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Abstract
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1 Introduction

Our paper extends the semiparametric efficient treatment of panel data models pursued by
Park and Simar (1994) and Park, et al. (1998, 2002) to a dynamic panel setting. We
develop a semiparametric efficient estimator under minimal assumptions when the panel
model contains a lagged dependent variable. We apply this new estimator in an analysis
of the structure of dynamic demand in markets (city-pairs) for selected U. S. airlines during
the period 1 I to 1992 IV. Our results suggest that this estimator may have advantages over
parametric estimators in regard to efficiency gains in parameter estimates in general in the

autoregressive parameter in particular.

2 Main Results

The model we analyze in this paper is a dynamic panel data model that can be written as:
}/it:’y}/i,tfl_l_ﬂ/Xit_l_ai_l_git; i:17...,n;t:1,...,7" (21>

where X; € ]Rd, b e R? and 4 are iid random variables from a A (0,02) with an un-

known o2

. We assume |y| < 1 and Y;9 = 0. The random effects «; are assumed to be
independent and have an unknown common density function h. Write ¢; = (g1,..., ),
X, =(X],...,X.),and Y; = (Vj1,...,VY;) . Therandom covariates X; are independent and
identically distributed with an unknown density function g defined on R*. It is assumed
that &’s, a’s and X'’s are independent. In this section we address efficient estimation of the
parameters 3 and v in the presence of the nuisance parameters 0%, h and g. Note that the
parameter spaces for h and g are of infinite dimension while those for 3, v and o2 are of
finite dimension, so the model (2.1) is semiparametric.

We speak of efficiency as n tends to infinity with the time period r being fixed. The no-
tion of efficiency in the semiparametric world is well explained in Bickel et al. (1993). There
is a Fisher-like information matrix, say I, such that all regular estimators have asymptotic
covariance matrices that are greater than or equal to I (II4jek-Le Cam’s Convolution The-
orem, see Theorem 2.3.1 of Bickel et al., 1993). Here, we say an estimator b of q(0) is
regular if the law of \/ﬁ(gn —q(0,)) under P, converges to a limit law whenever \/n|0,, — 0|
stays bounded, and if the limit distribution does not depend on the choice of {0, }. We call
8, efficient if its limit law is A (0,171). In the next subsection we exhibit the information
matrix [ for estimating (3',7)’ in the presence of the nuisance parameters o2, h(-) and g(-),

and then in the second subsection we construct an efficient estimator of (', v)'.



2.1 Information bound

Let Zy = th(ﬂ;’y) =Yy — ’7}/1,1&71 - ﬂ/Xlt and Zl = Zl(ﬂ;’Y) = Z;l th(ﬂ;’Y)/T- Define

2

o° = 02/7". Then we can write 71, = aq + €14, /1 = aq + &1 and 21y — 77 = €14 — 1. The

probability density function for Z; is given by

w(z) = w(z; 02 h(-) = /(2%52)*1/2 exp{—(z — u)?/(26%) } h(u) du.

Thus, the log-likelihood with a single observation (X, Y1) is given by

r LIN/A 72
L(B,7, 0%, h(),9(); X1,Y1) = logg(Xy) — G log(2m0”) = > 5+ -5 (2.2)

t=1

- 1
+logw(Zy) + 3 log(2752).

Write Ps., 425, for the probability distribution of (X;,Y}) corresponding to 3, 7, 0%, h
and g. Let By, Vo, 02, ho and gy be the true values and the true functions, thus the true
probability distribution is Fy = Pﬁo,vo,ag,ho,go' For the time being, let us suppose the model
(1), denoted by P, is parametric. Let P = {Fsqo2n(m)a(my) : O € R? v € R,0?% ¢
R' n, € Si,n, € Sy} for some open Sy, S; C IR where h(-;n;) and g(-;n,) are known
except n, and n,. If the maps n, — h'2(:;n,) and 1, — ¢"2(:;n,) from R to Ly(u)
(i is the Lebesgue measure) are “smooth”, then the model P is regular. (See Ibragimov &
Mas’minskii, 1981, Section 1.7, or Bickel et al., 1993, Section 2.1). For this regular parametric
model P, the information matrix, denoted by I(Fy| 3,7, P), for estimating # and «y in the
presence of the nuisance parameters o2, 7, and 7, is well defined and can be computed in
the following way.

