
Inflation, Exchange Rates and PPP in a

Multivariate Panel Cointegration Model∗

Tor Jacobson, Johan Lyhagen†, Rolf Larsson and Marianne Nessén

Abstract

New multivariate panel cointegration methods are used to analyze
nominal exchange rates and prices in the four major economic powers
in Europe, France, Germany, Italy and Great Britain for the post-
Bretton Woods period. We test for PPP and find that the theoretical
PPP relationship does not hold but there is a similar (1,-1.5,0.9 instead
of 1,-1,1) relationship which is common for the investigated countries.
Parametric bootstrap inference is used to deal with badly small sample
sized tests.
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1 Introduction

Does purchasing power parity hold in the long run? Are real exchange rates
mean-reverting? A reading of the voluminous literature on this matter ap-
pears to give the following conclusions. If one applies unit root tests to real
exchange rate data spanning long periods of time (say, close to a century or
more) then evidence of long-run PPP is most often found (see e.g. Frankel
1986, Abuaf and Jorion 1990 and Lothian and Taylor 1996). However, when
examining the recent post-Bretton Woods period of floating exchange rates
the answer is less clear-cut. Conventional unit-root tests do not find evi-
dence of PPP, while other approaches, e.g. using panel data, have provided
evidence in favor of PPP1.

In this paper we re-examine the case of PPP using long data sets, even
though many would consider it a case closed. There are several reasons why
we consider a re-examination warranted. First, earlier studies using long-
run horizon data sets have typically analyzed the real exchange rate using
various univariate techniques.2 In contrast, we cast the analysis in terms of
multivariate panel cointegration. The advantage of such a framework, as we
see it, is described below. A second reason concerns size distortion, i.e. the
erroneous rejection of a true null hypothesis due to an inappropriate asymp-
totic approximation. There are two sources for this. Firstly, Engel (1999)
argues that the unit-root tests referred to above may have serious size biases
due to the fact that any stationary process can be made arbitrary close to
a nonstationary process. Secondly, as shown in Lyhagen (2000), using panel
unit root test in the context of PPP gives invalid inference, i.e. the size of
the test tends to one when the number of countries increases. This is due to
that a common common trend is not considered when calculating the critical
values. Both these effects leads to the false conclusion of a stationary real ex-
change rate. In this paper, asymptotic tests are augmented with parametric
bootstrap analogues, whereby we reduce the effect, if not eliminate, the size
distortion typically present in small-sample applications of asymptotic tests.
As we bootstrap the multivariate model the problem of common common

1This interpretation of the post-Bretton Woods period is not self-evident. Cheung and
Lai (1998), using more efficient unit-root tests, report evidence in favor of PPP. On the
other hand, O’Connell (1998) provides a critical assessment of the evidence from panel
studies.

2In addition to the references cited in the text, influential papers include Diebold,
Husted and Rush (1991), Glen (1992) and Edison (1987).
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trend is also solved.
We examine monthly data for the post-Bretton Woods years 1974-1999

for France, Germany, Italy and Great Britain, and the results of our analysis
are the following. We do find evidence of cointegration between nominal
exchange rates and prices; in fact the number of cointegrating vectors is
exactly what PPP predicts. But the coefficients in the cointegrating vectors
are not from what is compatible with PPP, although we find that all the
cointegrating vectors are the same. Hence, we reject PPP.3 We discuss this
result in the concluding section, Section 5. Prior to that, Section 2 explains
the implications of PPP in terms of cointegration while the asymptotics of
the tests are in Section 3. Section 4 contains the cointegration analysis and
in Section 5 there is a Monte Carlo simulation to investigate the small sample
properties of the test statistics derived in Section 3. Description of the data
used and proofs of the theorems are in the Appendix.

Multivariate framework – ‘World-Wide PPP’

In contrast with most earlier studies of long-horizon data sets, we cast the
analysis in terms of multivariate cointegration.4 The multivariate nature of
the framework offers two advantages. First, we are able to test for (bilateral)
PPP between all countries in one system, meaning that the interdependent
nature of the foreign exchange markets is taken into explicit account. Ide-
ally, such an analysis should include prices and exchange rates of all large
economies in order to fully account for the simultaneity. But doing so one
would of course run into problems with degrees of freedom. Hence we have
restricted the number of countries in the analysis to the four mentioned
above, concentrating on what we believe to be major economies/currencies
in Europe of the twentieth century. Furthermore, in this multivariate setup
we will test not only individual bilateral PPP relations, but also whether all
bilateral PPP relations hold simultaneously — i.e. ‘world-wide’ PPP. Second,
nominal exchange rates and prices enter separately into the analysis. Hence

3Some would actually interpret our results as evidence of ’weak form’ PPP; see e.g.
MacDonald (1993). We prefer to associate PPP with the stricter requirement that the
cointegrating relations satisfy certain linear restrictions. This is explained more in Section
2.

4Earlier cointegration studies using long-horizon data sets — Kim (1990) and Ardeni
and Lubian (1991) — analyze nominal exchange rates and price ratios separately using the
bivariate Engle-Granger two-step procedure.
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no a priori restrictions are imposed on the joint behavior of prices and ex-
change rates (i.e. the so-called symmetry and proportionality conditions are
not imposed, but instead subsequently tested for).5

Size and power issues in tests of long-run PPP

In the empirical PPP literature there has been much concern with issues of
statistical power of the tests used when examining whether real exchange
rates are mean-reverting (see e.g. Cheung and Lai 1998). On the other tack,
Engel (1999) has shown that these tests may in fact have serious size biases
when applied to random variables that contain a stationary but persistent
component and a non-stationary component. On the panel unit root front
Lyhagen (2000) have shown that the usually used critical values are wrong
as they do not properly take care of the common common trend implied by
PPP.

There is reason to believe that the usefulness of multivariate maximum
likelihood cointegration analysis can be severely hampered by the curse of di-
mensionality, i.e. a large number of parameters in relation to a small number
of observations. One undesirable effect is that the use of asymptotic critical
values may jeopardize the validity of inference. This has been empirically
verified in Jacobson, Vredin and Warne (1998). Gredenhoff and Jacobson
(1998) have confirmed the presence and examined the nature of size distor-
tion for likelihood ratio tests of linear restrictions on cointegrating vectors.
However, they also found that parametric bootstrap testing is a robust al-
ternative to asymptotic approximations, eliminating size distortions even for
quite large systems and as few observations as 60. In this paper, all asymp-
totic tests (not only those of linear restrictions on cointegrating vectors) are
augmented by parametric bootstrap analogues.6

5Earlier studies using the multivariate cointegration setup to analyze long-run PPP –
Cheung and Lai (1993), Kugler and Lenz (1993), Johansen and Juselius (1992), MacDonald
(1993) and Edison, Gagnon and Melick (1997) – have used data from the post-Bretton
Woods period. Furthermore, these studies have examined PPP in series of trivariate
systems (an exception is Nessén 1996). The typical result in these studies (and Nessén
1996) is that evidence of cointegration is found, but that the cointegrating relations fail
comply with the restrictions implied by PPP.

6Edison et al. (1997) are also concerned about inappropriate use of asymptotic ap-
proximations in the context of multivariate maximum likelihood cointegration analysis of
PPP. Analyzing post-Bretton Woods data they find only weak support for PPP, despite
the use of small-sample critical values in the hypothesis testing.
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2 PPP and linear restrictions on prices and

exchange rates

We examine long-run PPP between four large European economies in a mul-
tivariate panel setting. The purpose of this section is to show how such a
system is set up and to identify the restrictions implied by long-run PPP.

Denote the natural logarithm of the nominal dollar exchange rate of coun-
try i (that is, the number of currency i per unit dollar) by eit . Further, let
pit be the natural logarithm of the price level in country i. Further, let p∗t
denote the price level in our numeraire country, the Great Britain. Define

Xit =

[
eit
pit

]
and then

Xt =



e1t
p1t
...

eNt
pNt
p∗t


where N is the number of countries except the base country, in our case four.

