy endogenous regressor (a treatment indicator) and a dummy instrument, 

Abadie (1999) finds the best linear (least squares) approximation to the average causal effect for 

compliers. Compliers are those who obtain treatment because they are affected by the instrument. 

Abadie shows that this best approximation is 

equal to the 2SLS estimator in a model with regressors, when the probability of being affected by 

the instrument is linear in the regressors, but in general 2SLS is not the best linear approximation. 

 



where a ‘^’ again denotes estimates from the first stage estimation of (3) and the ξi´s are error terms 

with mean zero. As seen, these are the linear versions of the 2SIV and 2SCML estimators, which 

therefore in this special case are identical. If other covariates than zi are correlated with αl
i, this 

2SLS  estimator is not consistent. Hausman and Taylor (1981) suggested a consistent estimator of 

γ, removing the influence of the correlation between other regressors and αl
i by first estimating β 

consistently by the within estimator obtained as:  

(15)  1
lQy QX Qvβ= +  

where Q is the within transformation, (Qy)it=yit-yi.., where yi. is the mean over time of yit. Let βw-

hat be the within estimate. They then apply OLS to the following equation:  

(16)  . 1 . 3
l l

iwi i i iy X z Vβ γ η ξ− = + +  

we refer to this as the 2SLSF estimator, F for fixed effects. Without inclusion of the estimated 

residual, we refer to this as the fixed effect (FE) estimator, which is consistent if zi  is exogenous, 

but allows X1 to be correlated with αl. 

 

4. MONTE CARLO DESIGNS 

In this section we describe the Monte Carlo designs used to investigate the properties of the 

estimators specified in the last sections. In particular, we will focus on a binomial response probit 

model with one time-varying and one time-invariant regressor:  

(17) *
0 1( , ) 1( 0)it i i ity y x zτ ψ β β γ α ε= = + + + + >  

We define a benchmark design, where we let (β0,β1,γ)=(1,1,1) and αi, εit, xi1 be i.i.d. standard 

normal distributed and xit=xit-1+1. Furthermore we generate an instrumental variable wi, also 

standard normal and generate zi as follows:    

(18) i i i iz w vρ λα= + +  

where vi is standard normal. Therefore we can inspect how the different estimators behave when we 

let λ vary, which determines the degree to which zi and yit are determined by a common  



component10. We can also let ρ vary, which determines the correlation between the instrument and 

zi. This benchmark design is compared against designs with different sources of misspecification. 

First it may be of interest to infer whether one of the LDV estimators are more robust against  

misspecification of the distribution of αi, so in a second design we draw αi from a chi-squared 

distribution with one degree of freedom which is a right skewed distribution. Finally we also 

compare with a third design where we let zi depend on αi and its square, to infer the impact on the 

AGLS and 2SCML estimators which are based on an assumption that αi|Vi has a mean that is linear 

in Vi. 

 

4.1 Monte Carlo Designs with Real Data. 

It is often found that Monte Carlo simulations depend on the distribution of the regressors, such 

that the use of artificial regressors may produce too nice results, see e.g. the chapter on Monte 

Carlo simulations in Davidson and MacKinnon (1993). We therefore also consider the behavior of 

the estimators using real data regressors. 

We use a two-period representative panel of Danish workers interviewed in 1990 and 1995 (The 

Danish National Work Environment Cohort Study (WECS)). The specific sample we use is 

described in Arendt (2001). It was the empirical analysis in the latter paper that motivated the 

2SCMLR panel estimator suggested in this paper. We used the 2SCMLR estimator to estimate 

education effects on health, modelled in an ordered quantal response model. There is a large 

literature within economics concerned with the interpretation of education effects on health, 

summarized in Grossman and Kaestner (1997). The main concern is that the correlation reflects 

common unobserved components, such as time preferences, determined prior to educational 

attainment. The outcome could be any other variable than health, where we would suspect that 

education effects are partly due to selection. We use 500 observations on women from this sample. 

Education is measured in years of education. We limit the number of regressors to a year dummy, a 

dummy for being a white collar worker and age. Instrumental variables for education include 

means over time of age and of the white collar dummy, in spirit of the suggestion by Hausman and 

Taylor (1981). In addition to these instruments, we use two Danish school reforms, in 1958 and 
                                                 
10 With this linear set-up, V=αλ+v, st. when α, v and w  are independent and have variance one: η 

= Cov(α ,V)/Var(V)=λ/(1+λ2). For  λ  equal to .1, this is equal to 0.099, and when λ is .5, this is 

0.4. 



1975, to instrument education. The reforms and the validity of these reforms as instruments for 

education are also discussed in Arendt (2001). We generate two dummy instrumental variables, 

indicating whether individuals are affected or not by the reforms. 

Artificial health variables using these data are constructed in the following way. First we estimate 

the parameters in equation (3) and form predicted education. Then we draw i.i.d. standard normal 

errors αi and vit and generate education as in (18), replacing ρw by predicted education. Finally, the 

latent outcome is generated using the real regressors with prefixed values of β and γ  and adding the 

generated errors αi and vit. See the appendix for details and descriptive statistics on the data. 

 

5. MONTE CARLO RESULTS 

This section contains the results from the Monte Carlo simulations11. We focus on estimation of 

marginal effects on the probability that y is one, but note that in panel data models with unobserved 

heterogeneity, several marginal effects can be calculated, see Lillard and Willis (1978), section 3, 

for a discussion. Since in practice, the individual specific effect is not oberved, calculation of 

individual probabilities is not feasible. A second approach is to let the individual effect vary and 

take a mean across its distribution, while a third approach evaluates at mean effects equal to zero. 

Since there is a tradition in applied econometrics to evaluate marginal effects at means of 

observable covariates we will do this, but will average out the unobservable individual effect for 

the panel estimators12. With standard normal errors and variables, the true marginal effect on the 

                                                 
11 The simulations are conducted using GaussTM vrs. 3.2.4., and the Gauss “rndn” random normal 

number generator. We use the Probit, OLS and Maxlik procedures to estimate the different models. 

We integrate out individual effects by Hermite integration formulas with three points, see Butler 

and Moffitt (1982) and the appendix, using a procedure written in GaussTM by Paul Fackler, 

adapted from Press et al., Numerical Recipes in Fortran, 2nd ed. The random effects probit 

likelihood is given in the appendix. 