Write L = L(3,v,0% h(:;n,),9(;ny); X1, Y1) and define £ = 3L/8ﬂ]50’%’0gm10m20 where
10 and 7, are the parameter values such that hg = h(-,1,9) and go = g(-,79). Define £,,
ly2, £y and £, likewise. Let [(52,¢, ¢, | be the linear span generated by {52, £, and ¢,,.
Define €5 = £s—T1(Ls | [52, €y, , £y,]), and likewise define £, where IT(u | S) denotes the vector
of projections of each component of u onto the space S in La(p). Write £* = (¢, £})". The

information matrix is then given by
](P()’ﬂ,’Y,P) :EPO g*g*/ (23>

It is known that the right hand side of (2.3) equals the inverse matrix of the (d +1) x (d+ 1)
left-top block of the matrix {Ep, ££'} " where £ = (€, £, £y2, £, £y, ) . Tt is also known that

if § is a Gaussian regular estimator of (35, ~,)" With asymptotic covariance (Fp, §) then

E(P076> Z ]71(P0’ﬂ77773)7



where A > B for matrices A and B means that A — B is nonnegative definite (Bickel et al.,
1993, Section 2.3).

Now we go back to the original semiparametric model where the spaces for h and g
are of infinite dimension. Consider classes of functions h(-;n;) and g(-;7,) indexed by
n1,My € IR such that h(-;0) = hy and g(-;0) = go. Form a parametric submodel Py =
{Ps 02 n(m)atmy) & B E R* v € R,0? € R',n, € R,n, € R}. If we choose h(-;-) and
g(+;-) so that the maps 7, — hY2(:;n;) and 5y — ¢'/2(+;n,) from R to Ly(p) are “smooth”,
then Py is a regular parametric submodel of P and the information matrix I(Fy | 3,7, Po)
can be defined as at (2.3). Consider the class of all such regular parametric submodels, and
write it C. Suppose an estimator § of (3y,7,)" is Gaussian regular on P. Then it is Gaussian

regular on every regular parametric submodel Py, too. So, it satisfies
E(P076) Z ]71(P0’ﬂ777730)7 (24>

for every regular parametric submodel Py. In view of (2.4) it is natural to define the infor-

mation bound for estimating (3',7) in the semiparametric model by
I'(Po] B,7,P) = sup{L (Po| 3.7, Po) : Po € C}. (25)

A method of calculating I(Fy | 3,7, P) can be found in Bickel el al. (1993). The main
tasks are to find the tangent space of Pny = {Pg, .02 : c?eR" [h=1,fg=1hg>
0} at (02, ho, go), and to calculate the orthogonal projection of the scores £5 and ¢, onto the
tangent space. Let oy (Po) = (o2, €y, , £y,) be the vector of scores for the nuisance parameters
0%, n, and 7,. We introduce Py here to stress its dependence on the choice of parametric
submodel Py. Then, the tangent space of Py, at (08, ho, go) is nothing else than the closed
linear span of the union of [(n,(Po)] as Py ranges over C. Write the tangent space 75nu. Define
0y =Ly —11({g ] 75nu) and (7, likewise. These are called the efficient score functions. Writing

¢* = (£,0:)', the information matrix in the semiparametric model is given by
](P() ’ ﬂ,’}/,,])) = EPO g*g*/

In the discussion that follows we omit the subscript “0” in 8y, 7o, 04, ho and g which
has been used to indicate they are the true values and functions. Also, we suppress the
subscript “Fy” in Ep,.

The following theorem exhibits £3 and £} for estimating 5 and . To state the theorem,
let ¢, = ¢(y) = Y520 and & = &(vy) = Y1) () /r. Write X} = X3(y) = S0 Xae s
and X{' = X1'(7) = Sio Xi(y)/r. Similarly, let 7% = Z4(8,7) = /267 Z14 5 and
7 = 72(8,7) = Tict Z5(B,7)/r. Let Xy = ¥y Xu/r.