Now, if long-run bilateral PPP holds then the real exchange rates between
all pairs of countries are stationary, or integrated of order 0, I(0). This may
be expressed as

qit ≡ eit − pit + p∗t ∼ I(0) i = 1, ...N

where qit is the real exchange rate between country i and the US. These N
equations can be summarized as:

q1t
q2t

...

qNt


≡


1 −1 0 0 . . . 0 0 1
0 0 1 −1 . . . 0 0 1
...
...

. . .
...

0 0 0 0 · · · 1 −1 1





e1t
p1t
...

eNt
pNt
p∗t


∼ I(0) (1)

5



It is easily recognized that the choice of base country is arbitrary. Pre-
multiply the relationship with the matrix

1 0 · · · −1 · · · 0
0 1 −1 · · · 0
...

. . .
...

...
0 0 · · · −1 · · · 0
...

...
. . .

...
0 0 · · · −1 · · · 1


where the column of −1 is in the position of the new base country, gives the
desired result. Note that the eigenvalues are N−1 ones and the last is minus
one so the new relationships span the same space as the original one.

The equations in (1) can be evaluated in a vector error correction model
on the form

∆Xt = αβ ′Xt−1 +
m−1∑
i=1

Γi∆Xt−i + εt. (2)

Here, α and β are Npq ×Nr, where Npq ≡ Np+ q and β is given by

β =


β1 0 . . . 0

0
. . . . . .

...
...

. . . 0
0 . . . 0 βN

βN+1,1 . . . βN+1,N

 .

(This is a general formulation of the PPP example, where p = 2, q = 1 and
r = 0, 1, 2 or αβ′ are of full rank.) No restrictions are imposed on the α,
Γi (Npq ×Npq) and Ω (Npq ×Npq) matrices, the latter being the covariance
matrix of εt (Npq × 1). Assume that observations are taken at t = 1, ..., T .
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The hypothesis of PPP implies that β is

β =



β1x 0 · · · 0
β1p 0 0
0 β2x 0
0 β2p 0
...

. . .

0 0 βNx

0 0 βNp

β1b β2b · · · βNb


where rank of

[
βix, βip, βib

]
is ri. A simplification is to assume ri = r, i =

1, ..., N. From this it is possible to test if the [−1, 1, 1] restrictions is valid
or the restrictions

[
βix, βip, βib

]
=
[
βx, βp, βb

]
, i.e. the same parameters for

all countries. Note that this model is similar to the one in Larsson and
Lyhagen (1999) but with the addition of the last row which includes βib and
the estimation procedures follows those outlined there.

The asymptotics of these test situations are considered in the next section.

3 Asymptotic results

Introduce the ECM

∆Xt = αβ ′Xt−1 +
m−1∑
i=1

Γi∆Xt−i + µ+ εt. (3)

Here, Xt ≡
(
X ′

t,1, ..., X
′
t,N , Xt,N+1

)′
is (Np+ 1)× 1 (the components Xt,i are

p×1 for i = 1, ..., N and allXt,N+1 are scalars) and α and β are (Np+ 1)×Nr,
where β is given by

β ≡


β1 0 . . . 0

0
. . . . . .

...
...

. . . 0
0 . . . 0 βN

βN+1,1 . . . βN+1,N

 , (4)

with blocks βi that are p × r and βN+1,i that are 1 × r, i = 1, ..., N. The
constant µ ((Np+ 1) × 1) is not restricted to the cointegration space, i.e.
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α′
⊥µ �= 0. (This is a general formulation of the PPP example, where p = 2 and

r = 0, 1 or 2.) No restrictions are imposed on the α, Γi ((Np+ 1)× (Np+ 1))
andΩ ((Np+ 1)× (Np+ 1))matrices, the latter being the covariance matrix
of εt ((Np+ 1)× 1). Assume that observations are taken at t = 1, ..., T .

In the following, we will generalize the limit results for the tests worked
out in Larsson and Lyhagen (1999) (in the sequel called LL) to the present
situation. At first, we will try to see what Lemma 10.3 of Johansen (1995)
looks like in this setting. For this, let

Z0t ≡ ∆Xt,

Z1t ≡ Xt−1,

Z2t ≡
(
∆X ′

t−1, ...,∆X ′
t−m+1, 1

)′
,

Ψ ≡ (Γ1, ...,Γm−1, µ) ,

so that we may reformulate (3) in the more compact form

Z0t = αβ′Z1t +ΨZ2t + εt. (5)

We need to look at the asymptotic behavior of Z1t corrected for regression
on Z2t, for t = [Tu] where 0 < u < 1. To this end, we need a moving average
representation of Xt, which is given in the following lemma. The lemma (and
the subsequent theorems) relies on the assumption

Assumption A The roots to the characteristic equation corresponding
to (3) have modulus > 1 or are equal to 1, and α′

⊥Γβ⊥ has full rank, where
Γ ≡ Ip −

∑m−1
i=1 Γi.

This assumption guarantees that Xt is an I (1) process (cf Johansen
(1995), p. 49). The lemma is a reformulation of Grangers representation
theorem, as given in theorem 4.2 of Johansen (1995).

Lemma 1 If assumption A holds, we have the representation

Xt = C

(
µt+

t∑
j=1

εj

)
+ Yt,

where Yt is I (0) and C ≡ β⊥ (α′
⊥Γβ⊥)

−1 α′
⊥ ((Np+ 1)× (Np+ 1)) .

We now formulate the main limit result for −2 logQT , where QT is the
maximum likelihood ratio test of the hypothesis that rank (αβ ′) = Nr, where
β is as in (4), against rank (αβ′) = Np+ 1.
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The proof is a generalization of the corresponding theorem in LL. The
main idea is to consider the three hypotheses H3: rank (Π) = Np + 1, H2:
Π = αβ′ where α and β are (Np+ 1)×Nr as above, but with no restrictions
on β, and H1: as H2 but where β is as in (4). Then, H1 ⊂ H2 ⊂ H3, and
denoting the maximum likelihood ratio between Hi and Hj by Qij for i < j,
we have QT = Q13 = Q12Q23, i.e.

−2 logQT = −2 logQ12 − 2 logQ23.

The result will be that, as T → ∞, −2 logQ12 converges weakly to the χ2

variate V , while −2 logQ23 tends to U which has a Dickey-Fuller type distri-
bution as given in the formulation of the theorem. Furthermore, −2 logQ12

and −2 logQ23 are asymptotically independent.

Theorem 2 Under assumption A and if α′
⊥µ �= 0 and r > 0, we have that

as T → ∞,
−2 logQT

w
→ U + V,

where, defining W̃ (t) to be an {N (p− r) + 1}-dimensional standard Wiener
process (with mean zero and unity covariance matrix),

U = tr

{∫
dW̃F ′

(∫
FF ′

)−1 ∫
FdW̃ ′

}
,

and where V is χ2 with N (N − 1) (p− r) r degrees of freedom, independent
of U . The process F is {N (p− r) + 1}-dimensional with components

Fi (u) ≡

{
W̃i (u)−

∫ 1

0
W̃i (t) dt, i = 1, ..., N (p− r) ,

u− 1
2
, i = N (p− r) + 1.

Our final object is to test if, given cointegrating rank r = 1 and p = 2, the
cointegrating relation is

(
β ′
i, βN+1,i

)
= ci ((−1, 1) , 1) for all i and constants

ci. A more general formulation is that given r,
(
β ′
i, β

′
N+1,i

)′
= Hiψi for all i,

where theHi are known (p+ 1)×smatrices and the ψi are s×r and unknown.
In the sequel, this hypothesis will be referred to as H0. Our special case is
given by s = 1, all Hi = (−1, 1, 1)′ and all ψi = ci. The maximum likelihood
ratio test of H0 against H1 (the hypothesis about restriction as in (4)) is
denoted by Q01.
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Theorem 3 Under assumption A and as T → ∞, −2 logQ01 is asymptoti-
cally χ2 with Nr (p− s+ 1) degrees of freedom.

The proof is in the appendix.
The distribution of the test of common cointegrating space is treated

in Larsson and Lyhagen (1999) where it is show that the test is χ2 with
(N − 1) r (p− r)+(N − 1) r degrees of freedom. Note that the last (N − 1) r
is due to the parameters of the base country which is not included in the
analysis of Larsson and Lyhagen (1999).