 
12 To be specific, marginal effects are calculated as follows:   

0 1
( 1| , ) ( )P y X z x z

z
γφ β β γ∂ =

= − − −
∂

,  



probability that y equals one is 0.160713. We report results from eight different probit models 

(probit, 2SCML, AGLS, 2SIV with and without random effects) as well as for the linear OLS, 

2SLS, FE, 2SLSF models. We will refer to all estimators that account for endogeneity of the time-

invariant variable as two-stage estimators, and the others as one-stage estimators (including the FE 

although it is estimated in two stages). In all designs we report the bias and mean squared error of 

estimated marginal effects14. 100 Monte Carlo simulations are conducted for each experiment.  

In table 1 we report results using a data set with 200 observations and two time periods, on the 

benchmark design, i.e. all regressors and errors are normal, with different values of ρ and λ. The 

value of λ determines the correlation between zi and individual effects, and ρ determines the  

correlation between the instrument and zi. In the simulations we use λ equal to zero (i.e. no 

common individual effect, so zi  is exogenous, hence two-stage procedures are not needed), 0.1 and 

0.5, and ρ equal to 0.05, 0.2 and 0.5. The case with ρ equal to 0.05 is supposed to illustrate a case 

with a weak instrument. Note that in all cases, random effects are present in the true model.  

Starting with the top left corner of table 1, ρ is 0.05. In the bottom row we report the partial R-

squared of w, the instrument, from the first stage estimation of zi on x1 and w, to indicate whether 

we have a weak instrument. As seen, with ρ equal to 0.05, this is quite low, around 0.007. Values 

of this size and even lower, have been observed e.g. with IV-estimation based on “natural 

experiments”, see e.g. Bound et al.(1995). As a consequence, for all values of λ , all two-stage 
                                                                                                                                                                  
for the simple probit estimator, where bars denote empirical means and φ is the standard normal 

density function, and as:   

0 1
( 1| , ) ( )P y X z x z d

z
γ φ β β γ α α∂ =

= − − − −
∂ ∫  

for the random effects probit estimators, using Hermite integration for calculation of the integral. 

 
13 This is the integral with respect to α over φ(-1-E(X)-α)φ(α), where the mean of X is a half, since 

X2=X1+1. We have simulated this as the mean over 60,000 draws of φ(-1.5-α) where α is drawn 

from a standard normal.  

 
14 The bias of an estimate θ-hat of θ is E(θ-hat - θ) and the MSE is E(θ-hat - θ)^2. We calculate this 

using the empirical mean of the sample of estimates obtained from the Monte Carlo Simulations.  

 



estimators, except perhaps the 2SIV, have a very high MSE. In the first column, λ is 0 so zi is 

exogenous, and therefore the RE probit estimator is the correct estimator to use. The table shows 

that the RE probit estimator does estimate the marginal effect precisely, both regarding bias and 

MSE, although e.g. the probit performs even better. The 2SLSF has the highest MSE, followed by 

the AGLS estimators which in addition have the highest bias. Increasing λ  to 0.1, in column (3) 

and (4) of the top of table 1, reduces the bias of the AGLS estimators and the estimator with the 

lowest bias is now the 2SCMLR, although all two-stage estimators, except the 2SIV, still have a 

high MSE. With λ  equal to 0.5, the bias of all estimators increases (except the 2SLSF), and the 

2SIV, OLS and the FE estimators have the smallest bias. The MSE is particular high for the 2SLS 

and the 2SLSF estimators. These results illustrate that two-stage estimators, linear as well as non-

linear, are very imprecise as expected when the instruments used are weak. The only exception is 

the 2SIV estimator without random effects. We note that for the 2SCMLR estimator there is a small 

gain, both regarding bias and MSE, in taking account of the individual effects, i.e. when compared 

to the 2SCML estimator, whereas this is not the case for the AGLS and the 2SIV estimators. 

In the next block, ρ is 0.2, which yields a partial R-squared for the instrument around 0.04. This is, 

we think, still likely to be a realistic level in many situations with individual data. When λ is 0, 

most estimators have a low bias, with the exception of the AGLS and the 2SLSF estimators. With λ 

equal to 0.1, the bias and MSE of the AGLS estimators are again reduced dramatically. The bias 

and MSE are still higher for most two-stage estimators than for one-stage estimators. Results 

change somewhat when λ is 0.5, where the bias of one-stage estimators increase beyond that of 

most two-stage estimators, but note that no clear ordering between the estimators that account for 

heterogeneity and their corresponding cross-sectional estimators can be made. 

When ρ is increased further to 0.5, the partial R-squared is around 0.2, which is more rare in 

practice with individual data, and the MSE of the two-step estimators in particular diminishes 

further. Notable changes occurs for the linear 2SLSF estimator for high values of λ. Again, AGLS 

is a little worse than other estimators in the case of exogeneity, and the biases rise as before when λ 

is increased from 0.1 to 0.5, most for the probit and the RE probit. 

In table 2 we increase the number of observations to 1000. The results are not that different from 

the case with 200 observations. Thus with a weak instrument, the 2SLSF is the worst in terms of 

bias, followed by the AGLS estimators under exogeneity (when λ  is zero). We note though that 

compared to the case with 200 observations, the MSE of the two-stage estimators decreases in most 



cases. We also see that with this amount of observations, with λ  being different from zero, the 

advantage of taking account of endogeneity is higher, even when the instruments are weak (with 

2SIVR for (λ,ρ)=(0.5,0.05) and AGLSR for (λ,ρ)=(0.5,0.2) and (0.5,0.5) being exceptions). The 

2SCML estimators seem to perform particular well. 

Table 3 show results with simulations similar to those in table 2, except that we have increased the 

number of periods to five15.  Although the asymptotic results only depend on the size of n, the 

number of individuals, it could be that in small samples the number of time periods may affect the 

results. Table 3 shows that this is the case. With weak instruments, both bias and MSE increase for 

most estimators. The AGLSR estimators now perform particularly bad, even with good instruments 

and a high degree of endogeneity. The 2SCML and the 2SIV estimators are preferred to probit and 

RE probit when endogeneity is severe (λ =0.5) and reasonable instruments are available (ρ >0.05), 

and perform just as well as 2SLS when ρ>0.05.  