Theorem 2.1 The efficient score functions for estimating 3 and v are given by

r

b5 = Z;(th I X1 )0 — {wW(Z)) Jw(Z) WXy — BXy)

=3 (%= Z0)Yia /0" + {8/ (r = V)o™} Y (4 — Z1)’

t=1 t=1

—wO(Z)) fwl ) HB (P — BXY) + 70— 624}
where wY denotes the first derivative of w.

The information matrix [(Fp|3,v,P) can be calculated by using Theorem 2.1. TLet
Swin = Yoy B(X—X1)(X1;—X1) and Suy = var(X,). Define I, = [{(w™(2))?/w(z)} dz.

Then
B0 = 0 ?Sytn + Lu St (2.6)

Define ¢ = £(y) = S0 1501 Z;ffl A1t=51427 Tt can be shown from a lengthy and cumber-

some calculation that

BE = BB - XX - X0+ 2 Sl - B - X8 o
£ (0 — DPE(Z) [0 + LA(E — 10)0?/r? + Frar(X2)5) 27)

t=—1
r—1¢t—-1

r—1
A =r Y D> A =D G r—28/(r—1).
t=1 j=0 t=1
r—1 r—1
Eé;;g: = 0'72{2 ﬂ/EXﬂ(Xl,H»l - Xl) + ZCtE(Xl,t+1 - X1>E(Z1)} (28>
t=1

t=1

+I,/B(XP — EX¥)(X, — EX)).

The information matrix is readily obtained from (2.6), (2.7) and (2.8).

2.2 Construction of efficient estimators

Let 0 = (3,7). Write I = I(Fy|3,7,P). We construct an estimator 0, of # such that
Vn (9 — 0) converges in distribution to N(0,171). Define Z;; as we define Z;; but replacing
the subscript “1” by “I”, i.e. Z; = Z;4(0) = Yie— Vi 1 — ' Xu. Likewise, define Z;, X¥, XZ“’,
7 and Z“’ Replace the subscript “1” by “1” in the formula for /3 and /% given at Theorem
2.1, and denote them by ¢} ; and £: , respectively. Define £ = (£3,, €2 ;)'. Instead of writing
just £ we will write £;(0) to stress its dependence on 6 and for notational convenience in

description of the efficient estimator given below. Note particularly that £}(#) depends on



other parameters 02, h and g, too. Efficient estimators 0,, are characterized by the following

stochastic expansion:

O, =0+n 1115 0:(0) + 0, (n17?). (2.9)
=1

We follow the usual one-step procedure for constructing an efficient estimator: (i) Find a
\/n-consistent estimator 0,, of 0. (ii) Assuming the true parameter value 6 is known, find a
reasonable estimator of 02, and using this construct an estimator of the density function w(-).
(iii) Substitute the estimators obtained at (ii) into £;(6), and call it l@" (0). Also, construct

~

an estimator of I using the estimators obtained at (ii), and denote it by I(6). (iv) Construct

On by O, = 0, +n 11 1(0,) 0, £2(0,).

(3

First, we construct an initial estimator of @ which is \/n-consistent. We take, as an initial
estimator én, the minimizer of >0 | Y7 {(th —Y) = y(Yie 1 —Y) — 8 (Xu — XZ-)}Q with
respect to 3 and v where X; = Y27 | Xy /r and Y; = Yo7 | Yie/r. Write vy = (X[, Yii1),
m=> 1 > UiYy and M =37 ST v}, Then, the least squares initial estimator
can be written as

0, = M 'm. (2.10)

It can be shown that én 18 y/m-consistent.
Given the true value 0, we define 52(6) by

n

R n r _ _ _ 9
2(0) = >3 (Y = Vo) =y (Vi1 = Vi) = B (Xue — Xo)} /(v — 1)
=1 =1
Next, we construct a density estimator w(-;6). Recalling that w is the density of Z;(0), we

estimate it by a kernel estimator

n
W(z0) =n""> Ky (2= Z(0)) + cn
=1
where K (u) = (1/b,)K(u/by), K(u) = e (1 + e *)"? and b, is a constant converging to
zero at an appropriate rate to be described later. The constant ¢, is introduced here to avoid
technical difficulties due to zero denominators arising otherwise, and is taken to converge to

zero too as n tends to infinity, whose rate is also to be specified below.