4 The cointegration analysis

Our database contains monthly observations of wholesale prices and nominal
exchange rates (vs the British pound) for Germany, France, Italy and Great
Britain for the years 1974 - 2000, i.e. N = 3 and T = 314. The Appendix
contains a fuller description of the data and sources, and also graphs, figures
(1)-(3), of the exchange rate, real exchange rate and wholesale price series.
A preliminary investigation concerning unit roots is carried out using the
ADF test. The results are that wholesale prices and nominal exchange rates
are non-stationary, further, the real exchange rates are also non-stationary if
investigated on 5% level (the Italian is stationary on the 10% level).

The cointegration analysis performed in this paper employs methods de-
veloped by Johansen (1988, 1991). We begin by setting up the following
vector error correction model (VECM):

∆Xt = Γ1∆Xt−1 + . . .+ Γk−1∆Xt−k+1 +ΠkXt−k + µ+ δDt + εt (6)

where Xt (defined above) and µ are column vectors with seven elements, the
Γ’s and Π are matrices with coefficients, and εt is a Gaussian error term
with zero mean and a covariance matrix Σ. The rank of Π is of central
importance. If it has reduced rank less than N ∗2+1, then Π may be divided
into two matrices α and β (i.e. Π = αβ ′), where the matrix β contains the
cointegrating vectors, i.e. β′ xt is stationary.

In the subsequent sections we use this framework in the following way:
First we estimate the number of cointegrating relations in a VECM of our
seven-variable data set that satisfies standard specification tests. Second, we
test hypotheses about the cointegration vectors. First we test if the cointe-
grating vectors span the same space and then if the theoretical relationship
is within this space.
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4.1 Specification and mis-specification analysis

The number of lags is specified using the information criterion proposed by
Schwarz (1978) where a upper limit of five lags are pre-specified. The re-
sults suggest k = 2 would be appropriate. Given a lag of 2 the likelihood
ration test of the three null r = 0, 1, 2 is calculated with the alternative of
full rank. Instead of using the asymptotic distribution we use the method
discussed above, i.e. a parametric bootstrap as it was used in Gredenhoff
and Jacobson (1998). Note that data is generated under the null and with
lags so the parameter uncertainty is dealt with to. A nominal size of 5% is
used and the number of bootstrap replicates is 1000. The test statistics with
the corresponding critical values are given in Table (2) . The null of r = 0 is
rejected while the null of r = 1 is not, hence, we conclude that one cointe-
grating relationship per country is sufficient. The normalized cointegrating
vectors are displayed in Table (3).

Table (2) in here

Table (3) in here

4.2 Testing linear restrictions

Having found support for the necessary condition for PPP, we now turn to
the sufficient conditions. The multivariate setup used in this paper actually
enables us to test for PPP in different ways. First, we test whether all
three bilateral PPP relations span the same space, i.e. the four countries
share the same economic laws but not necessarily the one outlined above.
The test statistic is 17.4 with a bootstrapped critical value of 21.6 at a 5%
nominal size, hence, we do not reject the null of a common cointegrating
space. The normalized (with regards to βix) common cointegrating vector is
[1.00,−1.52, 0.885]′ which have the corrects signs and does not seem to be
far from the relationship implied of PPP. To test if PPP holds the likelihood
ratio test with [1,−1, 1]′ as null is tested against common cointegrating space.
The test statistic is 60.8 with a bootstrapped critical of 12.0, i.e. we reject
the null.

In summary, we have found support for our hypothesis that the variables
in xt can be characterized by an error correction model like equation (6).
This implies that they are driven by a limited number of common stochastic
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trends and therefore are tied together in the long run. There are three long-
run, cointegrating, relations. However, none of these long-run relations can
be interpreted in terms of PPP although the span the same space.

5 Small sample properties

Although we used Monte Carlo based inference in the empirical sections
above it is of interest to show how well the asymptotic distributions works
in small samples. To analyze this a Monte Carlo simulation is performed.
The data generating process (DGP) is the empirical model estimated in the
previous section. We are interested in five different null hypothesis. The
first three considers the rank: r = 0, r = 1, r = 2, and the remaining two
is tests on the cointegrating space: test of common space and test that
the cointegrating vector is the theoretical PPP relationship, 1,−1, 1. The
alternative for the first three models are the usual full rank model and for
the last two an unrestricted cointegrating model with rank one. For the very
last model the alternative of a common cointegrating space is also considered.
The largest eigenvalues of the DGP’s are displayed in Table (4).

Table (4) in here

The Monte Carlo setup is as follows. First generate data according to
the model under the null, then estimate the models under the null and the
alternative and calculate the likelihood ratio statistic. Compare with the
asymptotic critical value and note if the test reject or not reject the null.
This is repeated 1000 times and the proportion of rejections are the size
which should be compared to a nominal size of 5%. The size adjusted power,
i.e. the simulated small sample critical values are used, of the tests are
also of interest. For the null models r = 0, r = 1, r = 2 the DGP’s are
r = 1, r = 2 and full rank respectively. Regarding the cointegrating space
tests the DGP is the r = 1 model. We also investigates the power when
the null is the theoretical PPP but the data is generated from a model with
common cointegrating space. The Monte Carlo simulation is done for sample
sizes T = 100, 200, 400, 800, 1600 and 3200 and the number of replicates are
1000. The results are displayed in Table (5) and Table (6).

[Table (5) about here.]

[Table (6) about here.]
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The results show that the well known problem in cointegration analysis
that the for larger systems with many parameters the small sample critical
values tends very slowly to the asymptotic (see e.g. Gredenhof and Jacobson
(1998)). This result shows the very need for the use of the bootstrap or
other size adjusting measures. The power properties are very satisfying for
the larger sample sizes but not the smallest where we get the result that
the power is less than the size. The most likely reason for this is that the
critical values is quite dependent on where in the parameter space the DGP
is. Note that as an iterative approach is used to estimate the cointegrating
relations the cointegrating vectors for e.g. rank one do not have to be in
the space spanned by the space of the cointegrating vectors for the model
with two cointegrating vectors. This might also be an explanation. For the
sample size closest (T = 400) to the one used in the empirical part the power
properties is good.

6 Conclusions

Previous studies of long-run purchasing power parity have predominantly
used univariate techniques (e.g. unit-root tests) and have often found sup-
port for long-run PPP. We, on the other hand, use a multivariate approach,
and arrive at a different conclusion. We do find cointegrating vectors be-
tween nominal exchange rates and prices - and just the number that PPP
would predict - but none of these can be interpreted in terms of PPP. An
interesting result is that all the cointegrating vectors share the same space
which indicates that the same economic law is valid for all four countries
investigated, France, Germany, Italy and Great Britain.

It is difficult to reconcile the evidence given by traditional unit-root tests
with the results provided in this study. What can explain this striking differ-
ence in conclusion? Possible explanations are offered by Engel (1999) (and
Lyhagen (2000)), who argues that the traditional (panel) unit-root tests are
greatly over-sized. The reliability of our results is enhanced by what we
believe to be a well-specified statistical model and by the fact that all the
asymptotic tests have been replaced by robust bootstrap inference.

Now, whereas the bootstrap test can be expected to be approximately
correct in size, it should be noted that its power will not be higher, nor
lower, than the power of a size-adjusted asymptotic test. This has been the-
oretically predicted for the general case by Davidson and McKinnon (1996)
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and verified for the likelihood ratio test of linear restrictions on cointegrating
vectors by Gredenhoff and Jacobson (1998) using Monte Carlo simulation.
Moreover, the results in Gredenhoff and Jacobson suggest that the power of
the likelihood ratio test in a complex model based on relatively few obser-
vations, such as the one at hand, cannot be expected to be high. Despite
this we do reject the null of PPP. Had we not, low test power could very
well have driven that result. In other words, the bootstrap procedure en-
sures a proper size for the test and the insufficient power only strengthens
the rejection result.