So far we have considered the small sample behavior of the different estimators under normality 

assumptions. In table 4 we look at the behavior when individual effects are distributed as chi-

squared with one degree of freedom, minus one to obtain mean zero. We still draw zi as a linear 

function of individual effects, such that the assumption used by the 2SCML and AGLS estimators, 

that E(αi|Vi) is linear in Vi, is correct. One might expect that linear estimators provide a better  

approximation to marginal effects than LDV estimators because they do not rely on distributional 

assumptions regarding the individual effect. The true marginal effect under this scenario is now 

0.208816.  

This larger effect reflects that the distribution of αi is right skewed but enters the marginal effect 

with a minus, and is thus putting largest weight on individuals with marginal effects near plus one 

(the density of - α -1 has a vertical asymptote at one). The general tendency therefore is to 

underestimate the marginal effect, because cross-sectional estimators do not integrate out individual 

                                                 
15 We generate xi1 as standard normal, but let xit=xit-1+0.25 implying that E(Xi) = 0.2*0 + 0.2*0.25 

+ 0.2*0.5 + 0.2*0.75 + 0.2*1 = 0.5, to obtain the same true marginal effect: the integral over φ(-

1.5-α)φ(α) =0.1607.   
16 This is simulated as the mean over 60,000 draws of φ(-1.5-α) , where α is drawn from a squared 

normal, subtracted by one to make the mean equal to zero.  

 



effects, and the panel estimators use a weight function (the normal distribution) that places too 

much weight on individuals with low marginal effects. We see that the AGLS estimators and the 

2SIV may be substantially biased. The 2SCML estimators unexpectedly perform very well. It is 

seen that none of the linear estimators provide a better approximation to marginal effects than the 

2SCML estimators. 

In table 5 we allow normal distributed individual effects to affect zi quadratically:  

2 2
i i i i iz w vρ λα λ α= + − +  

implying that the control function E(α|V), incorporated by the 2SCML and the AGLS estimators, is 

misspecified. The true marginal effect is 0.1607 as in the benchmark scenario. The results found in 

the benchmark scenario for λ  less than 0.5 apply here as well. For λ equal to 0.5 most estimators 

are severely biased as expected, but when ρ is larger than 0.05, this is not worse for all the 2SCML 

and AGLS estimators than other two-stage estimators, as one might expect. It is noteworthy that the 

OLS estimator performs reasonably well in all cases, and the 2SLS has a larger bias than most non-

linear estimators when λ is 0.5.  

In order to obtain some robustness against the assumed normal distribution of regressors, we 

conduct a final set of simulations using a design with real data  as described above. Table 6 reports 

the results. The top of the table contains results where both school reforms and Hausman-Taylor 

type of instruments are used, and in the bottom, only school reforms are used.  Because the 

endogenous variable, education, is simulated, the partial R-squared is very high (0.44-0.5) in the 

top part of the table where all instruments are used, whereas in the bottom table, the partial R-

squared is much lower; only 0.03. Therefore, as might be expected, in the top of the table two-stage 

estimators perform better than estimators assuming exogeneity of education. It is seen that the 

2SCML/-R and 2SLS estimators perform really well in particular, whereas the 2SLSF, the FE and 

the 2SIVR have large biases. Even in the case with low partial R-squared several two-stage 

estimators perform better than OLS, probit and RE probit. 

 

6. CONCLUSION 

We have extended three cross-sectional LDV model estimators to a panel model with individual 

specific effects. To our knowledge, besides joint MLE, these are the only existing consistent and 

asymptotic normal estimators for the effect of a time-invariant endogenous continuous regressor in 



a LDV model with unobserved individual effects. However, these models are time-consuming to 

apply. It is therefore of great interest how well they perform in small samples. In addition, when the 

outcome of interest is the marginal effect on the LDV outcome rather than LDV parameters per se, 

comparison against much simpler linear approximations can be conducted. We conducted Monte 

Carlo simulations of the probit model, paying special attention to the estimated marginal effect on 

the probability that the binomial variable equals one.  

Using the design with artificial normal regressors and errors, we make the  following general 

remarks17. When there is only weak suspicion of endogeneity (λ  low), it might be preferable to use 

the simple probit, and AGLS seems to be the worst solution. The 2SIV estimator seems to be less 

affected by the problem of weak instruments than other estimators accounting for endogeneity, and 

2SLS and 2SLSF seem to be the worst estimators with weak instruments. If a reasonable instrument 

is available and endogeneity is present (ρ  >0.05,λ >0), two-stage estimators are often preferable in 

terms of bias, but not in terms of MSE. The extension of the cross-sectional estimators to the panel 

model, for designs considered here, does not seem to give any small sample improvements. 

Increasing the number of individuals from 200 to 1000 showed a relative benefit in favor of two-

stage estimators, whereas increasing the number of time periods introduced further imprecision for 

the AGLS estimators in particular. 

For practical purposes, it is relevant to note that the 2SCML and 2SLS estimators perform 

reasonably well in many scenarios, the latter despite of the DGP being a LDV model. The 2SCML 

estimators were relatively robust against the sources of misspecification considered here. Since 

endogeneity is easily tested in these models, it seems that they constitute good starting points, 

perhaps compared to the OLS, Probit or the 2SIV estimators for robustness. We showed that linear 

estimators are subject to the same problems as LDV estimators, and do not perform better than 

these under misspecification. It should be stressed that the relative good performance of linear 

estimators in the benchmark design is not expected to hold if we had not confined attention to 

marginal effects evaluated at mean values of the regressors, stemming from the fact that a linear 

model yields marginal effects that are constant across individuals, which is impossible to hold for 

                                                 
17 We should have in mind that the results might be subject to some uncertainty, especially with 

respect to biases for those estimators with large MSE, since the number of Monte Carlo loops has 

been kept relatively low at the moment.  

 



all individuals. This is not the case in LDV models, although the functional form of the marginal 

effects is given by the distributional assumption. However, the latter can and should be tested in 

practice.  