Now, define £#(0) = (@;’Z(@) ¢ (0)) where

»Ty,g
r

8.0) = S {2ul0) - Z:(0)} Xar/52(0) (2.11)

n

— {2 (Z:(0):0) /0 (Zi(0); 0)} (X = Y- Xi/m)
EL0) = S Zu0) — Zi0)} Yier /52(0) + {0/ — D520)} S {Z(0) - Zu0))



- {atz00) oz0k0} {7 (K0 = 3 X)) 2.12)

+@@%mmﬁ.

One may estimator I by n= 13", Z( )E*’(Q), or by substituting the unknown quantities,
except 0, in the expressions given at (2.6), (2.7) and (2.8). It is well known that the latter
approach yields more stable estimators, and so we proceed in that direction here. Denote
by Iy; the d x d left-top block of the information matrix I, and by [ and [s9, the d x 1
right-top and 1 x 1 right-bottom blocks, respectively. Let Swtn = 11 P (X —
X)X — X;) and Shta = 1! SEAXs = 2 X /X - Y X/ ). Let fw(Q) =
S {0O(Z4(0):0)/0(Z:(0);6)} . Define
111(0) = 672(0) Syin + Lu(0) S

We estimate 15 by

r

n 1
Lao(0) = a7 {/HIZZX Xigi1— Xi)

+ (nl iﬁ;iﬁi;t;)(}i,m - Xz‘)) (nllzn;z‘(@)>}
+5'1,(0)n zn; {)N(;”(fy) —n ! Zzn;X;U(y)} {X —n ! ix} :

Finally, given the true value of 8, we construct an estimator of Iy by

In(0) = 5,20 {n,lﬁfij(xg ch)(xgcw-—X?«w)}ﬁ

=1 t=1

+%2ﬁ+ﬂi§% ) (xs0) - Kxe) {3200}
+5,%(0) {n 122; 22(9)}

~

+1,(0)4 (6() — ré(y) 77, /r°

n

+ B! z;(fc;"(w) —n! Zn;Xw (M) (X () —n? i@’(v))ﬁ}

-t igw ;QVF%%WFU

Plugging the initial estimator 6, into éf (#) and I (0), we obtain the following estimator

of 0: .
O =0, +n 1 10,) > £:(0,) (2.13)

i—1



The following theorem demonstrates that the estimator defined at (2.13) is a semiparametric

efficient estimator of 6.

Theorem 2.2 Assume that E(e!X1) < oo for some t > 0 and that [ |u|*h(u)du < co. If

2

208 — 00 as n — oo, then

b, — 0,¢c, — 0 and nc

~

V0, —0) — N0, 171

in distribution as n tends to infinity.

3 Empirical Illustration

3.1 Data

The primary data set used is the Department of Transportation’s Origin and Destination
Data Bank 1 A (DB1A) which consists of a continuous one in ten sample of all tickets sold
in the United States. The data is collected on a quarterly basis and the sample runs from
19791 to 19921V.

This study considers a market (route) to be a trip between origin and destination cities.
Considering a route to be an airport pair would suggest that Southwest does not compete
with United and American for flights between Houston and Chicago.

There are a number of factors for which controls other than standard demand variables
such as own price, price of competitors, income, etc. are necessary in order to model the
dynamic demand for airline travel. These are measured imperfectly. We imbed a number
of these in the construction of the price index itself, following the methods outlined by Good
et al. (2001). The factors can be categorized into five broad groups: Route specific effects,

ticket restrictions, yield management, zero coupon tickets and network effects.

3.1.1 Route Specific factors

There are clearly other variables which many have attempted to incorporate into modeling
the demand side of long distance travel. These include factors which are weather related,
such as mean temperature difference, in an attempt to capture vacation travel in the winter
months. Others have included variables which attempt to capture the demand for business
travel such as the number of white collar jobs in an area. We assume that these factors
are either very slow to change or that they are strongly correlated with other factors in
the model. These slowly moving factors are captured with fixed route specific effects which

describe the origin-destination pair.



3.1.2 Ticket restrictions

A major feature of airline fare structures is ticket restrictions. These either increase the
risk of travel for consumers (non-refundibility) or provide the airlines with improved pre-
dictability about demand (advanced booking) and enhance their ability to provide price
discrimination information by separating price sensitive consumers from business travelers
with more inelastic demands (Saturday night stay-overs). The major liability of using of
DOT’s DBIA as the primary source of ticket information is that it includes very incomplete
information on ticket restrictions. There is typically a lag between fare type innovations and
the way they are reported in DB1A. This makes it difficult to identify a consistent set of

conditions under which service was accepted.