The conclusion arising from our analysis is that real exchange rates are
non-stationary, even when examining data stretching over long periods of
time. Hence shocks to real exchange rates do not subside with time, but
instead have infinitely long-lived effects. This suggests that permanent real
shocks are the predominant source of real exchange rate movements. A nat-
ural suggestion for future research is thus to develop models of real exchange
rate behavior that focus mainly on real factors.
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Figure 1: Monthly WPI for Great Britain, Germany, France and Italy

Appendix

6.1 Description of data

The database is comprised of three nominal exchange rates and four wholesale
price indices. The frequency is monthly and the series run from 1974 to
1999. See Figures 1 -3. The exchange rates are the price of British pounds
in German mark, French franc and Italian lire respectively. The WPI’s are
from row 63 in the IFS-tapes.

6.2 Proof of asymptotics

In the sequel, it will turn out to be convenient to use the reparametrisation
β′Xt−1 = ϕ′X̃t−1, where ϕ ≡ diag (ϕ1, ..., ϕN) with ϕi ≡

(
β′
i, β

′
N+1,i

)′
for

i = 1, ..., N , which are all (p+ 1)× r, and

X̃t−1 ≡
(
X ′

t−1,1,X
′
t−1,N ,X ′

t−1,2, X
′
t−1,N , ..., X ′

t−1,N−1,X
′
t−1,N

)′
,

which is N (p+ 1)×1. In other words, X̃t−1 = MXt−1, where the N (p + 1)×
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Figure 3: Monthly real exchange rate for Germany, France and Italy using
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(Np+ 1) matrix M is given by

M ≡



(
Ip
0

)
0 · · · 0

(
0
1

)
0

(
Ip
0

)
. . .

...
...

...
. . . . . . 0

0 · · · 0

(
Ip
0

) (
0
1

)


.

If follows that β ′Xt−1 = ϕ′MXt−1, i.e. β = M ′ϕ, and we may re-write (5) as

Z0t = αϕ′MZ1t +ΨZ2t + εt. (7)

Observe that the dominating deterministic term of the lemma has coeffi-
cient matrix

Cµ = β⊥ (α′
⊥Γβ⊥)

−1
α′
⊥µ.

Since by assumption, α′
⊥µ �= 0, we have Cµ �= 0. Let τ ≡ (τ ′

1, ..., τ
′
N)

′ ≡
MCµ (N (p+ 1)× 1) , where the τ i are (p+ 1)× 1 for i = 1, ..., N. Further,
for each i, choose γi orthogonal to ϕi and to τ i. Then, γi is (p+ 1)× (p− r)
for i = 1, ..., N. Putting γ ≡ diag (γ1, ..., γN) , and γ ≡ diag (γ1, ..., γN ) where
γi ≡ γi (γ

′
iγi)

−1 for each i, and similarly for τ , it follows as in lemma 10.2 of
Johansen (1995) that as a consequence of the lemma above, as T → ∞ and
for 0 < u < 1,

T−1/2γ′MX[Tu]
w
→ γ′MCW (u) ,

T−1τ ′MX[Tu]
w
→ u,

because
lim
T→∞

T−1 [Tu] = u.

In other words, defining the norming matrix

ξT ≡

(
T−1/2IN(p−r) 0

0 T−1

)
,

which is Npr ×Npr where Npr ≡ N (p− r) + 1, we have the limit result

ξT

(
γ′

τ ′

)
MX[Tu]

w
→

(
γ′MCW (u)

u

)
, (8)
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where the latter matrix is (Np + 2)× 1. Furthermore, define

B ≡


(γ1, τ 1) 0 · · · 0

0 (γ2, τ 2)
. . .

...
...

. . . . . . 0
0 · · · 0 (γN , τN )

 ,

which is N (p+ 1)×N (p− r + 1) . Then,

B
′
= M̃

(
γ′

τ ′

)
,

where

M̃ ≡



(
Ip−r

0

)
0 · · · 0

(
0
1

)
0

. . . . . .
...

...
...

. . . 0

0 · · · 0

(
Ip−r

0

) (
0
1

)


,

which is N (p− r + 1) × Npr. Furthermore, defining the N (p− r + 1) ×
N (p− r + 1) norming matrix

ξ̃T ≡


T−1/2Ip−r 0 · · · 0 0

0 T−1 . . .
...

...
...

. . . . . . 0
T−1/2Ip−r 0

0 · · · 0 T−1

 ,

we have M̃ξT = ξ̃TM̃. Then, putting BT ≡ Bξ̃T and using

B
′

T = ξ̃TB
′
= ξ̃TM̃

(
γ′

τ ′

)
= M̃ξT

(
γ′

τ ′

)
,

left-hand multiplication of (8) by M̃ yields

B
′

TMX[Tu] = M̃ξT

(
γ′

τ ′

)
MX[Tu]

w
→ M̃G0 (u) , (9)
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where

G0 (u) ≡

(
γ′MCW (u)

u

)
,

which is Npr × 1. Further, define G (u) to be G0 (u) corrected for regression
on 1, i.e.

G (u) ≡

(
γ′MC

{
W (u)−

∫ 1

0
W (t) dt

}
u− 1

2

)
. (10)

In the following we will discuss the asymptotic distribution of the likeli-
hood ratio test for cointegrating rank in the model (7).

To begin with, we will study the asymptotics of ϕ̂ − ϕ. However, as in
Johansen (1995), p. 179, we at first define ϕ̃ ≡ ϕ̂ (ϕ′ϕ̂)−1 which, because of
the decomposition ϕ̂ = ϕϕ′ϕ̂+BB′ϕ̂, yields

ϕ̃ = ϕ+BY

where, because B ′ϕ = 0,

Y ≡ B′ϕ̂ (ϕ′ϕ̂)
−1

= B′ϕ̃ = B′ (ϕ̃− ϕ) ≡


Y1 0 · · · 0

0 Y2
. . .

...
. . . . . . 0

0 · · · 0 YN

 , (11)

where the diagonal blocks Yi are (p− r + 1) × r for i = 1, ..., N. Moreover,

we have α̂ϕ̂′ = α̃ϕ̃′ where α̃ ≡ α̂ϕ̂′ϕ. Finally, let H
(m)
i be a Nm×m matrix

of zeros except for the ith block where it is a unit matrix, i.e.

H
(m)
i ≡

(
0 . . . 0 Im 0 . . . 0

)′
and introduce the N2r (p− r + 1)×Nr (p− r + 1) matrix

K ≡
(

H
(r)
1 ⊗H

(p−r+1)
1 · · · H

(r)
N ⊗H

(p−r+1)
N

)
.

Proof of Theorem 2: We will at first consider the asymptotics of
−2 logQ12.

In the following, we will need some useful identities, to be found in e.g.
Magnus and Neudecker (1988). For arbitrary matrices P , Q, R and S of
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dimensions such that the products below are defined, it holds that

tr (PQ) = tr (QP ) , (12)

(P ⊗Q) (R⊗ S) = PR⊗QS, (13)

vec (PQR) = (R′ ⊗ P ) vecQ, (14)

tr (PQRS) = (vecS ′)
′
(R′ ⊗ P ) vecQ (15)

(P ⊗Q)−1 =
(
P−1

)
⊗
(
Q−1

)
(16)

As in Johansen (1995), p. 91, concentrating out Z2t leads us to the
auxiliary regression

R0t = α̃ϕ̃′MR1t + ε̂t, (17)

whereR0t andR1t are Z0t and Z1t corrected for Z2t and the ε̂t are independent
normals, each with mean zero and covariance matrix Ω. For a moment, let us
assume that Ω is fixed, the following arguments being applicable also when
it is not, due to consistency. Then, apart from a constant, the log likelihood
may be expressed as

logL = −
1

2
tr

(
Ω−1

T∑
t=1

ε̂tε̂
′
t

)
.