We wrap up with some suggestions for future work. In general we know little about the small 

sample behavior of many existing LDV estimators. In our Monte Carlo study we focused on the 

binomial probit model, but it would be interesting to see how the estimators behave in other LDV 

models. Furthermore, a version of the 2SCMLR estimator has been considered in the case when the 

causal variable is discrete by Orme (1996). This could be compared to recent causal effects 

estimators suggested by Mullahy (1997) and Abadie (2000). Finally, as found in our study, 

parametric models are likely to be biased under misspecification, so the framework could be 

extended to semiparametric models. A first step could be to estimate the distribution of the 

individual effect by discrete factor approximization, as done by Mroz and Guilkey (1992) in cross-

sectional models, and a second step could either be where the second stage estimation does not 

involve parametric assumptions, e.g. inspired by approaches reviewed by Blundell and Powell 

(2000), or where attention is directed at non-parametric estimation of marginal effects. Because of 

the curse-of-dimensionality of the latter a combination might be beneficial. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix A: The Likelihood in the Random Effects Probit Model 
For all the panel LDV estimators we need to estimate the random effects probit model. We 

therefore write down the likelihood for this model. The contribution for individual i to the 

likelihood for the random effects probit model is:  

1
1

( | , ) ( ) 1 ( )) ( )it it
T y y

i i i it it i it
f y X z c c w dwφ−

=
= Φ ( − Φ∏∫   

where e.g. in the 2SCMLR model, cit=X1itβ +γzi+ηVi+wi and X1i is the vector (X1i1,...,X1iT), and φ 

and Φ are standard normal probability and cumulative distribution functions. Gaussian-Hermite 

quadrature can be used to approximate this integral. The quadrature of order n approximates 

integrals involving e-x^2 by a sum:  
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where w and x are specific values, depending on the number n. Then for the normal density we 

have:  

1
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π=
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We use n=3, which gives x= (-1.2247,0,1.2247), w=(0.2954,1.1826,0.2954). For applied 

researchers we note that the 2SIVR and the 2SCMLR models can be estimated without messing 

with the quadrature themselves. One needs a linear regression to form the residuals and predicted 

values and a random effects LDV estimator. In StataTM the latter is available for some models with 

the procedure xtgee. The GLLAMM package by Rabe-Hesketh includes other random effect 

models (see http://www.iop.kcl.ac.uk/IoP/Departments/BioComp/  programs/gllamm.html). The 

AGLS estimator is implemented by J. B. Gelbach for the probit (see 

http://www.glue.umd.edu/~gelbach/ado/) and can be modified to other LDV models using the xtgee 

procedures. A problem is that standard errors must be corrected. Besides Gelbachs latest version of 

the cross-sectional AGLS estimator, I have no knowledge of procedures that does this at the 

moment. Newey (1987) and Vuong (1984) outline how to obtain correct standard errors, although 

the results become particular cumbersome for the 2SCMLR estimator. Bootstrapping might be 

another solution. Bollen et al. (1995) cite a Monte Carlo study, p.115, showing that standard error 

correction does not seem to matter for the 2SCML probit estimator. 

 



Appendix B: Specification of Design using Real Data 

First we present some descriptive statistics on the used data:  

TABLE A. Descriptive Statistics for the WECS Data.

Variable Mean Std.dev Min Max
Age 37.642 9.251 18 59
White Collar 0.818 0.387 0 1
Education 13.48 2.33 7 18
Predicted Educ. 13.48 0.997 10.737 14.207
Mean White Coll. 0.808 0.331 0 1
Reform 58 0.586 0.493 0 1
Reform 75 0.196 0.397 0 1

Notes: 500 observations on Women from the WECS data. 1990. Mean White Coll. 
is the mean over 1990 and 1995 of the White Collar dummy.  

 

The Monte Carlo simulations are conducted using the following specification:  
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where Ait is age, WCit is a dummy for being a white collar worker and Dt is a year dummy. Ei-tilde 

is simulated education of individual i, constructed as follows. First we estimate a linear regression 

of years of education on Ait, Wit, the means over time for these, Dt and two school reform 

instruments. The result, with p-values below parameter estimates is:  

1 1

2

9.274 0.324 0.087 0.328 2.831 0.554 58 0.473 75
        (0.206) (0.915)    (0.845)         (0.914)        (0.000)           (0.141)        (0.456)

. 0.172,  500
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where MXi is the individual mean of X in 1990 and 1995, R58i is a dummy for whether individual i 

was affected by a 1958 reform, but not by a 1975 reform, and R75i is a dummy for whether 

individual i was affected by the 1975 reform. 
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Table 1. Monte Carlo Results for Estimation of Marginal Effects 
of Time Invariant Regressor in a Panel, 200 Observations.

ρ=0.05
Estimator Bias MSE Bias MSE Bias MSE
OLS -0.0104 0.0006 -0.0070 0.0006 0.0354 0.0017
FE -0.0072 0.0039 -0.0062 0.0040 0.0329 0.0036
2SLS 0.0305 0.1869 -0.0070 0.1997 0.1543 2.9370
2SLSF 0.2080 23.5234 0.5133 19.1671 0.4600 53.1792
Probit 0.0006 0.0006 0.0064 0.0008 0.0641 0.0049
RE Probit -0.0097 0.0007 -0.0048 0.0008 0.0484 0.0032
2SCML 0.0350 0.2031 0.0260 0.2327 0.0771 0.6397
2SCMLR 0.0291 0.1829 0.0004 0.1958 0.0709 0.5967
AGLS 0.2409 1.7077 0.0053 1.7315 0.0964 0.5444
AGLSR 0.3247 2.2576 0.0209 1.8326 0.0586 0.4103
2SIV -0.0081 0.0051 -0.0192 0.0054 -0.0330 0.0051
2SIVR -0.0045 0.2123 0.0359 0.4016 0.1105 0.1060
Partial R2 0.0078 0.0071 0.0066

ρ=0.2
Estimator Bias MSE Bias MSE Bias MSE
OLS -0.0121 0.0007 -0.0008 0.0005 0.0319 0.0015
FE -0.0180 0.0041 0.0055 0.0033 0.0383 0.0041
2SLS -0.0115 0.0189 -0.0348 0.0227 -0.0060 0.0181
2SLSF -0.0304 2.5576 0.2962 24.3198 0.1417 1.5810
Probit 0.0010 0.0008 0.0114 0.0007 0.0215 0.0065
RE Probit -0.0096 0.0008 0.0000 0.0006 0.0429 0.0026
2SCML 0.0020 0.0188 -0.0296 0.0204 0.0114 0.0217
2SCMLR -0.0076 0.0153 -0.0382 0.0184 -0.0008 0.0185
AGLS 0.1333 2.8409 0.0022 0.0310 -0.0128 0.0165
AGLSR 0.1463 2.1161 -0.0140 0.0254 -0.0557 0.0096
2SIV 0.0007 0.0015 -0.0129 0.0018 -0.0173 0.0022
2SIVR -0.0129 0.0084 0.0275 0.0292 -0.0001 0.0159
Partial R2 0.0431 0.0431 0.0385