3.1.3 Yield management

There i1s a great deal of competition in published fares. It is not at all uncommon for
different airlines providing service on the same route to offer similar fare classes (sets of fare
restrictions) at an identical price. However, fare structures may nor corresponde to published
fares, in part due to yield management practices. We attempt to capture the effect of yield
management by controlling for the percentage of first class, first class restricted, and coach

restricted tickets.

3.1.4 Zero coupon tickets

Frequent flyer miles were introduced in the mid 1980’s. The practice has proven so successful
that it has proliferated to other industries, even grocery stores offer discounts for frequent
shoppers. To control for the effects of zero coupon tickets markups above marginal cost, the
percentage of zero coupon tickets sold by the carrier for a particular route is controlled for

in the construction of the price index.

3.1.5 Network Configuration

Much has been made out of changes in airline networks by increased use of hub-and-spoke
type networks. Airlines find these network configurations useful because they allow for higher
passenger densities on individual routes.

Indirect routing of passengers clearly benefits the airlines because they can provide travel
to passengers with fewer flights, potentially taking advantage of economies of equipment size
(larger aircraft tend to have lower costs per passenger mile) and higher load factors (filling

otherwise empty seats on an aircraft cost the airline very little).



Many of the different network characteristics can be measured at the individual ticket
level. The DB1A database allows identification of many of the characteristics of the trip.
Most fundamentally, the origin of a trip can be identified as well as the ultimate destination
as indicated by a trip break. Approximately 95% of trips are either one way or round trip
(depending on the year) with a small number of multi-break tickets involving as many as 23
different flights. More complex routings tend to be slightly more prevalent in later years than
in earlier ones. In order to gain an understanding of the bulk of trips, attention is limited
to either one way or round trip tickets which are weighted by travel distance. Information
from the DBIA also allows measurement of the number of segments in a ticket. To control
for the effect of the number of segments in the itinerary, we also control for the percentage
of tickets with any number of stops up to 5 stops.

The minimum number of segments for a one way ticket is one. By 1984, this number fell
to 25%. A very different pattern emerges for round trip tickets which have a minimum of
two segments. In 1979-1 the average number of segments was 2.8, this increased somewhat
to 3.05 by 1992-4. At 3.0 it suggests that approximately half of the itineraries involved a
change of planes on the outbound and inbound portions of the trip. The rationale behind
the difference in the one way and round trip ticket patterns is not clear. It may suggest a
correlation between one way and full fare tickets which have a higher quality of demanded
service for the large premium in price. On the other hand, while the presumption behind
round trip tickets is that they describe the full trip, that is not the case for one way tickets
since the passenger will require, at the minimum, an additional ticket for the return flight.
Consequently the presumption that a full fare ticket involves the ultimate destination seems

less well founded.

4 Results and Concluding Remarks

We have used these data to analyze upwards of 500 city-pair demands for a selected number
of air carriers in the United States over periods of about 60 quarters. The cross-sectional unit
is the airline market, that is, the city-pair. Our preliminary results for the semiparametric
efficient dynamic panel estimators are presented in the tables below. The variables deter-
mining the demand for air travel, In(demand), are In(demand) 4, In(own price), In(price
of competitors),In(percapita income), In(population), In(unemployment rate). City-pair
characteristics as well as those portions of demand characteristics that are stable over the
time series are modeled random effects. The carriers are American, Continental, Delta, and
U. S. Airways. Our results are reasonable with little evidence that the roots of the dynamic

equation are unstable. Demand appears to adjust sluggishly and markets are contestable.



Moreover, the U. S. airline markets (city-pairs) appear to evidence short run unit elasticities

and are highly competitive in the long-run.
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Appendix

A.1 Proof of Theorem 2.1.