Furthermore, differentiating w.r.t. ϕi, dϕ′ = diag (0, ..., 0, dϕ′
i, 0, ..., 0) =

H
(r)
i dϕ′

iH
(p+1)′
i , we have dε̂t = −α̃H

(r)
i dϕ′

iH
(p+1)′
i MR1t, and it follows by

(12) and (17) that

T−1d logL = −T−1tr

(
Ω−1

T∑
t=1

dε̂tε̂
′
t

)

= T−1tr

(
H

(p+1)′
i M

T∑
t=1

R1tε̂
′
tΩ

−1α̃H
(r)
i dϕ′

i

)
= tr

(
H

(p+1)′
i MŜ1εΩ

−1α̃H
(r)
i dϕ′

i

)
,

where Ŝ1ε ≡ T−1
∑T

t=1 R1tε̂
′
t. Moreover, since ε̂′t = R′

0t −R′
1tM

′ϕ̃α̃′,

Ŝ1ε = S10 − S11M
′ϕ̃α̃′

= S1ε − S11M
′ (ϕ̃− ϕ) α̃′ − S11M

′ϕ
(
α̃′ − α′

)
20



with S1ε ≡ S10 − S11M
′ϕα′ and Sij ≡ T−1

∑T
t=1 RiR

′
j for i, j = 0, 1. Hence,

using the consistency of α̃ (cf Johansen (1995), p. 181) and putting the
derivative w.r.t. ϕi equal to zero, it follows that

H
(p+1)′
i MS1εΩ

−1αH
(r)
i = H

(p+1)′
i MS11M

′ (ϕ̃− ϕ)α′Ω−1αH
(r)
i , (18)

for all i. Now, write BT = diag (b1, ..., bN) , where bi ≡
(
T−1/2γi, T

−1τ i

)
,

which is (p+ 1)×(p− r + 1) . Then, for each i, it is easily seen that b′iH
(p+1)′
i =

H
(p−r+1)′
i B

′

T , and so, left-hand multiplication of (18) by b′i yields

H
(p+1)′
i B

′

TMS1εΩ
−1αH(r)

i = H(p+1)′
i B

′

TMS11M
′ (ϕ̃− ϕ)α′Ω−1αH(r)

i .

Moreover, inserting ϕ̃− ϕ = BY = BTYT , where YT ≡ ξ̃
−1

T Y, we get

H
(p−r+1)′
i B

′

TMS1εΩ
−1αH

(r)
i = H

(p−r+1)′
i B

′

TMS11M
′BTYTα

′Ω−1αH
(r)
i ,

for i = 1, ..., N . To find vecYT , we apply (14) to find(
H

(r)′
i ⊗H

(p−r+1)′
i

)
vec

(
B

′

TMS1εΩ
−1α

)
=

(
H

(r)′
i ⊗H

(p−r+1)′
i

)(
α′Ω−1α⊗B

′

TMS11M
′BT

)
vecYT ,

for i = 1, ..., N . This system may be rewritten as

K ′vT = K ′CTvecYT , (19)

with

vT ≡ vec
(
B

′

TMS1εΩ
−1α

)
,

CT ≡ α′Ω−1α⊗B
′

TMS11M
′BT ,

with dimensions N2r (p− r + 1) × 1 and N 2r (p− r + 1)×N 2r (p− r + 1),
and where K is as defined previously.

In the case with no restrictions on ϕ, defining ZT as the counterpart to
YT in this case, we similarly get (see also LL)

B
′

TMS1εΩ
−1α = B

′

TMS11M
′BTZTα

′Ω−1α,

i.e. using (14),
vT = CT vecZT . (20)
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Now, because as T → ∞, we have from (9) that

B
′

TM

(
X[Tu] − T−1

T∑
t=1

Xt−t

)
w
→ M̃G (u) , (21)

so the limit of CT , C say, which is also the asymptotic covariance matrix of
vT conditional on G, is given by, via (13),

C =
(
α′Ω−1α

)
⊗

(
M̃

∫
GG′M̃ ′

)
=
(
INr ⊗ M̃

)
J
(
INr ⊗ M̃ ′

)
, (22)

where

J ≡ α′Ω−1α⊗

∫
GG′.

(Note that C is singular.) Thus, by passing to the limit in (19) and (20), we
find

K ′v = K ′CvecYT + oP (1) , (23)

v = C vecZT + oP (1) , (24)

where v denotes the stochastic limit of vT . Moreover, defining a ≡ N2r (p− r + 1),
c ≡ Nr (p− r + 1) (note that a � c), the matrix dimensions are for K a× c,
for C a × a, and for v, vecYT and vecZT a× 1.

Now, as in LL,

K ′
⊥ vecYT =

 H
(r)′
1⊥ ⊗H

(p−r+1)′
1
...

H
(r)′
N⊥ ⊗H

(r)′
N

 vecYT

=


vec

(
H

(p−r+1)′
1 YTH

(r)
1⊥

)
...

vec
(
H

(p−r+1)′
N YTH

(r)
N⊥

)
 = 0,

because H
(p−r+1)′
i “picks out” the ith “block row” of YT and H

(r)
i⊥ picks out

all “block columns” except for the ith one. Hence, the identity

Ia = KK
′
+K⊥K

′

⊥
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yields vecYT = KK
′
vecYT , so via (23),

K ′v = K ′CKK
′
vecYT + oP (1) . (25)

Hence,
vecYT = KK

′
vecYT = K (K ′CK)

−1
K ′v + oP (1) . (26)

Moreover, we will prove below that there is a full rank a × b matrix L such
that

b ≡ Nr {N (p− r) + 1} � a

and

L′
⊥ vecZT = 0 + oP (1) , (27)

L′
(
INr ⊗ M̃

)
= Ib. (28)

Hence, from (22), L′CL = J and we can perform the same trick as above to
obtain, via (24) left multiplied by L′,

vecZT = LL
′
vecZT = LJ−1L′v + oP (1) .

Thus, in conjunction with (26),

vecZT − vecYT = Pv + oP (1) , (29)

where we have the a× a matrix

P ≡ LJ−1L′ −K (K ′CK)
−1

K ′. (30)

Now, assume furthermore that, for some b×c matrix R, (observe that c � b),
we have

K = LR, (31)

i.e.
K ′CK = R′L′CLR = R′JR.

Then, (30) becomes

P = LJ−1L′ − LR (R′JR)
−1

R′L′

= L
{
J−1 −R (R′JR)

−1
R′
}
L′, (32)
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Furthermore, we have the equality

J−1 −R (R′JR)
−1

R′ = J−1R⊥

(
R′

⊥J
−1R⊥

)−1
R′

⊥J
−1, (33)

which is proved by noting that left-hand multiplication by R′J or by R′
⊥

yields the same results on both sides, and so, (32) becomes

P = LJ−1R⊥

(
R′

⊥J
−1R⊥

)−1
R′

⊥J
−1L′. (34)

Now, it follows as in LL that

−2 logQ12 = vec (ZT − YT )
′ C vec (ZT − YT ) + oP (1) = v′P ′CPv + oP (1) ,

(35)
where furthermore

P ′CP = LJ−1R⊥

(
R′

⊥J
−1R⊥

)−1
R′

⊥J
−1L′CLJ−1R⊥

(
R′

⊥J
−1R⊥

)−1
R′

⊥J
−1L′

= LJ−1R⊥

(
R′

⊥J
−1R⊥

)−1
R′

⊥J
−1R⊥

(
R′

⊥J
−1R⊥

)−1
R′

⊥J
−1L′

= LJ−1R⊥

(
R′

⊥J
−1R⊥

)−1
R′

⊥J
−1L′ = P.

Hence, (35) yields
−2 logQ12 = v′Pv + oP (1) . (36)

Moreover, conditional onG, v′Pv is χ2 distributed with the number of degrees
of freedom equal to

E (v′Pv) = E {tr (Pvv′)} = tr {P E (vv′)} = tr (PC) = tr (V ∗) ,

and it is easily seen from (12) that

tr (V ∗) = tr
(
LJ−1R⊥

(
R′

⊥J
−1R⊥

)−1
R′

⊥J
−1L′C

)
= tr

(
R′

⊥J
−1R⊥

(
R′

⊥J
−1R⊥

)−1
)

= tr (Ib−c) = b− c.

With b = Nr {N (p− r) + 1} , this is

b− c = Nr {N (p− r) + 1− (p− r + 1)} = N (N − 1) r (p− r) .