ρ=0.5
Estimator Bias MSE Bias MSE Bias MSE
OLS -0.0131 0.0008 -0.0033 0.0005 0.0210 0.0008
FE -0.0133 0.0044 0.0003 0.0031 0.0254 0.0034
2SLS -0.0160 0.0021 -0.0196 0.0023 -0.0305 0.0031
2SLSF -0.0223 0.0649 -0.0088 0.0540 0.0031 0.0775
Probit -0.0003 0.0006 0.0109 0.0008 0.0499 0.0034
RE Probit -0.0111 0.0006 -0.0004 0.0007 0.0359 0.0021
2SCML -0.0050 0.0017 -0.0076 0.0023 -0.0093 0.0028
2SCMLR -0.0169 0.0018 -0.0172 0.0024 -0.0202 0.0028
AGLS 0.0236 0.1012 -0.0038 0.0025 -0.0121 0.0033
AGLSR 0.0323 0.0886 -0.0227 0.0027 -0.0639 0.0054
2SIV -0.0168 0.0027 -0.0014 0.0010 -0.0122 0.0012
2SIVR 0.0617 0.1182 -0.0060 0.0020 -0.0136 0.0023
Partial R2 0.2063 0.2096 0.1671

Notes: Bias and mean squared error of marginal effect on probability of positive outcome of continuous 
time-invariant variable. All are calculated from 100 simulations of the benchmark design on 200 obs.
with 2 time periods, see the text. λ determines the correlation between z and the individual effect
and ρ determines the correlation between z and the instrument.

λ=0 λ=0.1 λ=0.5

λ=0 λ=0.1 λ=0.5

λ=0 λ=0.1 λ=0.5

 



Table 2. Monte Carlo Results for Estimation of Marginal Effects 
of Time Invariant Regressor in a Panel, 1000 observations.

ρ=0.05
Estimator Bias MSE Bias MSE Bias MSE
OLS -0.0121 0.0003 0.0015 0.0002 0.0342 0.0013
FE -0.0129 0.0008 0.0042 0.0009 0.0340 0.0019
2SLS -0.0043 0.2289 -0.0231 0.1710 -0.0212 0.0544
2SLSF 0.8743 121.3321 -1.2385 80.0597 0.4463 58.8585
Probit -0.0009 0.0001 0.0168 0.0004 0.0621 0.0040
RE Probit -0.0117 0.0003 0.0050 0.0002 0.0458 0.0022
2SCML -0.0202 0.2638 0.0051 0.1842 0.0099 0.0564
2SCMLR -0.0241 0.2360 -0.0082 0.1591 -0.0023 0.0483
AGLS 0.2013 4.2889 0.0236 0.1012 0.0364 0.0950
AGLSR 0.2593 4.1352 0.0323 0.0886 -0.0095 0.0374
2SIV -0.0140 0.0035 -0.0168 0.0029 -0.0237 0.0018
2SIVR 0.0072 0.2082 0.0617 0.1182 0.0613 0.0623
Partial R2 0.0034 0.0036 0.0029

ρ=0.2
Estimator Bias MSE Bias MSE Bias MSE
OLS -0.0132 0.0003 0.0005 0.0001 0.0307 0.0010
FE -0.0123 0.0010 0.0015 0.0007 0.0286 0.0013
2SLS -0.0099 0.0020 -0.0151 0.0025 -0.0223 0.0021
2SLSF -0.0031 0.3608 -0.0016 0.2942 -0.0656 0.4734
Probit -0.0018 0.0002 0.0152 0.0003 0.0593 0.0037
RE Probit -0.0125 0.0002 0.0034 0.0000 0.0434 0.0020
2SCML 0.0048 0.0022 0.0018 0.0027 -0.0018 0.0019
2SCMLR -0.0063 0.0020 -0.0104 0.0027 -0.0162 0.0018
AGLS -0.0070 0.0043 -0.0011 0.0037 -0.0053 0.0025
AGLSR -0.0068 0.0023 -0.0176 0.0021 -0.0613 0.0047
2SIV -0.0026 0.0003 -0.0048 0.0004 -0.0132 0.0023
2SIVR 0.0003 0.0023 0.0001 0.0025 -0.0107 0.0021
Partial R2 0.0391 0.0396 0.0317

ρ=0.5
Estimator Bias MSE Bias MSE Bias MSE
OLS -0.0144 0.0003 -0.0037 0.0001 0.0216 0.0005
FE -0.0176 0.0008 -0.0037 0.0006 0.0201 0.0009
2SLS -0.0125 0.0004 -0.0153 0.0006 -0.0229 0.0010
2SLSF -0.0280 0.0084 -0.0164 0.0085 -0.0313 0.0111
Probit 0.0007 0.0001 0.0130 0.0004 0.0513 0.0027
RE Probit -0.0102 0.0002 0.0013 0.0002 0.0359 0.0014
2SCML 0.0024 0.0003 -0.0003 0.0004 -0.0021 0.0005
2SCMLR -0.0081 0.0004 -0.0120 0.0005 -0.0138 0.0006
AGLS -0.0007 0.0004 0.0030 0.0004 -0.0029 0.0005
AGLSR -0.0101 0.0007 -0.0211 0.0008 -0.0607 0.0040
2SIV -0.0014 0.0002 -0.0037 0.0002 -0.0105 0.0003
2SIVR -0.0064 0.0005 -0.0032 0.0004 -0.0096 0.0004
Partial R2 0.2010 0.1993 0.1681

Notes: Same as table 1, now with 1000 observations.

λ=0 λ=0.1 λ=0.5

λ=0 λ=0.1 λ=0.5

λ=0 λ=0.1 λ=0.5

 
 



Table 3. Monte Carlo Results for Estimation of Marginal Effects of
Time Invariant Regressor in a Panel, 200 observations, 5 Periods.