The score functions are given by

r

by = Y (Zu—Z1)Xu/o" — {wD(Z) /w(Z)} X4

b= D= Vit — (w2l Z0)}s
by = (20%)71 {ti;(th—Zl)Q/JQ

+ [ (02— w? =)o 0 ((Z - u)/o) hw) du/w(Zl)}

where Y, = S 1Y/ and ¢(+) is the density function of the standard normal distribution.
The tangent space 75nu may be decomposed into V;, V5 and V3, 1.e. 75nu = V1 + Vo4 V3, where
Vi = [l,2] and

Vo = {a(Z)) € Ly(Po) = Ba(Zy) = 0}, Vs = {b(X,) € Ly(Fy) : Eb(X,) = 0},
The following lemma shows that ¢5 and /., are perpendicular to Vs.
Lemma A.1 E({3]X,) =0 and E(¢, ] X;) = 0.

Proof. Note that {7y, — 7}, 7, and X, are independent. Since F(Z;; — Z;) = 0 and
E{wNZ) jw(Z1)} = fwD(u)du = 0, we obtain F(¢5] X;) = 0. Next, we prove the second
part. We can write Yy, = /XY + ¢y + Zz;%) ’ngl,t,j. Thus

r—1¢-1 ] ~ _ _
E(f, | X1) =023 3 A Blene jleren — 20)} — E{Viw D (Z) /w(Z) | Xi}. (A1)
t—1j-0
The first term in (A.1) equals =257} Z;;%) v (—0?/r) = —¢. For the second term, note
Vi =B X4z +r ' S 49 (2, j—Zy). By this and the facts that E{wM(Z;) /w(Z)} = 0

J=

and that F(Z,, ; — 71) = 0, the second term equals
B ZwMD(2)) Jw(Z0)) = & / wwD () du = —&. (qe.d.)
Lemma A.1l implies that writing W = [(52 — I1(¢,2 | V3)]

05 = lg— (| V) — I{{s — TI(Ls | V3)|W}
a = gw - H(&r ’ V2) - H{EW o H(év ’ %)’W}

11



We compute £} first. Note that II(¢g] V5) = E(¢s | V3) = —E(X1)wM (%) /w(Z;). Thus
by —TI(ls| Vo) =0 ti;(zlt — 7)) X1 — {wO(Z) Jw(Z:) }(Xi — EX)). (A.2)
Since EY) ((Zy — Z1)* = (r — 1)0?, we obtain
by — T (ly2 | Va) = (204)1{;7;(@ — 70— (r— 1)’} (A.3)

Now by symmetry of the distribution of (71, — Zl) and by independence of Zy, — 7y, Z; and
X1, it follows that E{>} (Z1; — Z) X H{>r 1 (Z1: — Z1)%} = 0 and

E{w®(Z) fw(Z1) } (X, — EXl)}{ZT;(ZR — 74)? = (r—1)0?} = 0,

Thus, ¢35 — TI(€g|V3) is perpendicular to 2 — II(fy2 | V5), which implies that £ = £53 —
II(¢5 | V3). The formula for (% follows from (A.2).
Next, we compute £}. By independence of Z1; — Zy, 71 and X, we have

r—1¢t-1

E(l,|Va) = 0 >33 VB j—2)(Enn — 81) — {w(Z) fw(Z)} { B E(XY) + 871}

t=1 j=0

= - w2 w(Z)} {FEXY) + 7).

Thus, we obtain

r

0, =1, | Vs) = o’ Z(th - Zl)}/l,t—l +c

(%) el 2P (K5 - BXE) + 33 e = 20}
To calculate II (¢, — TI(4, | V5) | W), we find
B{t, — Tl | Vo) Hbws — Tl | Vo)) = —/0” (A)
E{ty (s | V)2 = (r—1)/(20%) (A5)

Denote the left hand sides of (A.4) and (A.5) by (y, and (4, respectively. Then from (A.3),
(A.4) and (A.5), we obtain

I (gv - H(gv ’ V2) ’ W) = (C12/C22){€02 - H@U? ’ V2>}
— —{(NZ/(T — 1)0’2} Z(th - 21)2 —|- (NZ,
=1
which leads to the formula for E;.