Moreover, because the distribution of v′Pv conditional on G does not depend
on G, it also holds unconditionally that v′Pv is χ2 with b − c degrees of
freedom.
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To conclude the discussion on the V component, it remains to prove (27),
(28) and (31). To this end, note that in the representation (11) we may, for
each i, introduce the partitions Yi = (Y ′

i1, Y
′
i2)

′ , where Yi1 is (p− r)× r and
Yi2 is 1 × r. Furthermore, note that under the restrictions on β hypothesis,
the Z counterpart to Y may be partitioned accordingly. (The off-diagonal
blocks of the YT counterpart, ZT say, tend to 0 in probability as T → ∞.)
Moreover, introduce the {N (p− r) + 1} ×Nr matrix

Z̃ ≡


Z11 0 · · · 0

0
. . . . . .

...
...

. . . 0
0 · · · 0 ZN1

Z12 · · · ZN2

 .

Now, (27) holds if the matrix L satisfies, denoting the limit of ZT by Z,

vecZ = L vec Z̃, (37)

where L is a×b, since vecZ is a×1 and vec Z̃ is b×1with b = Nr {N (p− r) + 1} .
Moreover, it is easily seen that L may be taken as block diagonal with
Nr (p− r + 1) × r {N (p− r) + 1} diagonal blocks Li for i = 1, ..., N. For
i = 1, we have

vec


Z11

Z12

0
...
0

 = L1 vec


Z11

0
...
0

Z12

 .

Here, in view of (14), we may write L1 = Ir ⊗ L̃1, where e.g.
Z11

Z12

0
...
0

 = L̃1


Z11

0
...
0

Z12

 ,
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with

L̃1 ≡



Ip−r 0 · · · 0 0
0 0 · · · 0 1
0 Ip−r 0 · · · 0
0 0 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 Ip−r 0
0 · · · 0 0 0


,

which is N (p− r + 1)×{N (p− r) + 1} and of full rank. The corresponding
equality for arbitrary i is similarly seen, and so, (37) is verified. Equation
(28) is deduced by noting that

L′
(
INr ⊗ M̃

)
=

(
Ir ⊗ diag

(
L̃′
1, ..., L̃

′
N

))(
Ir ⊗ diag

(
M̃, ..., M̃

))
= Ir ⊗ diag

(
L̃′
1M̃, ..., L̃′

NM̃
)
= Ib,

with b as above, because as is easily seen, L̃′
iM̃ = IN(p−r)+1 for all i. To prove

(31), at first observe that K may be seen as a block diagonal matrix with

blocks Ki, i = 1, ..., N, where Ki ≡ Ir ⊗ K̃i where the K̃i are N (p− r + 1)×

(p− r + 1). For example, K̃1 ≡ (Ip−r+1, 0, ..., 0)
′ . Similarly, we may define R

as block diagonal with blocks Ri = Ir⊗R̃i where the R̃i are {N (p− r) + 1}×

(p− r + 1) . Hence, via (13), we need to choose the R̃i so that K̃i = L̃iR̃i,
which for i = 1 is seen to be true with

R̃1 ≡


Ip−r 0
0 0
...

...
0 0
0 1

 .

The arguments for arbitrary i are similar.
As for −2 logQ23, it follows as in Johansen (1995), p. 158-160 that it

equals the sum of the roots ρ to the equation∣∣∣ρB′

TMS11M
′BT −B

′

TMS1εα⊥ (α′
⊥Ωα⊥)

−1
α′
⊥Sε1M

′BT

∣∣∣ = 0.

In view of (9), we may rewrite this as∣∣∣∣ρM̃ ∫
GG′M̃ ′ − M̃

∫
GdW ′α⊥ (α′

⊥Ωα⊥)
−1

α′
⊥

∫
dWG′M̃

∣∣∣∣ = 0. (38)
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Now, because of the property |AB| = |BA| for any matrices such that the

products are well defined, we may factor out
∣∣∣M̃ ′M̃

∣∣∣ from the l.h.s. of (38),

and since this factor is readily seen to be nonzero, (38) is equivalent to∣∣∣∣ρ ∫ GG′ −

∫
GdW ′α⊥ (α′

⊥Ωα⊥)
−1

α′
⊥

∫
dWG′

∣∣∣∣ = 0. (39)

Further, following Johansen (1995), we define

W1 ≡ (γ′MCΩC ′M ′γ)
−1/2

γ′MCW,

which is N (p− r)× 1 and

W2 ≡
{
µ′α⊥ (α′

⊥Ωα⊥)
−1

α′
⊥µ
}−1/2

µ′α⊥ (α′
⊥Ωα⊥)

−1
α′
⊥W,

which is a scalar. Note that N (p− r) < Np + 1, so the norming matrix

γ′MCΩC ′M ′γ is non-singular. Moreover, the vector W̃ ≡ (W ′
1,W2)

′ has
dimensionN (p− r)+1, which equals the dimension of α′

⊥W (α is (Np+ 1)×

Nr). Hence, the transformation from α′
⊥W to W̃ is non-singular. Hence, we

may insert W̃ in place of (α′
⊥Ωα⊥)

−1/2 α′
⊥W in (39). Moreover, it is readily

seen that W̃ is a standard Wiener process, i.e. that its covariance matrix
is the identity. For example, the covariance between W1 and W2 contains
the factor µ′α⊥ (α′

⊥Ωα⊥)
−1 α′

⊥ΩC ′M ′γ = µ′C ′M ′γ = τ ′γ, which is zero by
assumption. Similarly (cf (10)), we may insert F ≡ (F ′

1, u− 1/2)′ in place of

G in (39), where F1 ≡ W1 (u)−
∫ 1

0
W1 (t) dt. Hence, (39) becomes∣∣∣∣ρ∫ FF ′ −

∫
FdW̃ ′

∫
dW̃F ′

∣∣∣∣ = 0,

and the sum of of the N (p− r) + 1 roots to this equation equals

tr

{∫
dW̃F ′

(∫
FF ′

)−1 ∫
FdW̃ ′

}
,

as asserted.
As for the independence between U and V , note that via (39),

U = tr

{(∫
GG′

)−1 ∫
GdW ′α⊥ (α′

⊥Ωα⊥)
−1

α′
⊥

∫
dWG′

}

= vec

(∫
GdW ′α⊥

)′(
α′
⊥Ωα⊥ ⊗

∫
GG′

)−1

vec

(∫
GdW ′α⊥

)
,
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see (15) and (16). Moreover, from (36), (21) and the definition of v, we have

V = v′Pv

= vec

(
M̃

∫
GdW ′Ω−1α

)′

Pvec

(
M̃

∫
GdW ′Ω−1α

)
= vec

(∫
GdW ′Ω−1α

)′ (
INr ⊗ M̃

)′

P
(
INr ⊗ M̃

)
vec

(∫
GdW ′Ω−1α

)
where the last equality follows from (14). Now, conditional on G, it is easily
seen that

∫
GdW ′Ω−1α and

∫
GdW ′α⊥ are normally distributed and uncor-

related, hence independent. Thus, because P and C are constant conditional
on G, U and V are conditionally independent given G. Furthermore, as was
seen above, V is independent of G. Hence, denoting the simultaneous density
of U and V by fU,V , the density of G by fG and the conditional densities by
fU |G, etcetera,

fU,V =

∫
fU,V |GfG =

∫
fU |GfV |GfG = fV

∫
fU |GfG = fV fU ,

where the integrals are over the support of the G density. This shows the
independence between U and V, and we are done.