ρ=0.05
Estimator Bias MSE Bias MSE Bias MSE
OLS -0.0114 0.0006 0.0058 0.0005 0.0372 0.0019
FE 0.2143 0.0614 0.2399 0.0709 0.3406 0.1280
2SLS 0.0226 13.0908 0.0712 1.2282 0.0995 0.6987
2SLSF 2.1494 161.5025 -0.8271 1.6321 1.2527 70.1212
Probit -0.0651 0.0048 -0.0863 0.0080 -0.1317 0.0180
RE Probit -0.0063 0.0006 0.0141 0.0008 0.0558 0.0037
2SCML 0.0777 18.9919 0.2603 2.4740 0.1046 0.3913
2SCMLR -0.0409 14.3164 0.2766 2.7638 0.1711 0.2221
AGLS 0.1620 23.3020 1.78201 171.8078 1.6155 60.8675
AGLSR 0.2601 23.8158 2.0224 182.0584 3.0163 208.7492
2SIV -0.0318 0.0065 -0.0428 0.0063 -0.0409 0.0054
2SIVR 0.1309 2.1682 0.1338 2.1775 0.0274 0.2891
Partial R2 0.0085 0.0071 0.0077

ρ=0.2
Estimator Bias MSE Bias MSE Bias MSE
OLS -0.0086 0.0006 0.0029 0.0006 0.0370 0.0017
FE 0.2154 0.0602 0.2413 0.0704 0.3291 0.1209
2SLS 0.0132 0.0281 0.0011 0.0144 -0.0215 0.0633
2SLSF -0.1214 13.5223 -0.0440 13.2076 0.1740 13.6416
Probit -0.0691 0.0053 -0.0834 0.0076 -0.1322 0.0182
RE Probit -0.0019 0.0005 0.0111 0.0007 0.0570 0.0039
2SCML 0.0332 0.0329 0.0189 0.0179 0.0048 0.12788
2SCMLR 0.0224 0.0334 0.0186 0.0179 0.0121 0.1401
AGLS 1.4013 12.1650 1.5276 30.6576 1.1509 10.6518
AGLSR 1.4605 11.6859 1.8418 33.2036 1.8802 24.6452
2SIV -0.0214 0.0020 -0.0190 0.0017 -0.0185 0.0022
2SIVR 0.0235 0.0304 0.0161 0.0151 -0.0110 0.0674
Partial R2 0.0366 0.0386 0.0397

ρ=0.5
Estimator Bias MSE Bias MSE Bias MSE
OLS -0.0090 0.0005 -0.0040 0.0004 0.0573 0.0036
FE 0.2197 0.0582 0.2165 0.0615 0.3375 0.1206
2SLS -0.0097 0.0018 -0.0106 0.0016 0.0126 0.0018
2SLSF 0.1986 0.3205 0.1492 0.3897 0.2443 0.3474
Probit -0.0700 0.0054 -0.0762 0.0062 -0.0887 0.0084
RE Probit -0.0012 0.0005 0.0042 0.0004 0.0750 0.0062
2SCML 0.0108 0.0021 0.0071 0.0014 0.0365 0.0034
2SCMLR 0.0039 0.0021 -0.0034 0.0014 0.0228 0.0025
AGLS 0.3739 1.3059 0.6150 2.1674 0.6338 2.2537
AGLSR 0.3491 1.2150 0.6662 2.4876 0.5559 2.4031
2SIV -0.0101 0.0007 -0.0114 0.0007 0.0141 0.0011
2SIVR -0.0014 0.0019 -0.0022 0.0014 0.0220 0.0024
Partial R2 0.2033 0.2072 0.1719

Notes: As table 1, except now with 5 time periods.

λ=0 λ=0.1 λ=0.5

λ=0 λ=0.1 λ=0.5

λ=0 λ=0.1 λ=0.5

 
 



Table 4. Monte Carlo Results for Estimation of Marginal Effects of 
Time Invariant Regressor in a Panel Probit Model, 200 observations, 
with Individual Effects being Chi-squared distributed.
ρ=0,05
Estimator Bias MSE Bias MSE Bias MSE
OLS -0.0462 0.0025 -0.0313 0.0014 -0.0324 0.0014
FE  -0.0526 0.0051 -0.0295 0.0028 -0.0280 0.0018
2SLS  0.0112  0.4327 -0.0459 0.1919  -0.0431  0.1063
2SLSF  -0.6460 24.1736 0.0949 16.8893  0.4268 10.2847
Probit -0.0234 0.0014  -0.0033  0.0012 0.0347 0.0030
RE Probit -0.0328 0.0020  -0.0136  0.0013 0.0219 0.0024
2SCML  0.0154  0.4029 -0.0289  0.2028 0.0104 0.1378
2SCMLR 0.0062 0.3241 -0.0301  0.1967 0.0011  0.1212
AGLS 0.2663 6,1707 -0.1401 0.8534 -0.2722 6.6217
AGLSR 0.3478 7,3456 -0.1500 0.4653 -0.5151 13.8617
2SIV -0.0890 0.0129 -0.1068 0.0155 -0.1229 0.0164
2SIVR -0.1180 0.3693 -0.0787 0.5593 -0.0463  0.3012
Partial R2 0.0072  0.0079  0.0067

ρ=0,2
Estimator Bias MSE Bias MSE Bias MSE
OLS -0.0524  0.0031 -0.0304  0.0013 -0.0334 0.0015
FE  -0.0540  0.0049  -0.0361 0.0038 -0.0302 0.0019
2SLS  -0.0286 0.0395 -0.0442  0.0138 -0.0628  0.0171
2SLSF -0.2168 1.6984 -0.1071 1.3348 0.1465 1,4181
Probit  -0.0308  0.0017 -0.0007 0.0011 0.0362 0.0032
RE Probit  -0.0402  0.0024 -0.0113 0.0012 0.0231 0.0025
2SCML  -0.0178  0.0389 -0.0122 0.0160 -0.0183 0.0200
2SCMLR -0.0288 0.0352 -0.0235  0.0145 -0.0267  0.0165
AGLS -0.0321 0.0142 -0.0368 0.0160 -0.0097 0.0281
AGLSR -0.0599 0.0135 -0.0779 0.0126 -0.1034 0.0176
2SIV -0.0823 0.0078 -0.0826  0.0085 -0.1112 0.0132
2SIVR -0.0217 0.0122 -0.0315 0.0141 -0.0164 0.0150
Partial R2 0.0395 0.0469 0.0333