12



A.2 Proof of Theorem 2.2

Define
wn(2) = wn(z;0%) = wa(z; 0%, h) = Ky, *w(z;0%,h) + ¢

where * denotes the convolution. We write 7, 7, and r for w® /i, wl) /w, and w® jw,
respectively. Define I, = [r2(2)w(z)dz. Define I, as in the definition of the information
matrix [ but with I, being replaced by I, ,. Following the arguments for the proof of (B.9)
in Park, Sickles and Simar (1998), one can verify

E {ra(Z:(6)) — r(Z4(0))}? — 0. (A6)

It follows from (A.6) that I, — I as n tends to infinity.
Now, it may be proved that

(nl S - EX1> WS 1 (Z4(0)) — 0 (A7)
i=1 i=1
n Y (X = BXO){ra(Z:(9)) = r(Z:(0))} — 0, (A.8)
i=1
both in the sense of convergence in probability. They follows since the left hand sides of
(A.7) and (A.8) have zero means by independence of X; and Z;(0), and variances bounded by
nYwar(X;) 1y, and var(X,)E{r,(Z1(0)) — r(Z1(0))}?, respectively, both of which converge

to zero as n tends to infinity. Similarly, it can be shown that

(nl > Xe0) - B (7)) oS ((0) (A9

n 2 (XP () = EXP() {ra(Z:(0) — (Z:(0))} — 0, (A.10)

=1
both in the sense of convergence in probability.
Define ZEZ(Q) and g:Z(Q) as in the definitions of EEZ(Q) and EEZ(Q) at (2.11) and (2.12),
respectively, with w(Z;(0);0) being replaced by w,(Z;(0);0?) and 62 by o2, and let £;(0) =
(£5,(0), £ ,(0)). Then, (A.7) ~ (A.10) imply

»TY,e
n LN 0) — N0, 1) (A.11)
=1

in distribution as n tends to infinity. Now, it can be shown that as in the proofs of Lemma

A.2 and (A.16) of Park and Simar (1994)
1(6,) — I, — 0, (A12)
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ot Zn: ( X;i—n! i _z‘> {#(Zi(02); 02) = ra(Z:(00); 0%) } — 0, (A.13)

n”QZn; (XZ“”(%) - nlzn; N;"(%)) {#(Zi00); 0n) = ru(Zi(0n); 0%} — 0, (A.14)

n

w23 (Z20(00) — 63) Z00)) {7 (20,0, 00) = ral Zi0,); 07} — 0, (A1)

=1

all in the sense of convergence in probability. Since 52(@) converges to o2 in probability,

(A.13) ~ (A.15) imply
n 120 znj{é;(én) —7;(6.)} — 0 (A.16)
=1
in probability. The theorem follows then from (A.11), (A.12) and (A.16) since for any C' > 0
sup{|n /2 znj{é;(e’) —0(0) + (0 = 0)| : n'?0" = 0] < C} =0
=1

in probability which can be proved as in Park and Simar (1994).
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Semiparametric Efficient Dynamic Airline Demand Equations

Table1

American Airlines

Variable Coefficient Standard Error
In(demand)., 0.628 0.0111
In(own price) -0.523 0.0395
In(comp. price) 0.016 0.0486
In(pcapinc) 0.618 0.1060
In(pop) 0.734 0.1011
In(unrate) -.0395 0.0190

R% within = 0.6751
between = 0.6597
overall =0.7993
Table 2
Continental Airlines

Variable Coefficient Standard Error
In(demand)., 0.550 0.0124
In(own price) -1.104 0.0671
In(comp. price) 0.216 0.1095
In(pcapinc) 1.562 0.2841
In(pop) 0.271 0.2197
In(unrate) -.0534 0.0452

R? within = 0.6081
Between= 0.8732
overall =0.8076
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Variable

In(demand).,
In(own price)
In(comp. price)
In(pcapinc)
In(pop)
In(unrate)

R? within =0.7945
Between= 0.7746
overal =0.7773

Variable

In(demand).,
In(own price)
In(comp. price)
In(pcapinc)
In(pop)
In(unrate)

R? within = 0.5905
between= 0.2871
overall =0.4417

Table3
Delta Airlines

Coefficient

0.642
-0.915
0.243
0.339
0.637
0.011

Table4
U. S Airlines

Coefficient

0.566
-0.557
-0.454
-0.055
1.833
-0.267
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Standard Error

0.0082
0.0440
0.0483
0.1093
0.1094
0.0206

Standard Error

0.01367
0.06823
0.1016
0.2408
0.2218
0.0414