Proof of Theorem 3: To find the asymptotic distribution of −2 logQ01,
we will utilize the decomposition

Q01Q12 = Q′
12Q

′
22,

where Q′
12 is the maximum likelihood ratio test of H0 ≡ H ′

1 against H ′
2,

where H ′
2 is the restriction hypothesis ϕ = Hψ for a not necessarily block

diagonal ϕ. Moreover, Q′
22 is the maximum likelihood ratio test ofH ′

2 against
H2, where H2 is the general reduced rank hypothesis as above, i.e. the usual
restriction test of Johansen (1995). Thus,

−2 logQ01 = −2 logQ′
12 − 2 logQ′

22 − (−2 logQ12) , (40)

where we know −2 logQ′
22 from Johansen (1995) and −2 logQ12 from the

previous theorem and its proof. Hence, to find −2 logQ01, we will need to
establish −2 logQ′

12.
We will consider three different cases. Case 1 is when s = r, case 2 is

s = r + 1 and case 3 is s > r + 1.
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At first, let us consider cases 2 and 3. We will mimic the technique of the
proof of the corresponding lemma in Johansen (1995), lemma 13.9. To this
end, write ϕ = Hψ, where H ≡ diag (H1, ..., HN) and ψ ≡ diag (ψ1, ..., ψN) .
Then, (5) becomes

Z0t = αψ′H ′Z1t +ΨZ2t + εt,

and the counterpart to (17) is

R0t = α̃ψ̃
′
H ′MR1t + ε̂t,

with tilde notation as above. Now, let τH ≡ (τ ′
H1, ..., τ

′
HN)

′ = HH ′MCµ.
Then, ϕ′τH = ψ′H ′MCµ = ϕ′τ = 0, i.e. ϕ is orthogonal to τH , which
means that all ϕi are orthogonal to the corresponding τHi. Then, choose
γH ≡ diag (γH1, ..., γHN) such that for each i, γHi ((p+ 1) × (s− r − 1))
is orthogonal to ϕi and τHi and such that (ϕi, τHi, γHi) spans sp (Hi) . (In
case 2, γHi not defined, but the following arguments still follow with a slight
modification.) Observe that γHi is orthogonal to τ i as well, since H ′

⊥γH = 0
which implies γ′

Hτ = γ′
HHH ′τ = γ′

HτH = 0. Hence, for each i, γHi =
γiξHi for some matrix ξHi, where as before, γi is orthogonal to ϕi and τ i.
Consequently, we have, as T → ∞ and for 0 < u < 1,

T−1/2γ′
HMX[Tu]

w
→ γ′

HMCW (u) ,

T−1τ ′
HMX[Tu]

w
→ u,

or in other words, defining

ξHT ≡

(
T−1/2IN(s−r−1) 0

0 T−1

)
,

ξHT

(
γ′
H

τ ′
H

)
MX[Tu]

w
→

(
γ′
HMCW (u)

u

)
. (41)

Now, replacing ϕ by ψ, M byH ′M andH
(p+1)
i byH

(s)
i throughout in the pre-

vious proof (observe that when differentiating w.r.t. ψi, dψ = H
(r)
i dψ′

iH
(s)′
i ),

we deduce the equality

H
(s)′
i H ′MS1εΩ

−1αH
(r)
i = H

(s)′
i H ′MS11M

′H
(
ψ̃ − ψ

)
α′Ω−1αH

(r)
i . (42)

Next, letBHT = diag (bH1, ..., bHN) , where bHi ≡
(
T−1/2γHi, T

−1τHi

)
((p+ 1)×

(s− r)). Then, because (ϕi, τHi, γHi) spans sp (Hi) , we may for each i
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write bHi = Hiηi for some s × (s− r) matrix ηi, so that BHT = Hη where
η ≡ diag (η1, ..., ηN ) . Further, left-hand multiplication of (42) by η′i yields,

because η′iH
(s)′
i H ′ = H

(s−r)′
i η′H ′ = H

(s−r)′
i B

′

HT ,

H(s−r)′
i B

′

HTMS1εΩ
−1αH(r)

i = H(s−r)′
i B

′

HTMS11M
′H
(
ψ̃ − ψ

)
α′Ω−1αH(r)

i .

Moreover, inserting H
(
ψ̃ − ψ

)
= HηYHT = BHTYHT , we get

H
(s−r)′
i B

′

HTMS1εΩ
−1αH

(r)
i = H

(s−r)′
i B

′

HTMS11M
′BHTYHTα

′Ω−1αH
(r)
i ,

for i = 1, ..., N . To find vecYHT , we apply (14) and (13) to find(
H

(r)′
i ⊗H

(s−r)′
i

)
vec

(
B

′

HTMS1εΩ
−1α

)
=

(
H

(r)′
i ⊗H

(s−r)′
i

)(
α′Ω−1α⊗B

′

HTMS11M
′BHT

)
vecYHT ,

for i = 1, ..., N . This system may be rewritten as

K ′
HvHT = K ′

HCHTvecYHT , (43)

with

vHT ≡ vec
(
B

′

HTMS1εΩ
−1α

)
,

CHT ≡ α′Ω−1α⊗B
′

HTMS11M
′BHT ,

and
KH ≡

(
H

(r)
1 ⊗H

(s−r)
1 · · · H

(r)
N ⊗H

(s−r)
N

)
,

which is aH × cH , where aH ≡ N2r (s− r) and cH ≡ Nr (s− r) . Then, it
follows in the usual manner that K ′

H⊥ vecYHT = 0, so that (43) implies

vecYHT = KHK
′

HvecYHT = KH (K ′
HCHTKH)

−1
K ′

HvHT . (44)

Now, consider the hypothesis H ′
2: Π = αβ′ where β is not restricted as in

(4), but where β = M ′ϕ = M ′Hψ, i.e. ϕ = Hψ. In this case, we have the
equality

B
′

HTMS1εΩ
−1α = B

′

HTMS11M
′BHTZHTα

′Ω−1α,

where ZHT is the counterpart to YHT . Hence, we find as above that

vHT = CHT vecZHT . (45)
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Furthermore, it is completely analogous to the previous proof (take s in place
of p + 1) to see that KH = LHRH , L′

H⊥ vecZHT = 0, where LH is aH × bH
and RH is bH × cH with bH ≡ Nr {N (s− r − 1) + 1} . Moreover, as earlier,
there is a N (s− r)× (N (s− r − 1) + 1) matrix

M̃H ≡



(
Is−r−1

0

)
0 · · · 0

(
0
1

)
0

. . . . . .
...

...
...

. . . 0

0 · · · 0

(
Is−r−1

0

) (
0
1

)


,

such that via (41) (cf (9)),

B
′

HTMX[Tu] = M̃HξHT

(
γ′
H

τ ′
H

)
MX[Tu]

w
→ M̃HGH0 (u) ,

where, because γH = γH (γ′
HγH)

−1 = γξH (γ′
HγH)

−1 = γγ′γξH (γ′
HγH)

−1

(ξH ≡ diag (ξH1, ..., ξHN)),

GH0 (u) ≡

(
γ′
HMCW (u)

u

)
= Φ̃′G0 (u) ,

where

Φ̃ ≡

(
γ′γξH (γ ′

HγH)
−1 0

0 1

)
.

Similarly, letting GH (u) ≡ Φ̃′G (u) , we find that the limit of CHT , CH say,
satisfies, via (13),

CH =
(
INr ⊗ M̃HΦ̃

′
)(

α′Ω−1α⊗

∫
GG′

)(
INr ⊗ Φ̃M̃ ′

H

)
=

(
INr ⊗ M̃H

)
Φ′JΦ

(
INr ⊗ M̃ ′

H

)
,

whereΦ ≡ INr⊗Φ̃.Here, in analogy with the previous proof, L′
H

(
INr ⊗ M̃H

)
=

IbH , and we have
L′
HCHLH = Φ′JΦ ≡ JH , (46)
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and it also follows that (45) yields

vecZHT = LHJ−1
H L′

HvH + oP (1) ,

where vH is the limit of vHT . Together with (44), this implies

vecZHT − vecYHT = PHvH + oP (1) ,

where

PH ≡ LHJ−1
H L′

H −KH (K ′
HCHKH)

−1
K ′

H

= LH

{
J−1
H −RH (R′

HJHRH)
−1

R′
H

}
L′
H , (47)

and it follows as in the previous proof that Q′
12, the maximum likelihood

ratio test of H0 ≡ H ′
1 against H ′

2, satisfies

−2 logQ′
12 = v′HPHvH + oP (1) . (48)

To show that −2 logQ01 is asymptotically χ2, we will use (40) to express
its limit as a positive definite quadratic form of normal variates. To this
end, observe that defining v0 ≡ vec