ρ=0,5
Estimator Bias MSE Bias MSE Bias MSE
OLS  -0.0499 0.0028 -0.0410 0.0021 -0.0347 0.0015
FE -0.0543  0.0046 -0.0438  0.0032 -0.0332 0.0020
2SLS  -0.0443  0.0038  -0.0517  0.0042 -0.0570 0.0051
2SLSF -0.0720 0.0492 -0.0712 0.0434 -0.0504 0.0676
Probit -0.0257  0.0014 -0.0132  0.0012  0.0379 0.0032
RE Probit -0.0337  0.0019 -0.0226  0.0015 0.0258  0.0025
2SCML  -0.0200  0.0029 -0.0231 0.0034 -0.0162 0.0045
2SCMLR -0.0284 0.0032 -0.0322 0.0037 -0.0265 0.0047
AGLS -0.0330 0.0035 -0.0174 0.0034 -0.0138 0.0043
AGLSR -0.0722 0.0068 -0.0731 0.0067 -0.1068 0.0128
2SIV -0.0750 0.0065 -0.0870 0.0081 -0.1135 0.0133
2SIVR -0.0404 0.0040 -0.0285 0.0032 -0.0241 0.0036
Partial R2 0.2028 0.2015 0.1387

Notes: As table 1, except that individual effects are Chi-squared(1) distributed.

λ=0 λ=0,1 λ=0,5

λ=0 λ=0,1 λ=0,5

λ=0 λ=0,1 λ=0,5

 
 



Table 4. Monte Carlo Results for Estimation of Marginal Effects of 
Time Invariant Regressor in a Panel Probit Model, 200 observations, 
with Individual Effects being Chi-squared distributed.
ρ=0,05
Estimator Bias MSE Bias MSE Bias MSE
OLS -0.0462 0.0025 -0.0313 0.0014 -0.0324 0.0014
FE  -0.0526 0.0051 -0.0295 0.0028 -0.0280 0.0018
2SLS  0.0112  0.4327 -0.0459 0.1919  -0.0431  0.1063
2SLSF  -0.6460 24.1736 0.0949 16.8893  0.4268 10.2847
Probit -0.0234 0.0014  -0.0033  0.0012 0.0347 0.0030
RE Probit -0.0328 0.0020  -0.0136  0.0013 0.0219 0.0024
2SCML  0.0154  0.4029 -0.0289  0.2028 0.0104 0.1378
2SCMLR 0.0062 0.3241 -0.0301  0.1967 0.0011  0.1212
AGLS 0.2663 6,1707 -0.1401 0.8534 -0.2722 6.6217
AGLSR 0.3478 7,3456 -0.1500 0.4653 -0.5151 13.8617
2SIV -0.0890 0.0129 -0.1068 0.0155 -0.1229 0.0164
2SIVR -0.1180 0.3693 -0.0787 0.5593 -0.0463  0.3012
Partial R2 0.0072  0.0079  0.0067

ρ=0,2
Estimator Bias MSE Bias MSE Bias MSE
OLS -0.0524  0.0031 -0.0304  0.0013 -0.0334 0.0015
FE  -0.0540  0.0049  -0.0361 0.0038 -0.0302 0.0019
2SLS  -0.0286 0.0395 -0.0442  0.0138 -0.0628  0.0171
2SLSF -0.2168 1.6984 -0.1071 1.3348 0.1465 1,4181
Probit  -0.0308  0.0017 -0.0007 0.0011 0.0362 0.0032
RE Probit  -0.0402  0.0024 -0.0113 0.0012 0.0231 0.0025
2SCML  -0.0178  0.0389 -0.0122 0.0160 -0.0183 0.0200
2SCMLR -0.0288 0.0352 -0.0235  0.0145 -0.0267  0.0165
AGLS -0.0321 0.0142 -0.0368 0.0160 -0.0097 0.0281
AGLSR -0.0599 0.0135 -0.0779 0.0126 -0.1034 0.0176
2SIV -0.0823 0.0078 -0.0826  0.0085 -0.1112 0.0132
2SIVR -0.0217 0.0122 -0.0315 0.0141 -0.0164 0.0150
Partial R2 0.0395 0.0469 0.0333

ρ=0,5
Estimator Bias MSE Bias MSE Bias MSE
OLS  -0.0499 0.0028 -0.0410 0.0021 -0.0347 0.0015
FE -0.0543  0.0046 -0.0438  0.0032 -0.0332 0.0020
2SLS  -0.0443  0.0038  -0.0517  0.0042 -0.0570 0.0051
2SLSF -0.0720 0.0492 -0.0712 0.0434 -0.0504 0.0676
Probit -0.0257  0.0014 -0.0132  0.0012  0.0379 0.0032
RE Probit -0.0337  0.0019 -0.0226  0.0015 0.0258  0.0025
2SCML  -0.0200  0.0029 -0.0231 0.0034 -0.0162 0.0045
2SCMLR -0.0284 0.0032 -0.0322 0.0037 -0.0265 0.0047
AGLS -0.0330 0.0035 -0.0174 0.0034 -0.0138 0.0043
AGLSR -0.0722 0.0068 -0.0731 0.0067 -0.1068 0.0128
2SIV -0.0750 0.0065 -0.0870 0.0081 -0.1135 0.0133
2SIVR -0.0404 0.0040 -0.0285 0.0032 -0.0241 0.0036
Partial R2 0.2028 0.2015 0.1387

Notes: As table 1, except that individual effects are Chi-squared(1) distributed.

λ=0 λ=0,1 λ=0,5

λ=0 λ=0,1 λ=0,5

λ=0 λ=0,1 λ=0,5

 
 



Table 5. Monte Carlo Results for Estimation of Marginal Effects 
of Time Invariant Regressor in a Panel, 200 observations. 
Individual Effects depending quadratically on Z-residual.
ρ=0.05
Estimator Bias MSE Bias MSE Bias MSE
OLS -0.0096 0.0006 0.0003 0.0005 -0.0114 0.0009
FE -0.0114 0.0045 0.0008 0.0045 -0.1344 0.0212
2SLS 0.0697 0.3243 0.0079 0.1916 -0.2263 3.5122
2SLSF 0.1524 22.9050 -0.3943 13.8899 -2.3906 6.5399
Probit 0.0002 0.0007 0.0147 0.0009 0.0427 0.0027
RE Probit -0.0106 0.0007 0.0032 0.0007 0.0302 0.0017
2SCML 0.0708 0.2968 0.0116 0.1671 -0.1871 4.6373
2SCMLR 0.0553 0.2728 0.0048 0.1499 -0.1939 -0.1522
AGLS 0.2349 3.0041 -0.0261 2.1213 -0.0008 0.0030
AGLSR 0.2111 2.1373 -0.0746 2.0797 -0.0099 0.0025
2SIV -0.0320 0.0055 -0.0238 0.0051 -0.0063 0.0009
2SIVR 0.2115 2.2518 -0.0042 0.2736 -0.0011 0.0020
Partial R2 0.0067 0.0083 0.0065