(∫
GdW ′Ω−1α

)
, the limit result (21), its

counterpart in the present setting, (14) and (13) imply

vT = vec
(
B

′

TMS1εΩ
−1α

)
w
→ vec

(
M̃

∫
GdW ′Ω−1α

)
=
(
INr ⊗ M̃

)
v0,

vHT = vec
(
B

′

HTMS1εΩ
−1α

)
w
→ vec

(
M̃HΦ̃

′

∫
GdW ′Ω−1α

)
=

(
INr ⊗ M̃H

)
Φ′v0,

so that the corresponding limits v and vH satisfy

L′v = v0, (49)

L′
HvH = Φ′v0. (50)

Hence, via (36) and (32),

−2 logQ12 = v′Pv + oP (1)

= v′L
{
J−1 −R (R′JR)

−1
R′
}
L′v + oP (1)

= v′0

{
J−1 −R (R′JR)

−1
R′
}
v0 + oP (1) , (51)
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and from the proof of theorem 13.9 of Johansen (1995), (15) and (13), we
have the representation

−2 logQ′
22

= tr

{(
α′Ω−1α

)−1
α′Ω−1

∫
dWG′

(∫
GG′

)−1 ∫
GdW ′Ω−1α

}

− tr

{(
α′Ω−1α

)−1
α′Ω−1

∫
dWG′Φ̃

(
Φ̃′

∫
GG′Φ̃

)−1

Φ̃′

∫
GdW ′Ω−1α

}

= v′0J
−1v0 − v′0

{(
α′Ω−1α

)−1
⊗ Φ̃

(
Φ̃′

∫
GG′Φ̃

)−1

Φ̃′

}
v0

= v′0

{
J−1 − Φ(Φ′JΦ)

−1
Φ′
}
v0.

Moreover, from (47), (48) and (50),

−2 logQ′
12 = v′HPHvH + oP (1)

= v′HLH

{
J−1
H −RH (R′

HJHRH)
−1

R′
H

}
L′

HvH + oP (1)

= v′0Φ
{
J−1
H −RH (R′

HJHRH)
−1

R′
H

}
Φ′v0 + oP (1) .

Hence, inserting into (40) and using (46),

−2 logQ01 = v′0Sv0 + oP (1) , (52)

where
S ≡ R (R′JR)

−1
R′ − ΦRH (R′

HJHRH)
−1

R′
HΦ

′.

Now, observe that ΦRH is b× cH . Assume that we may write

ΦRH = RΘ, (53)

where Θ is c× cH . (Recall that R is b× c.) Then, we find as in the previous
proof (cf (33)) that

S = R
{
(R′JR)

−1
−Θ(Θ′R′JRΘ)

−1
Θ′
}
R′

= R (R′JR)
−1

Θ⊥

{
Θ′

⊥ (R′JR)
−1

Θ⊥

}
Θ′

⊥ (R′JR)
−1

R′.
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Hence, again as in the previous proof, (52) yields that −2 logQ01 is asymp-
totically χ2, where because of (49) and, taking the expectation conditional
on G, C = E(vv′) , implying E (v0v

′
0) = L′CL = J , the number of degrees of

freedom equals, via (12),

E (v′0Sv0) = tr {S E (v0v
′
0)} = tr (SJ)

= tr
[
R (R′JR)

−1
Θ⊥

{
Θ′

⊥ (R′JR)
−1

Θ⊥

}
Θ′

⊥ (R′JR)
−1

R′J
]

= tr
[
Θ⊥

{
Θ′

⊥ (R′JR)
−1

Θ⊥

}
Θ′

⊥ (R′JR)
−1
]

= tr (Ic−cH ) = Nr {(p− r − 1)− (s− r)}

= Nr (p− s− 1) ,

which was to be shown.
To conclude the proof in cases 2 and 3, we must establish (53), which is

equivalent to verifying that R′
⊥ΦRH = 0. Now, observe that ΦRH is block di-

agonal with blocks Ir⊗
(
Φ̃R̃Hi

)
, where we may write Φ̃ = diag

(
Φ̃1, ..., Φ̃N , 1

)
,

each Φi being (p− r) × (s− r − 1) . Moreover, R⊥ is block diagonal with

blocks Ir ⊗ R̃i⊥, so it is enough to show that R̃′
i⊥Φ̃R̃Hi = 0 for all i. To see

this for i = 1, note that

R̃′
1⊥Φ̃R̃H1

=


0 Ip−r 0 · · · 0 0
... 0

. . . . . .
...

...
...

. . . 0 0
0 0 · · · 0 Ip−r 0




Φ̃1 0 · · · 0

0
. . . . . .

...
...

. . . 0

0 · · · 0 Φ̃N 0
0 · · · 0 1




Is−r−1 0
0 0
...

...
0 0
0 1


= 0,

and the argument for a general i follows similarly.
Case 1 is equivalent to a test of a simple hypothesis on β, because if s = r,

the ψi are all constants, so the space spanned by β is completely specified by
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H. Now, from Johansen (1995), p.193, we have

−2 logQ′
22 = tr

{(
α′Ω−1α

)−1
α′Ω−1

∫
dWG′

(∫
GG′

)−1 ∫
GdW ′Ω−1α

}
= v′0J

−1v0 + oP (1) ,

as above. Moreover, in this case −2 logQ′
12 = 0, because the block diagonal

restriction does not involve any parameters. (With fixed β = H, ψ is a non-
singular square matrix which may be absorbed into α.) Hence, if s = r, it
follows via (51) and (40) that

−2 logQ01 = v′0R (R′JR)
−1

R′v0 + oP (1) ,

which by the usual arguments is asymptotically χ2 with c = Nr (p− r − 1) =
Nr (p− s− 1) degrees of freedom, and we are done.
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WPI XRT Real-XRT
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ADF -1.578 -2.134 -0.880 -1.08 -1.96 -1.69 -0.778 -2.07 -2.21 -2.61∗

Lags 1 6 4 3 1 1 3 1 1 3

Table 1: ADF test where the lags been decided by testing down from 6 lags.
A * denotes signoificant at the 10% level.

r = 0 1 2
Test stat. 217 69.5 0.467
Crit. value 135 70.8 7.31

Table 2: Test statistics and bootstrapped critical values (1000 replicates), a
5 % nominal size.
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Germany France Italy
βix 1.00 1.00 1.00
βip -5.12 9.87 -2.25
βib 0.671 -8.78 0.528

Table 3: Normalized unrestricted estimates of the cointegrating vectors

r = 0 1 2
1.00 1.00 1.00
1.00 1.00 0.991
1.00 1.00 0.974
1.00 1.00 0.974
1.00 0.991 0.896
1.00 0.966 0.890
1.00 0.966 0.890
0.827 0.403 0.455
0.398 0.403 0.407
0.301 0.242 0.302
0.288 0.242 0.302
0.288 0.281 0.262
0.203 0.281 0.218
0.156 0.141 0.218

Table 4: Absolute values of the eigenvalues of the compagnion matrix for
r = 0, 1, 2

Null\T 100 200 400 800 1600 3200
r = 0 0.0037 0.0028 0.010 0.031 0.031 0.027
r = 1 0.000 0.001 0.001 0.002 0.006 0.013
r = 2 0.000 0.003 0.012 0.031 0.024 0.054
Common|r = 1 0.000 0.000 0.001 0.008 0.025 0.034
PPP|r = 1 vs unrestricted 0.650 0.363 0.182 0.101 0.072 0.056
PPP|r = 1 vs common 0.926 0.705 0.298 0.127 0.072 0.057

Table 5: Size of PPP related panel tests
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Null\T 100 200 400 800 1600 3200
r = 0 0.001 0.440 1.000 1.000 1.000 1.000
r = 1 0.054 0.389 0.997 1.000 1.000 1.000
r = 2 0.018 0.022 0.406 0.921 0.998 1.000
Common|r = 1 0.050 0.251 0.936 1.000 1.000 1.000
PPP|r = 1 vs unrestricted 0.101 0.485 0.994 1.000 1.000 1.000
PPP|r = 1 vs common 0.083 0.662 1.000 1.000 1.000 1.000

Table 6: Size adjusted power of PPP related panel tests
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