ρ=0.2
Estimator Bias MSE Bias MSE Bias MSE
OLS -0.0100 0.0006 -0.0056 0.0007 -0.0077 0.0007
FE -0.0092 0.0033 -0.0170 0.0050 -0.1298 0.0201
2SLS -0.0213 0.0154 -0.0221 0.0148 -0.0835 0.0222
2SLSF 0.0338 1.5530 -0.1511 2.1272 -1.5668 2.6561
Probit 0.0013 0.0006 0.0086 0.0007 0.0474 0.0032
RE Probit -0.0094 0.0006 -0.0027 0.0006 0.0351 0.0022
2SCML -0.0113 0.0138 -0.0074 0.0173 -0.0423 0.0241
2SCMLR -0.0188 0.0130 -0.0210 0.0166 -0.0499 0.0233
AGLS -0.0054 0.0159 -0.0146 0.0237 -0.0523 0.0253
AGLSR -0.0081 0.0147 -0.0311 0.0170 -0.1214 0.0223
2SIV -0.0063 0.0020 -0.0070 0.0018 -0.0442 0.0034
2SIVR -0.0025 0.0158 -0.0135 0.0186 -0.0561 0.0197
Partial R2 0.0444 0.0447 0.0321

ρ=0.5
Estimator Bias MSE Bias MSE Bias MSE
OLS -0.0131 0.0007 -0.0029 0.0004 -0.0196 0.0010
FE -0.0146 0.0030 -0.0023 0.0034 -0.1146 0.0156
2SLS -0.0124 0.0020 -0.0193 0.0023 -0.0741 0.0084
2SLSF -0.0228 0.0532 -0.0097 0.0561 -0.6144 0.4351
Probit 0.0015 0.0006 0.0130 0.0008 0.0379 0.0026
RE Probit -0.0094 0.0006 0.0013 0.0006 0.0252 0.0018
2SCML 0.0018 0.0019 -0.0051 0.0023 -0.0267 0.0048
2SCMLR -0.0094 0.0018 -0.0158 0.0023 -0.0365 0.0051
AGLS -0.0008 0.0030 -0.0101 0.0023 -0.0487 0.0051
AGLSR -0.0099 0.0025 -0.0336 0.0029 -0.1246 0.0168
2SIV -0.0063 0.0009 -0.0031 0.0008 -0.0336 0.0026
2SIVR -0.0011 0.0020 -0.0134 0.0019 -0.0693 0.0068
Partial R2 0.2024 0.2050 0.1473

Notes: As table 1, except that individual effects affect z quadratically.

λ=0 λ=0.1 λ=0.5

λ=0 λ=0.1 λ=0.5

λ=0 λ=0.1 λ=0.5

 
 



Table 6. Monte Carlo Results for Estimation of Marginal Effects of 
Time Invariant Regressor in a Panel, 500 observations, Real Data.

Estimator Bias MSE Bias MSE Bias MSE
OLS -0.0027 0.0002 0.0119 0.0003 0.0563 0.0033
FE 0.0264 0.0066 0.0295 0.0086 0.0161 0.0066
2SLS -0.0038 0.0002 -0.0011 0.0003 0.0004 0.0003
2SLSF 0.0266 0.0066 0.0295 0.0087 0.0155 0.0066
Probit -0.0098 0.0003 -0.0245 0.0007 -0.0697 0.0050
RE Probit -0.0043 0.0002 0.0119 0.0003 0.0584 0.0036
2SCML -0.0034 0.0002 -0.0006 0.0003 0.0005 0.0003
2SCMLR -0.0053 0.0003 -0.0020 0.0003 -0.0010 0.0004
AGLS 0.0185 0.0031 0.0121 0.0063 0.0280 0.0045
AGLSR -0.0077 0.0034 -0.0174 0.0044 -0.0125 0.0034
2SIV 0.0102 0.0002 0.0090 0.0002 0.0108 0.0002
2SIVR 0.0763 0.0574 0.0160 0.0590 -0.0033 0.0605
Partial R2 0.5079 0.4986 0.4446
True Marg.Eff. -0.0252 -0.0252 -0.0252
Share Positive 0.2999 0.3003 0.2948

Estimator Bias MSE Bias MSE Bias MSE
OLS -0.0012 0.0002 0.0125 0.0003 0.0548 0.0031
FE 0.0232 0.0068 0.0123 0.0055 0.0083 0.0051
2SLS -0.0055 0.0035 -0.0001 0.0034 0.0033 0.0049
2SLSF 0.0235 0.0069 0.0123 0.0057 0.0078 0.0052
Probit -0.0114 0.0003 -0.0252 0.0008 -0.0681 0.0048
RE Probit -0.0022 0.0002 0.0126 0.0003 0.0567 0.0034
2SCML -0.0050 0.0035 0.0006 0.0035 0.0041 0.0051
2SCMLR -0.0135 0.0049 -0.0050 0.0048 -0.0007 0.0069
AGLS 0.0010 0.0005 0.0065 0.0001 0.0034 0.0004
AGLSR 0.0009 0.0004 0.0052 0.0003 0.0039 0.0003
2SIV 0.0095 0.0001 0.0109 0.0002 0.0104 0.0001
2SIVR 0.0743 0.7411 -0.0123 0.8179 -0.0773 1.2074
Partial R2 0.0368 0.0398 0.0320
True Marg.Eff. -0.0252 -0.0252 -0.0252
Share Positive 0.2966 0.29596 0.2898

Notes: As table 1, but now with real regressors from data for 500 working women. z is years of education
and exogenous regressors are age and a dummy for being a white collar worker. In the top table the instruments 
are individual means over time of exogenous regressors and indicators for whether individuals are affected by 2 
school reforms. In the bottom table only school reforms are used. See text for description and specific design.

λ=0 λ=0.1 λ=0.5

λ=0 λ=0.1 λ=0.5

 
 
 
 


